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Abstract
For decades, researchers have debated the relative merits of different measures of people’s ability to discriminate the correctness
of their own responses (resolution). The probabilistic approach, primarily led by Nelson, has advocated the Goodman–Kruskal
gamma coefficient, an ordinal measure of association. The signal detection approach has advocated parametric measures of
distance between the evidence distributions or the area under the receiver operating characteristic (ROC) curve. Here we provide
mathematical proof that the indices associated with the two approaches are far more similar than has previously been thought:
The true value of gamma is equal to twice the true area under the ROC curve minus one. Using this insight, we report 36
simulations involving 3,600,000 virtual participants that pitted gamma estimated with the original concordance/discordance
formula against gamma estimated via ROC curves and the trapezoidal rule. In all but five of our simulations—which system-
atically varied resolution, the number of points on the metacognitive scale, and response bias—the ROC-based gamma estimate
deviated less from the true value of gamma than did the traditional estimate. Consequently, we recommend using ROC curves to
estimate gamma in the future.
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An important question in many domains of psychology is
whether people are metacognitively accurate. One type of
metacognitive accuracy is resolution, which is the degree to
which a metacognitive rating discriminates between a per-
son’s own correct versus incorrect responses. For example,
people may rate how confident they are in a particular re-
sponse on a 1 to 6 scale (6 = highest confidence). If, on aver-
age, accurate responses are assigned higher values on the scale
than inaccurate ones, then resolution is good. Resolution is
best if people use the extremes of the scale to discriminate
correctness. For example, someone who assigns B6^ to all
her accurate responses and B1^ to all her inaccurate ones is

demonstrating perfect resolution. The same principle applies
to other metacognitive ratings, such as judgments of learning
(JOLs) and feelings of knowing.

Resolution is considered important because it affects control
(Nelson & Narens, 1990). For example, students writing a
multiple-choice test forwhich errors are penalizedbut omissions
are not face a metacognitive decision: Is the candidate answer
under consideration for a question accurate or not (e.g.,Higham,
2007)? If it is assessed as correct, students may well risk the
penalty and offer it as a response. However, if it is assessed as
incorrect, the decisionmay be towithhold the response. Clearly,
resolution determines whether the decision to report (or with-
hold) the answer increases the test score. A student with perfect
resolutionwill offer all her correct responses andwithhold all her
incorrect ones, resulting in the highest score possible given her
knowledge. Conversely, another student with equal knowledge
may score lower on the test if her resolution is poor. With poor
resolution, the studentmayoffer a portion of her incorrect candi-
dateresponsesandwithholdsomeofhercorrectones, resulting in
penalties and lost opportunities for points, respectively (see
Arnold, Higham, & Martín-Luengo, 2013; Higham, 2007;
Higham & Arnold, 2007, for discussion of the metacognitive
processes involved in formula-scored tests).
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Given the importance of resolution for understanding
metacognitive processes and people’s behavior, it is critical
that it be measured properly. However, the best index of res-
olution has been an issue of ongoing debate (e.g., Higham,
2007, 2011; Higham, Zawadzka, & Hanczakowski, 2016;
Masson & Rotello, 2009; Nelson, 1984, 1986, 1987;
Rotello, Masson, & Verde, 2008; Swets, 1986). On the one
hand, there are proponents of Goodman–Kruskal’s gamma
coefficient (Goodman & Kruskal, 1954), an ordinal measure
of association ranging between – 1 (perfect negative
relationship) and + 1 (perfect positive relationship). One such
highly influential proponent was Nelson (1984), who com-
pared a variety of different measures of association and advo-
cated gamma for a number of reasons. First, it made no scaling
assumptions beyond the data being ordinal. Second, it could
achieve its highest value possible (+ 1) under most circum-
stances. Third, it could be computed from data arranged in a
number of different table formats (e.g., 2 × 2 tables or 2 × R
tables, where R > 2). By far, this index continues to be the
most common measure of resolution in the metacognitive lit-
erature. Nelson’s (1984) review of potential measures of res-
olution and ultimate promotion of gamma as the best one has
had tremendous impact on the field since it was first
published.

On the other hand, other researchers and statisticians have
recommended signal detection theory (SDT) as an alternative
to gamma (e.g., Benjamin & Diaz, 2008; Higham, 2011;
Higham et al., 2016; Masson & Rotello, 2009; Rotello et al.,
2008; Swets, 1986). Resolution is a discrimination task—peo-
ple must discriminate the correctness of their own responses—
so a suitable measure based on SDT seems like an obvious
choice, given that this theory was designed to provide a pure
measure of discrimination, free from response bias.
Proponents of SDT have argued that, unlike SDT measures
such as Az or da, gamma is contaminated by response bias
(e.g., Masson & Rotello, 2009). However, despite clear dem-
onstrations of this fact, as well as other undesirable properties
such as a tendency to produce Type I inferential errors
(Rotello et al., 2008), gamma continues to be used pervasively
throughout the metacognitive literature.

The purpose of the present article is to contribute to this
debate regarding the best measure of resolution in a unique
way; we highlight similarities rather than differences between
the measures. By sidestepping the typically confrontational
nature of this debate (see, in particular, the exchanges
between Nelson and Swets in the 1980s; e.g., Nelson, 1986,
1987; Swets, 1986), we hope to encourage new insights not
only regarding which measure of resolution is the best one to
use in a given situation, but also to demonstrate how it is
possible to translate one measure from the so-called
probabilistic approach involving gamma to SDT measures,
and vice versa. By emphasizing the similarities between the
measures rather than their differences, we introduce a new

computational formula for gamma that is based on SDT. Our
simulations show that when this SDT-based formula is used
instead of the one suggested byGoodman and Kruskal (1954),
which is derived from concordant and discordant pairs of ob-
servations (explained next), the estimates of gamma obtained
from sample data deviate far less from the true value.

