
Transcriptome Sequencing Data Sets for Determining Gene
Expression Changes Mediated by Phase-Variable DNA
Methyltransferases in Nontypeable Haemophilus influenzae
Strains Isolated from Patients with Chronic Obstructive
Pulmonary Disease

John M. Atack,a Timothy F. Murphy,b Melinda M. Pettigrew,c Kate L. Seib,a Michael P. Jenningsa

aInstitute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
bClinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
cYale School of Public Health, New Haven, Connecticut, USA

ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is a major bacterial cause
of exacerbations in chronic obstructive pulmonary disease (COPD). Here, we re-
port high-depth coverage transcriptome sequencing (RNA-seq) data from two
NTHi strains, each encoding a different phase-variable methyltransferase. modA
phase variation results in gene expression differences. These data will serve as
an important resource for future studies.

Nontypeable Haemophilus influenzae (NTHi) is a human-adapted pathogen that
causes exacerbations in chronic obstructive pulmonary disease (COPD) (1). Globally,

COPD affects �65 million people (2). Previous work examining NTHi pathobiology showed
that phase-variable modA genes, encoding DNA methyltransferases, are involved in viru-
lence by epigenetically regulating multiple genes (3–6). These systems are called phase-
variable regulons (phasevarions) (7, 8). ModA allelic variants are defined by variation (�25%
identity between alleles) in their central target recognition domain (TRD). The TRD deter-
mines methyltransferase specificity (9). Therefore, alleles containing different TRDs methy-
late different DNA sequences (7) and would control different phasevarions. Examination of
an extensive panel of NTHi isolates from COPD patients (10) revealed the presence of two
novel modA alleles, namely, modA15 and modA18. We previously demonstrated that these
methyltransferases are phase-variably expressed in prototype strains (11). Using matched
modA on-off pairs of each of these prototype strains, we prepared triplicate biological
replicates of total RNA using TRIzol (Thermo Fisher) according to the manufacturer’s
instructions. NTHi strains were grown to mid-log phase in brain heart infusion (BHI) broth
(Oxoid, UK) at 37°C aerobically with 150 rpm shaking.

All methods used for transcriptome sequencing (RNA-seq) are identical to those
described previously (12), except we used 100-bp paired-end sequence reads. Briefly,
the Illumina Ribo-Zero Gold kit was used to prepare libraries, and libraries were
assessed using an Agilent Bioanalyzer DNA 1000 chip. Quantitative PCR (qPCR) quan-
tification assessed each library prior to normalizing (2 nM) and pooling using the
Illumina cBot system and TruSeq paired-end (PE) cluster kit v3 reagents. The Illumina
NovaSeq system with TruSeq sequencing by synthesis (SBS) kit v3 reagents was used
to perform sequencing. Cleaned sequence reads were aligned against the respective
reference genomes (GenBank accession numbers CP029620 [10P129H1; modA15] and
CP029621 [84P36H1; modA18]). Reads were mapped to the respective genome using
Bowtie2 aligner (v2.3.3.1), and transcripts were assembled with the read alignment and
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reference annotation-based assembly option in Stringtie v1.3.3 (http://ccb.jhu.edu/
software/stringtie/). The Gencode annotation containing both coding and noncoding
sequences for each genome was used to map reads (http://www.gencodegenes.org/).
Raw gene count values were analyzed with edgeR (https://bioconductor.org/packages/
release/bioc/html/edgeR.html), and the subread package (http://subread.sourceforge
.net/) was used to quantitate counts using the featureCounts v1.5.3 utility. Gene
expression differences were expressed as log2 fold change of expression (logFC).
Analysis also generated the following: average log count/million for each gene from all
samples (logCPM values), quasi-likelihood F statistic for each gene from all samples (F
values), P values to determine statistically different expression, and the false-discovery
rate/adjusted P value for multiple-hypothesis testing.

Multiple genes are differentially regulated commensurate with modA15 and modA18
phase variation (44 genes differentially regulated between modA15 on versus off; 10 genes
differentially regulated between modA18 on versus off). For example, the universal stress
protein UspA (DLJ98_08875) and the cold shock protein CspD (DLJ98_02355) are both
upregulated when modA15 is off. In the ModA18 phasevarion, two hypothetical genes
(DLK00_05505 and DLK00_05510), encoding proteins of unknown function, are upregu-
lated when modA18 is on. These RNA-seq data will serve as a primary resource for studying
the regulatory events resulting from genome-wide methylation differences by phase-
variable methyltransferases during COPD and for determining the exact molecular mech-
anisms of modA-mediated gene expression differences.

Data availability. These data have been deposited in the NCBI Gene Expression
Omnibus under the accession numbers GSE129761 (modA15 on versus off) and
GSE129764 (modA18 on versus off).
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