Traditional gamma: Concordant
and discordant pairs of observations

In this section, we briefly review the original computational
formula for gamma introduced by Goodman and Kruskal
(1954), and its limitations. Suppose that experimental partici-
pants are presented with a list of 50 unrelated cue–target pairs,
such as digit–hungry. Following presentation of each pair,
participants are asked to judge the likelihood (using a 0%–
100% scale) that they will recall the target if presented with
the cue in a cued-recall memory test held at the end of the
experiment—a so-called judgment of learning (JOL). On the
cued-recall test, suppose that one participant recalled 30 of the
targets from the 50 cues on the test (60% accuracy). The par-
ticipant’s 30 correct and 20 incorrect recall attempts can then
be tabulated contingent on the JOLs she made during study.
Suppose that the JOLs, which can assume any integer value
between 0 and 100, are divided into ten bins, as in Table 1.
Binning data in this way is a common procedure in
metacognitive research, used to, for example, construct cali-
bration curves. To compute gamma using the original formula,
one first determines the total number of concordant (C) and
discordant (D) pairs of observations. These terms refer to the
ordering of the two observations within the pair on the two
variables. If the ordering of the two observations on one var-
iable is the same as the ordering on the second variable, then
there is a concordance (e.g., JOLa > JOLb and Recalla >
Recallb, where a and b refer to items within the pair).
Alternatively, if the ordering of the two observations on the
two variables are opposite (e.g., JOLa > JOLb and Recalla <
Recallb), then there is a discordance. In Table 1, the concor-
dant pairs would be those for which the JOL assigned to a
correct response exceeds that assigned to an incorrect re-
sponse. Discordant pairs, on the other hand, are those for
which the JOL assigned to an incorrect response exceeds that
assigned to a correct response. The numbers of concordant
and discordant pairs for the data in Table 1 are shown at the
bottom of the table. Gamma is then computed as the number
of concordant pairs minus the number of discordant pairs, all
divided by the total number of concordant and discordant
pairs—that is,

Gamma ¼ C−D
C þ D

ð1Þ
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In the example shown in Table 1, gamma is equal to .904.
This value corresponds to excellent resolution, since the max-
imum value that gamma can assume is 1.0. This excellent
resolution can be intuited by noting that the JOLs for correct
versus incorrect responses tend to be clustered toward the top
versus the bottom of the scale, respectively. In other words,
correct responses tend to be assigned high JOLs, whereas
incorrect responses tend to be assigned low JOLs, showing
that this participant was metacognitively accurate in
predicting her future memory performance.

Now consider the same participant’s data divided into five
bins instead of ten, a scenario depicted in Table 2. One might
expect that the gamma computed from the data in Table 2
would also be .904 as it was in Table 1, given that the two
tables are based on exactly the same data; the only difference
between the tables is the seemingly arbitrary decision about
how to bin the data. However, reducing the number of bins
reduces both the number of concordant pairs (540 instead of
554) and the number of discordant pairs (24 instead of 28).
This has the effect of increasing gamma from .904 to .915. At
the extreme, where there are only two bins corresponding to,
say, JOL < 50 and JOL ≥ 50, producing a 2 × 2 table, there

would be only 425 concordant pairs and 15 discordant pairs,
to yield gamma = .932. In short, the fewer the bins for a given
data set, the greater the distortion of gamma if it is computed
with the original formula.

The reason why reducing the number of confidence bins
distorts gamma is that it increases the total number of ties
(T)—that is, pairs of observations that do not differ on one,
the other, or both the JOL and recall accuracy variables.
Referring to the tables again, some pairs that were either con-
cordant or discordant in Table 1 are tied in Table 2. The num-
ber of ties can be computed by subtracting the numbers of
concordant and discordant pairs from the total number of pairs
(i.e., T = 0.5N[N – 1] –C –D,whereN equals the total number
of observations). Out of the 1,225 total pairs in the data set
used to generate Tables 1 and 2 (50[49]/2 = 1,225), there are
643 ties in Table 1 with ten bins, 661 in Table 2 with five bins,
and 785 in the 2 × 2 case (if confidence is split at 50%). There
are three types of ties (Gonzalez & Nelson, 1996): pairs that
are tied on (1) the metacognitive judgment (i.e., the two JOLs
are in the same bin) but not the recall test (i.e., one is correct,
but the other is not); (2) the recall test (i.e., both correct or both
incorrect) but not the metacognitive judgment (i.e., the two
JOLs are in different bins); and (3) both variables (i.e., pairs
assigned the same JOL, which are both correct or both incor-
rect). In Table 2, the 661 total ties are made up of 212, 36, and
413 ties of these three types, respectively. However, regardless
of the particular nature of the ties caused by decreasing the
number of bins, the effect on gamma is the same: Ties mean
that gamma is distorted. Only in the case of no ties is the value
of gamma accurate (Masson & Rotello, 2009).

The problem of tied observations and their effect on gam-
ma has been known for some time. Potential solutions have
been offered that typically entail including some of the tied
pairs in the denominator of the computational formula for
gamma, thereby reducing the overestimation (e.g., Kim,
1971; Somers, 1962; Wilson, 1974; see Freeman, 1986, for
a review). The purpose of our commentary is not to adjudicate
on which correction might be the most suitable. Rather, we
wish to offer an alternative method for computing gamma that

Table 1 Hypothetical frequency table showing the number of correctly recalled and not recalled responses distributed across ten JOL bins

JOL Bin

Accuracy 0–
9

10–
19

20–
29

30–
39

40–
49

50–
59

60–
69

70–
79

80–
89

90–
100

Total

Recalled (correct) 0 0 1 2 2 4 3 3 4 11 30

Not recalled (incorrect) 7 5 2 2 1 1 2 0 0 0 20

The numbers of concordant and discordant pairs computed, along with gamma estimated using the original formula: Concordant pairs = C = 7(0+1+2+
2+4+3+3+4+11) + 5(1+2+2+4+3+3+4+11) . . . 0(11) = 554; Discordant pairs = D = 5(0) + 2(0+0) + 2(0+0+1) . . . 0(0+0+1+2+2+4+3+3+4) = 28; Ties =
T = 0.5N(N – 1) –C –D= 1,225 – 554 – 28 = 643, whereN equals the total number of observations; Gamma = (C –D)/(C +D) = (554 – 28)/(554 + 28) =
.904; JOL = judgment of learning

Table 2 Hypothetical frequency table showing the number of correctly
recalled and not recalled responses distributed across five JOL bins

JOL Bin

Accuracy 0–
19

20–
39

40–
59

60–
79

80–
100

Total

Recalled (correct) 0 3 6 6 15 30

Not recalled (incorrect) 12 4 2 2 0 20

These are the same data as in Table 1, except there are fewer bins. The
numbers of concordant and discordant pairs computed, along with gam-
ma estimated using the traditional formula: Concordant pairs = C = 12(3+
6+6+15) + 4(6+6+15) . . . 2(15) = 540; Discordant pairs = D = 4(0) + 2(0+
3) + 2(0+3+6) . . . 0(0+3+6+6) = 24; Ties = T= 0.5N(N – 1) – C – D =
1225 – 540 – 24 = 661, where N equals the total number of observations;
Gamma = (C – D)/(C + D) = (540 – 24)/(540 + 24) = .915; JOL =
judgment of learning
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does not involve ties; indeed, it does not involve the notion of
concordant and discordant pairs at all, and is therefore free of
the problems inherent in the original formula.

V: The proportion of concordant pairs

Nelson (1984) described a statistic that is closely related to
gamma: V, the proportion of concordant pairs. In an ideal
circumstance in which there are no ties, then

V ¼ C
C þ D

ð2Þ

If there are no ties, the proportion of concordant pairs (V)
and the proportion of discordant pairs are complementary,
such that

1−Vð Þ ¼ D
C þ D

ð3Þ

Nelson showed that, because gamma is equal to Eq. 2 mi-
nus Eq. 3 (i.e., the difference in the proportions of concordant
and discordant pairs),

Gamma ¼ V− 1−Vð Þ ¼ 2V−1 ð4Þ

The relevance of V and Eq. 4 will become apparent later.

Alternatives to gamma: Signal detection
theory

Adopting a signal detection framework, Masson and Rotello
(2009) showed that gamma is contaminated by response bias.
In the metacognitive context, liberal versus conservative re-
sponse biases would be represented in Table 1 as a clustering
of observations in the bins associated with high versus low
confidence values, respectively. At the extreme, maximally
liberal versus maximally conservative responding would re-
sult in all observations falling into the 90–100 bin versus the
0–10 bin, respectively. At these extremes, all the observations
are ties, with the number of ties reducing as the clustering is
reduced. As an alternative to gamma, Masson and Rotello
recommended parametric signal detection measures such as
da or Az, which are free of response bias if the parametric
assumptions are met. However, as we discuss in more detail
later, these measures present their own practical as well as
potential theoretical problems.

We now turn to the area under the receiver operating char-
acteristic (ROC) curve, which Az estimates. ROC curves, in-
troduced to psychology from engineering in the 1950s, are
now used widely in both experimental psychology and med-
icine, as they provide a great deal of useful information about
discrimination performance. In short, an ROC curve is a plot

of the hit rate (HR) as a function of the false alarm rate (FAR)
at different levels of response bias. Within the metacognitive
context, the HR and the FAR are the conditional probabilities
that participants identified correct and incorrect responses,
respectively, as correct. There are a variety of ways that a
response might be identified as correct. Participants may
choose to report (rather than withhold) an answer in a
formula-scored testing situation, or they may respond Byes^
when asked if they are confident in their answer. However,
identification of correct answers using binary responses (re-
port/withhold or yes/no), by itself, only produces one point for
the ROC curve, because it produces only one HR and FAR
pair. To generate several points for the ROC, which gives a
better indication of its shape, confidence ratings are common-
ly used.

To illustrate a confidence-based ROC curve, consider again
the data in Table 1. The first step in creating an ROC curve of
these data is to generate a table of the cumulative frequencies,
shown in panel A of Table 3. Starting at the highest level of
confidence and moving to lower confidence levels, observa-
tions are accumulated until all of the observations are repre-
sented at the lowest confidence level. The cumulative nature
of the data in Table 3 is indicated by the B+^ sign following
each confidence level. For example, the column correspond-
ing to B70+^ includes all the correct and incorrect responses
assigned a confidence level of 70 or higher. For the column
B0+,^ all responses are assigned a confidence level of 0 or
higher; hence, the values in that column match the row totals
at the right-hand end of the row.

Next, the cumulative frequencies are converted into rates,
shown in panel B of Table 3. Specifically, the cumulative
frequencies are divided by the total number of observations
of a given type. Correct responses yield HRs, whereas incor-
rect responses yield FARs. Note that the rates for higher con-
fidence levels generally are smaller than those at lower confi-
dence levels. This mapping corresponds to more conservative
responding versus more liberal responding, respectively. A
way to understand the table of HRs and FARs is to treat de-
creasing levels of confidence as decreasing levels of conser-
vatism. That is, for confidence level B90+,^ it is as if partici-
pants are only identifying as correct those responses assigned
90 or higher. On the other hand, for confidence level B30+,^ it
is as if participants are identifying as correct those responses
assigned 30 or higher, which means that more items have been
identified as correct (for 90+ vs. 30+, respectively: HRs, .37
vs. .97; FARs, 0 vs. .30).

The values in the rates table can then be plotted in a unit
space, with FARs on the x-axis and HRs on the y-axis. The
ROC curve for the data shown in panel B of Table 3 is shown
in Fig. 1. A number of interesting performance metrics can be
gleaned from the ROC curve. Note that if participants were
completely unable to discriminate between their own correct
and incorrect responses, the HR and FAR would be equal to
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each other. In other words, correct responses would be just as
likely to be identified as correct as incorrect. By convention,
chance performance is depicted in the ROC space as the diag-
onal line, commonly referred to as the chance diagonal. Note,
however, that the actual ROC curve is bowed away from the
chance line. This bowing indicates that discrimination is
above chance, because the HRs exceed the FARs at all confi-
dence levels. Because more bowing is indicative of better
discrimination, area under the curve (AUC) provides a useful
measure of discrimination. Az, mentioned earlier, is a measure
of this area and can be obtained from sample data using
maximum-likelihood estimation if it is assumed that there
are Gaussian correct and incorrect response distributions.
Such an assumption may not be valid in the context of
metacognitive discrimination (resolution), a point to which
we will return later. A nonparametric alternative is Ag, which

estimates the area by connecting the points on the ROC curve
(as well as the [0,0] point) with straight lines and computing
the area using the trapezoidal rule (Pollack & Hsieh, 1969). In
particular, the formula for Ag is

Ag ¼ 0:5 ∑
n

k¼0
HRkþ1 þ HRkð Þ FARkþ1−FARkð Þ; ð5Þ

where k represents the different criteria plotted on the ROC
and n is the number of criteria. Therefore, for the ROC curve
in Fig. 1, which is based on the data in Table 3,

Ag ¼ 1þ 1ð Þ 1−:65ð Þ þ 1þ 1ð Þ :65−:40ð Þ⋯
þ :37þ 0ð Þ 0−0ð Þ

¼ :94 ð6Þ

The relationship between V and area
under the ROC curve

Figure 2 shows another way to depict monitoring and confi-
dence in a signal detection model. The model assumes that
there is an underlying dimension constituting the subjective
evidence (for correctness).1 In most cases, correct items (in the
current context, those that are successfully recalled) have
more subjective evidence than incorrect items. The vertical

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

HR

FAR

90+

80+

70+

60+

50+

40+

30+
20+ 10+ 0+

Fig. 1 Hypothetical receiver operating characteristic (ROC) curve based
on the hit rates and false alarm rates shown in panel B of Table 3. The plus
signs next to the points on the ROC indicate that the rates are cumulative.
HR = hit rate, FAR = false alarm rate

1 The evidence dimension in SDT is commonly described as Bmemory
strength.^ This has typically caused SDT to be rejected by metacognitive
theorists because that label seems to imply that people make metacognitive
judgments on the basis of direct access to the contents of memory (e.g., Koriat,
2012). However, as is discussed in Higham et al. (2016), there is no need to
equate the underlying dimension with memory strength. It is better to consider
the dimension as reflecting all sources of influence that participants subjec-
tively consider relevant to correctness. These influences can be based on
memory access or can be based on myriad other metacognitive cues that are
more inferential in nature (e.g., font size; see Luna, Martín-Luengo, &
Albuquerque, 2018).

Table 3 Hypothetical cumulative frequency table (panel A), showing the numbers of correctly recalled and not recalled responses that are equal to or
higher than the designated confidence criteria, along with the hit rates and false alarm rates (panel B) derived from the cumulative frequencies in panel A

Confidence Criteria

0+ 10+ 20+ 30+ 40+ 50+ 60+ 70+ 80+ 90+ Total

A – Cumulative Frequencies

Recalled (correct) 30 30 30 29 27 25 21 18 15 11 30

Not recalled (incorrect) 20 13 8 6 4 3 2 0 0 0 20

B – Rates

Hit rates 1.00 1.00 1.00 .97 .90 .83 .70 .60 .50 .37 –

False alarm rates 1.00 .65 .40 .30 .20 .15 .10 .00 .00 .00 –

These values are based on the noncumulative data shown in Table 1. The plus signs next to the confidence criteria in each panel indicate that the data are
cumulative.

112 Behav Res (2019) 51:108–125



lines represent different confidence criteria. Thus, for an item
to be assigned 75%, it must be associated with enough evi-
dence to equal or exceed the 75% confidence criterion, but not
to equal or exceed the 100% confidence criterion (in which
case it would be assigned 100%). Note that there are only five
criteria in this example, rather than ten as in Fig. 1 and Table 3.
The number of criteria was reduced simply to avoid the figure
seeming too busy and is not important for the present
purposes.

One interpretation of the area under the ROC curve (which
Ag estimates) is that it is equal to the likelihood that an obser-
vation drawn at random from the correct item distribution will
be higher on the subjective evidence dimension than an ob-
servation drawn at random from the incorrect item distribu-
tion. In Fig. 2, two such pairs are shown, as c (a correct item
drawn at random) and i (an incorrect item drawn at random),
joined by a line with two arrow heads to indicate that they are
part of the same pair. In the upper example, c exceeds i. In
bottom example, the opposite is true. It is straightforward to
see that as the distributions separate, such that there is less
overlap, cases of c > i will increasingly prevail over cases of
c < i , until P(c > i) = 1. In other words, with no overlap of the
distributions, there is perfect discrimination, and AUC will
also be equal to 1. Conversely, if the distributions are drawn
together until they completely overlap, then P(c > i) = P(c < i)
= .5, which is also equal to AUC (chance diagonal). We pro-
vide a mathematical proof that P(c > i) is equal to AUC in the
supplementary materials.

There is another way to interpret these pairs of observations
and how they compare on the subjective evidence dimension.
Specifically, for the c > i pairs, both confidence and accuracy
are higher for c than for i, making the observation pair con-
cordant. In contrast, for the c < i pairs, c is less than i on
confidence, but higher than i on accuracy, making the pair

discordant. Equation 2 indicates that the proportion of concor-
dant pairs in the entire sample (i.e., P[c > i]) is equal to V.
However, above we noted that P(c > i) is equal to AUC. Thus,

AUC ¼ V ¼ P c > ið Þ ð7Þ

Substituting AUC for V in Eq. 4 produces a very simple
formula for relating gamma and AUC:

Gamma ¼ 2AUC−1 ð8Þ

Moreover, we can estimate AUC using Eq. 5 for Ag, and
then Ag can be substituted in Eq. 8 in order to obtain an esti-
mate of gamma:

Gamma ¼ 2 0:5 ∑
n

k¼0
HRkþ1 þ HRkð Þ FARkþ1−FARkð Þ

� �
−1

¼ ∑
n

k¼0
HRkþ1 þ HRkð Þ FARkþ1−FARkð Þ

� �
−1

ð9Þ

Equation 9 provides an alternative method for computing
gamma that is no more complex to compute than the original
formula proposed by Goodman and Kruskal (1954), but that
does not rely on the concepts of concordance and discordance.
Consequently, it is not subject to the associated problem of
ties. However, it is also well known that Ag has its own prob-
lems under certain circumstances (e.g., Grier, 1971; Simpson
& Fitter, 1973). Because the trapezoidal rule necessitates
drawing straight lines between the points on the ROC curve,
AUC will be underestimated if the ROC is curvilinear, which
is the usual case if the underlying evidence distributions are
Gaussian. In short, the trapezoidal rule yields the minimum
possible area under the ROC curve for a particular set of ROC
coordinates. Some measures have been offered to compensate
for this problem. For example, Donaldson and Good (1996)
suggested A’r, which is the average of the minimum and max-
imum possible areas subtended by the ROC points. However,
the computational procedure for this measure is considerably
more complex than is that for Ag, and it cannot be used for all
data sets (e.g., there are slope restrictions). Consequently, for
most of the remainder of this article, our aim is to compare the
overestimation of true gamma caused by the concordance/
discordance formula to the underestimation of true gamma
caused by the trapezoidal rule, to determine which approach
yields the better estimate. In the Discussion section, we will
justify our nonparametric approach to this problem.

Overview of the simulations

Our strategy for determining which measure provides the best
estimate of gamma required us to compute each estimate formul-
tiple simulated Bparticipants^ under a variety of circumstances

inc cor

0 25 50 75 100

subjective evidence

ci

c i

Fig. 2 Signal detection model showing incorrect (inc) and correct (cor)
items distributed normally over the subjective evidence (for correctness).
The vertical lines represent the confidence criteria associated with confi-
dence levels 0, 25, 50, 75, and 100. The c and i pairs joined by the
horizontal, double-headed arrows represent pairs of observations drawn
at random, one each from the correct and incorrect item distributions,
respectively. In the upper case, c has more evidence than i, making the
pair concordant. However, the opposite is true in the bottom case, making
the pair discordant
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and then to compare the results to a true measure of gam-
ma. Henceforth, we refer to the estimate derived from con-
cordant and discordant pairs as Gpairs, the estimate based
on ROC curves and the trapezoidal rule as Gtrap, and the
true value of gamma as Gtrue. Gpairs and Gtrap were com-
puted under conditions that simulated a variety of high-
powered experiments, each with 100,000 participants and
different parameter settings, as detailed later. To simulate
realistic experimental conditions, each participant rated
only 100 items (50 correct and 50 incorrect items; accura-
cy = 50%) drawn from Gaussian evidence distributions.
The SD of the incorrect item distribution was fixed at 1.0
for all simulations, whereas the SD of the correct item
distribution was varied. Confidence criteria were placed
on the evidence dimension, and on each cycle of the sim-
ulation (corresponding to one participant), 50 items were
randomly selected from each of the incorrect and correct
evidence distributions and their subjective evidence
values were evaluated with respect to the confidence
criteria, to create a frequency table analogous to Table 1
or 2. The numbers of concordant and discordant pairs were
computed from the data in the table, and Gpairs was com-
puted using Eq. 1. To compute Gtrap, the data in the table
were converted to cumulative frequencies, and the HRs
and FARs at each confidence criterion were computed
(Table 3). Once these rates had been obtained, Gtrap was
computed using Eq. 9. The end result was 100,000 esti-
mates of both Gpairs and Gtrap, with each estimate being
based on 100 items, from which the mean of each estimate
could be computed for different underlying models with a
varying set of parameters.

The next step was to compute Gtrue so that the accuracy of
Gpairs and Gtrap could be evaluated. There are a variety of
methods to estimate Gtrue. For the simplest (2 × 2) case,
Masson and Rotello (2009) randomly selected 200,000 pairs
of observations, one each from the correct and incorrect item
distributions. They then compared the magnitudes of these
two observations across all pairs, determining whether the pair
was concordant or discordant (see Fig. 2), which allowed
them to compute Gtrue. Because real-valued numbers with
high precision were used in these comparisons, there were
few if any ties, thereby yielding an accurate gamma estimate.

Other methods can be used to estimate Gtrue that take ad-
vantage of the insights offered in this article regarding the
relationship between AUC and Gtrue. That is, Gtrue could be
computed by first accurately estimating AUC and then
converting that estimate to gamma by using Eq. 8. For exam-
ple, if thousands of confidence criteria were used to derive Ag,
the process of computing the area becomes analogous to inte-
gration, so any underestimation of AUC would be negligible.
However, an even better area estimate can be obtained by
using the population parameters rather than by trying to min-
imize error in the sample estimate. Specifically, Az can be

computed if the ROC curve is transformed into a zROC by
calculating z-scores corresponding to each HR and FAR pair
plotted on the ROC. If the evidence distributions are Gaussian,
as they were in all our simulations, the zROC becomes a
straight line, intercepting both the x- and y-axes. If the slope
and y-intercept of the population-based zROC are known, Az
can then be computed with the following equation (Stanislaw
& Todorov, 1999; Swets & Pickett, 1982):

Az ¼ Φ
y interceptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ slopeð Þ2

q
2
64

3
75; ð10Þ

where Φ (Bphi^) is the function that converts z-scores into
probabilities. Because we fixed the SD of the incorrect item
distribution at 1.0 in all simulations, the y-intercept was equal
to the standardized distance between the means of the incor-
rect and correct item distributions, divided by the SD of the
correct item distribution. The slope of the population-based
zROC was equal to one divided by the SD of the correct item
distribution. Gtrue was then calculated by substituting Az for
AUC in Eq. 8. Because the y-intercept and slope in Eq. 10
were population parameters for Gaussian distributions that we
defined a priori, this method provides a perfect measure of
AUC, and hence a perfect measure of gamma (Gtrue).

As we noted earlier, we ran a variety of simulations testing
different model parameters. The first set of 18 simulations as-
sumed equal-variance Gaussian evidence distributions, where-
as the second set of 18 simulations assumed unequal variances
(total = 36 simulations). Specifically, the ratios of the SDs of
the incorrect and correct item distributions in the first versus the
second set of simulationswere 1.0:1.0 and 1.0:1.25, respective-
ly. An SD ratio of 0.8 (1.0:1.25) was chosen because research
in recognition memory has demonstrated that a zROC with a
slope of 0.8 fits the data well (e.g., Wixted, 2007).

Within each set of simulations, we varied three additional
parameters: the number of points (confidence criteria) on the
metacognitive scale, resolution, and bias. The number of scale
points was either 6, 10, or 101, corresponding to commonly
used 1–6, 1–10 (e.g., percentage scale on which only values
evenly divisible by ten are permitted: 0%, 10%, 20%, . . . ,
90%; Table 1), and 0–100 confidence scales, respectively.

Resolution was tested under two conditions, low and high,
corresponding to standardized distances between the means of
the evidence distribution of 0.5 and 2.0, respectively. In all
simulations, the mean of the incorrect item distribution was
fixed at 0 (SD = 1) on the evidence dimension. Thus, the
means of the correct item distributions were 0.5 and 2.0 for
the low- and high-resolution models, respectively.

Three levels of bias were tested: liberal, unbiased, and con-
servative. These different bias levels were created by varying the
placement of the confidence criteria on the evidence dimension.
To determine the placements, we first specified the locations of
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the highest and lowest criteria. The lowest, most liberal criterion
for any dataset necessarily yields an HR–FAR pair correspond-
ing to the (1,1) point on the ROC (see Figs. 1 and 2 and the
bottom panel of Table 3). This occurs because confidence judg-
ments are usually required for all items, which means that 100%
of both incorrect and correct items are assigned the lowest level
of confidence or higher. Because the HR and FAR are necessar-
ily equal to 1.0 regardless of the model assumed, it was not
informative to include this criterion in the simulations. Instead,
the lowest criterion was associated with the second lowest value
on each scale. This criterion was placed at – 2.0 on the evidence
dimension for the liberal and unbiased cases, and at 0.0 for the
conservative case (i.e., at the mean of the incorrect item distribu-
tion). The highest criterion for the unbiased and conservative
cases was equal to the resolution value (either 0.5 or 2) plus
two times the SD of the correct item distribution. For the liberal
case, the highest criterion was equal to the resolution value (i.e.,
at the mean of the correct item distribution). The remaining
criteria, the number of which varied according to which type
of scale was being simulated, were spaced at equal intervals
between the highest and lowest criteria. This methodology en-
sured that criteria were spread across the full range of both dis-
tributions if responding was unbiased, regardless of resolution or
the SD of the correct item distribution. It also ensured that both
the lowest HR for the liberal case and the highest FAR for the
conservative case were equal to 0.5, again, regardless of the other
parameters that were varied.

Schematic depictions of several models with different pa-
rameters and their associated ROC curves are shown in Figs. 3
(equal-variance model) and 4 (unequal-variance model). The
top panel of Fig. 3 displays the equal-variance model corre-
sponding to unbiased responding, a 6-point scale, and low res-
olution. The bottom panel displays the equal-variance model
corresponding to conservative responding, high resolution, and
a 10-point scale. In comparing the bottom panel with the top
panel, note that the ROC curve is considerably more bowed in
the bottom panel, which occurred because of the higher level of
resolution. Also, the confidence criteria are shifted to the right
(most liberal criterion at 0 rather than – 2 on the evidence
dimension). This means that the points on the ROC do not
represent the full range over which the items are distributed
on the underlying evidence dimension. However, at high levels
of resolution, this incomplete representation does not appear to
affect the ROC much. That is, even though the conservative
respondingmeans that the highest FAR is only 0.5 on the ROC,
the high resolution means that the HR is already close to 1.0.

Now consider the schematic depictions of the unequal-
variance model shown in Fig. 4. The top panel corresponds
to the case of a 101-point scale, low resolution, and unbiased
responding. Note that the ROC for the unequal-variance case
is not symmetric with respect to the chance diagonal, unlike
the ROCs associated for the equal-variance models in Fig. 3.
Note also that with a 101-point scale, the distances between

the points on the ROC are much smaller, which should yield
an accurate estimate of Gtrap because very little of the true
AUC is cut off by the straight lines joining the ROC coordi-
nates. In contrast, the model in the bottom panel has a similar
level of low resolution, but there are only five criteria (corre-
sponding to a 6-point scale) and responding is liberal.
Comparing the bottom panel with the top one, note that the
large distance between the points on the ROC coupled with
the liberal respondingmeans that very few points represent the
ROC in the conservative (bottom-left) region, where the bow-
ing is greatest. Consequently, the straight line joining the most
conservative ROC point and the (0,0) point cuts out a signif-
icant amount of area, suggesting that Gtrap may not be very
accurate in cases of low resolution, few confidence criteria,
and liberal responding. We will return to this point later.

Results

Equal-variance model

The results of the simulations for the equal-variance model are
shown in Fig. 5. The top versus bottom panels of Fig. 5 dis-
play the results for low (0.5) versus high (2.0) resolution,
respectively. Gtrue is shown as the horizontal dashed line in
each panel. Note that in all cases, regardless of the resolution
level,Gpairs overestimatedGtrue, whereasGtrap underestimated
it. Note also that as the number of points on the scale in-
creased, the accuracy of both estimates improved (i.e., the
unsigned deviation from Gtrue was reduced). Unsurprisingly,
increasing resolution had the effect of substantially increasing
both Gtrue and the two estimates of gamma.

On the other hand, the effect of bias on each estimatewas less
straightforward. First consider the effect of bias at low resolution
(toppanelofFig.5).ForGpairs,unbiasedrespondingledtopoorer
estimates than did conservative or liberal responding for the 6-
point scale,equivalentestimates for the10-point scale, andbetter
estimates for the 101-point scale. On the other hand, for Gtrap,
unbiased responding led to better estimates than either conserva-
tive or liberal responding regardless of the number of scale
points. However, this advantage for unbiased responding in-
creased as the number of scale points increased.

Now consider the effect of bias at high resolution (bottom
panel of Fig. 5). For Gpairs, the pattern was similar to the pattern
observed at low resolution. That is, unbiased responding led to
worse estimates than either liberal or conservative responding for
the 6-point scale. This difference was reduced for the 10-point
scale and was slightly reversed for the 101-point scale, although
all estimates with 101 scale points were close to Gtrue. For Gtrap,
the pattern was opposite to that observed at low resolution. That
is, unbiased responding produced worse accuracy than either
conservative or liberal responding for the 6-point scale, the dif-
ference was reduced for the 10-point scale, and slightly reversed
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for the 101-point scale. However, as withGpairs, all levels of bias
produced estimates that deviated little fromGtrue for scales with a
large number of response categories.

Most important for the present purposes is the relative ac-
curacy of Gtrap and Gpairs. To facilitate this comparison, aster-
isks have been added above the data points in both panels of
Fig. 5 to indicate which estimate produced the least unsigned
deviation from Gtrue. As Fig. 5 shows, Gtrap yielded a better
estimate in eight out of nine cases for low resolution (89%)
and in nine out of nine cases for high resolution (100%; total
for the equal-variance model = 17/18 = 94%).

Unequal-variance model

The results of the simulations for the unequal-variance model
are shown in Fig. 6. As with Fig. 5, the top versus bottom
panels of Fig. 6 show the results for low (0.5) versus high
(2.0) resolution, respectively, and Gtrue is shown as the

horizontal dashed line in each panel. As with the equal-
variance model, Gpairs tended to overestimate Gtrue, whereas
Gtrap tended to underestimate it. Also as before, increasing res-
olution increased Gtrue and both gamma estimates. Generally
speaking, increasing the number of points on the scale im-
proved both gamma estimates, which also was true of the
equal-variance model.

The effect of bias was again less straightforward. For Gpairs

at low resolution, liberal responding tended to give the best
estimates, with the exception of the 101-point scale condition,
for which unbiased responding was best. The same pattern was
evident for high resolution. For Gtrap at low resolution, on the
other hand, conservative responding tended to produce the best
estimates, with the exception of the 101-point scale, for which
unbiased responding was slightly better. However, at high res-
olution, liberal and conservative responding produced approx-
imately equal levels of Gtrap accuracy, regardless of the type of
scale. Compared to biased responding, unbiased responding
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Fig. 3 Graphical depictions of two of our simulations assuming equal-
variance Gaussian evidence distributions. In each panel, the left side
depicts the evidence distributions with confidence criteria, whereas the
right side shows the associated ROC curve. The top panel shows the
distributions with five criteria (6-point scale) that are unbiased, and

resolution is low (standardized difference between means = 0.5). The
bottom panel shows the simulation with nine criteria (10-point scale) that
are conservative and where resolution is high (standardized difference
between means = 2). EV = equal-variance; c = correct item distribution;
i = incorrect item distribution
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produced worse Gtrap accuracy if the number of points on the
scale was low (e.g., 6-point scale), but slightly better accuracy if
the number of points on the scale was high (101-point scale).

Asterisks are again displayed in Fig. 6 to indicate which of
the twogammaestimates,Gpairs orGtrap,wasmore accurate (i.e.,
produced the lesser unsigned deviation from Gtrue). For low
resolution,Gtrap was more accurate thanGpairs in six out of nine
cases (67%). The exceptions were cases of liberal responding.
The reason that liberal responding produced poor estimates of
Gtrap with the unequal-variance model at low resolution can be
understood by examining the bottom panel of Fig. 4. With an
unequal-variancemodel, theROCbowsmore from the diagonal
in the conservative region (i.e., the region associated with low
HR and FAR values) than in the liberal region (i.e., the region
associated with high HR and FAR values). However, because
responding is liberal, there are few (or no) points on the ROC
representing that bowed region. Consequently, the straight line

extending from the most conservative ROC point to the (0,0)
point cuts out a significant portion of the most bowed region of
the ROC, causing Gtrap to underestimate Gtrue.

For high resolution, Gtrap was more accurate than Gpairs in
eight out of nine cases (89%). The exception was again a case
of liberal responding in which, as with low resolution, there
were few (or no) points representing the conservative region
of the curve. However, as we noted earlier, the impact of this
poor representation in the high-resolution case was not as
great as in the low-resolution case, due to the nature of the
ROC curves (i.e., the magnitude of the reversal was very
small: 0.0008). The intuition for this fact can be obtained by
examining the bottom panel of Fig. 3.2 Although there are no
points representing any part of the subjective evidence

2 Although Fig. 3 depicts an equal-variance model, it still highlights the point
that conservative responding has little effect on Gtrap if resolution is high.
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Fig. 4 Graphical depictions of two of our simulations assuming unequal-
variance Gaussian evidence distributions (1:1.25 ratio for c and i standard
deviations, respectively). In each panel, the left side depicts the evidence
distributions with confidence criteria, whereas the right side shows the
associated ROC curve. The top panel shows the distributions with 100

criteria (101-point scale) that are unbiased and where resolution is low
(standardized difference between means = 0.5). The bottom panel shows
the simulation with five criteria (6-point scale) that are liberal and where
resolution is low (standardized difference = 0.5). UEV = unequal-
variance; c = correct item distribution; i = incorrect item distribution
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Fig. 5 Means for two gamma estimates across 18 simulations (each based
on 100,000 virtual participants) assuming equal-variance Gaussian evi-
dence distributions. Low resolution (standardized difference between
means of the signal and noise distributions = 0.5) is shown in the top
panel, whereas high resolution (standardized difference = 2.0) is shown in
the bottom panel. At each level of resolution, response bias and the

number of scale points were varied. The true value of gamma is the
horizontal dashed line in each panel. Asterisks indicate which of the
two gamma estimates (G_trap = gamma estimated via ROC curves and
the trapezoidal rule, G_pairs = gamma estimated by the original
concordance/discordance formula) deviated the least from true gamma
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dimension lower than 0 (where FAR = 0.5), the impact on
Gtrap is small because almost the whole of the correct item
distribution has been mapped out at higher evidence levels.
In other words, the HR is close to 1.0 at the most liberal
confidence criterion, even though all the confidence criteria
are quite far up the subjective evidence dimension.

Discussion

There has been decades-long debate between the so-called
probabilistic and signal detection camps regarding the best
measure of metacognitive monitoring. The former camp, most-
ly led by Nelson (1984, 1986, 1987), has promoted gamma
computed with Goodman and Kruskal’s (1954) original
concordance/discordance formula. As an alternative, others
have suggested using area or distance measures derived from
SDT (e.g., Benjamin & Diaz, 2008; Higham, 2007, 2011;
Masson & Rotello, 2009; Swets, 1986). We have provided
mathematical proof that the two approaches are far more sim-
ilar than has previously been assumed (see the supplementary
materials). Specifically, true gamma is simply a linear function
of the true area under the ROC curve (see Eq. 8). This means
that both gamma and AUC in their true form are sensitive to the
same metacognitive information and correlate perfectly across
both participants and items. Thus, in their true form, there is no
logical basis for preferring one measure over the other.

If the twomeasures are essentially the same, why have their
relative merits been a subject of contention in the literature for
so long? The problem lies not with the inherent superiority of
one approach over the other. Instead, the problem lies in the
method used to estimate the true values. Under the probabi-
listic approach, gamma has traditionally been estimated using
the concepts of concordant and discordant pairs. Conversely,
signal detection measures have typically been derived by es-
timating the distance between the signal and noise distribu-
tions (e.g., d' or da) or AUC (e.g., Az or Ag). All of these
measures are imperfect to varying degrees. The original gam-
ma formula is distorted by ties and can overestimate the true
gamma value quite substantially, particularly if there are only
a few points on the metacognitive scale. Ag underestimates the
true area under the ROC curve, particularly if there are few

scale points and resolution is high. Az and da provide accurate
measures of discriminability as long as the underlying distri-
butions are normal. However, if the normality assumption is
violated, these measures also become grossly inaccurate.
Hence, the question that researchers must ask themselves is
not whether they should compute gamma versus some signal
detection measure of resolution, as if these are opposing alter-
natives. The question should be which method should be used
to estimate the true value of gamma, distance, or AUC in a
given research context.

In an attempt to address this important question, we con-
ducted 36 simulations involving 3,600,000 virtual participants
to compare the relative accuracy of gamma computed with the
original concordance/discordance formula against gamma
computed with ROC curves and the trapezoidal rule. In all
but five of these simulations, themethod of computing gamma
using area under the ROC curve was superior. That is, com-
pared to gamma estimated with the concordance/discordance
formula, computing AUC with the trapezoidal rule, doubling
it, and subtracting one yielded less unsigned deviation from
the true gamma value in 86% of our simulations. This superi-
ority was true for myriad conditions. Across the 36 simula-
tions, we manipulated the relative variances of the correct and
incorrect item distributions, response bias, resolution, and the
number of response categories on the confidence scale. The
fact that ROC curves yielded the better gamma estimate across
all these different conditions suggests that gamma computed
in this way can be considered, in general, to be a better esti-
mate of resolution than gamma computed with the original
formula. Consequently, the former should be favored as the
method of estimating resolution except in very specific cir-
cumstances (see the Limitations section).

Although the difference in the amounts that Gpairs and Gtrap

deviated from Gtrue may seem negligible in some cases, partic-
ularly if a large number of scale values were used, the relative
deviations were not. To illustrate, we compared the unsigned
deviations (from Gtrue) for Gtrap and Gpairs for the 31 (of 36)
cases in which Gtrap had higher accuracy. These comparisons
indicated thatGtrap was 3.41, 20.54, 34.56, and 4.06 timesmore
accurate thanGpairs in the equal-variance/low-resolution, equal-
variance/high-resolution, unequal-variance/low-resolution, and
unequal-variance/high-resolution simulations, respectively.

Other criticisms might be that researchers, for the most part,
are interested in whether gamma differs between experimental
conditions or whether it is significantly different from zero, not
in the true value of gamma. Given these interests, why is it so
important to be concerned about accurate measurement of gam-
ma? Our response to the first criticism is that the over/
underestimation of gamma is not consistent across different con-
texts, which could result in spurious experimental differences
being reported. As our opening example in the introduction
reveals, Gpairs is generally greater for smaller than for larger
contingency tables, even for the same data set. Thus, if gamma

Fig. 6 Means for two gamma estimates across 18 simulations (each based
on 100,000 virtual participants) assuming unequal-variance Gaussian ev-
idence distributions (1:1.25 ratio for signal and noise standard devia-
tions). Low resolution (standardized difference between means of the
signal and noise distributions = 0.5) is shown in the top panel, whereas
high resolution (standardized difference = 2.0) is shown in the bottom
panel. At each level of resolution, response bias and the number of scale
points were varied. The true value of gamma is the horizontal dashed line
in each panel. Asterisks indicate which of the two gamma estimates (G_
trap = gamma estimated via ROC curves and the trapezoidal rule, G_
pairs = gamma estimated by the original concordance/discordance for-
mula) deviated the least from true gamma
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computed in an experimental condition with data arranged in a
small contingency table (e.g., Report/Withhold × Accurate/
Inaccurate) is compared to gamma in another experimental con-
dition with data arranged in a larger contingency table (e.g., 1–6
Confidence × Accurate/Inaccurate), the former is likely to be
larger than the latter purely as an artifact of the table size.
Regarding the second criticism, overestimation or underestima-
tion of gamma could produce spurious differences when gamma
is compared against zero, leading researchers to conclude that
gamma is above or below chance, respectively, when in fact it is
not. This problem is particularly evident with small contingency
tables. In our view, for these reasons and others, it is always
preferable to estimate gamma as accurately as possible.

The number of points on the metacognitive scale was one
of the most important factors affecting the accuracy of both
Gpairs and Gtrap. Nelson (1984) argued that, although a correc-
tion may be needed for 2 × 2 tables so that the sample gamma
(Gpairs) is an unbiased estimate of the population gamma
(Gtrue), corrections were not needed for larger tables. The sim-
ulations reported here indicate that this statement is clearly not
true; a 2 × 6 table, associated with a 6-point scale, showed
large overestimations for Gpairs. There was also a moderate
amount of overestimation for the 10-point scale (10 × 2 table).
Even the 101-point scale (101 × 2 table) yielded a small
amount of overestimation, particularly if there was response
bias. Gtrap fared somewhat better but was also most distorted
with the fewest scale points.

How might researchers overcome the estimation problem
associated with few values on a metacognitive scale? One
obvious option would be to ensure that experimental partici-
pants are provided with a full percentage scale and are encour-
aged to use any value between 0 and 100. Our simulations
showed that these scales led to accurate estimates. One poten-
tial drawback with this approach is the introduction of mea-
surement error: Scales with many values tend to have lower
reliability than those with fewer points (e.g., Bishop &
Herron, 2015). Another issue is that people tend to prefer
10-point scales (e.g., Preston & Colman, 2000). Therefore,
given the opportunity, 101-point scales may be reduced to
10-point scales (i.e., participants only respond with values that
are evenly divisible by 10: 10, 20, 30, etc.). To avoid these
issues, an alternative approach may be to avoid explicit re-
sponse categories altogether by having participants use a
graphical interface to make metacognitive ratings. For exam-
ple, if a computer is used to collect metacognitive ratings such
as JOLs in an experimental setting, participants may be pre-
sented with a Bslider^ on the computer screen with labels
ranging from not at all likely to remember on the far left to
very likely to remember on the far right (see, e.g., Metcalfe &
Miele, 2014). The number of pixels between the starting point
at the far left of the scale to the point at which participants
click to indicate confidence could then be calculated as a con-
fidence measure. With modern computers, this would amount

to a scale with even more points than a scale with 101 re-
sponse categories and might avoid excessive measurement
error and participants’ tendency to simplify scales with a large
number of explicit numerical values.

Variability of measures

Nelson (1984) argued that Ag is too variable to be used in most
metacognitive experiments because of the limited number of
items. In Nelson’s own words: Bfor nonparametric SDT to be
appropriate in the feeling-of-knowing situation, it will be nec-
essary to have many more observations per subject than cur-
rently are obtained^ (pp. 122–123). Later, he argues that in
most metacognitive experiments Bthe typical number of ob-
servations has been roughly one or two dozen per subject. . . .
This number of observations, particularly when divided up via
multilevel feeling-of-knowing ratings, is much too small for
nonparametric SDT^ (p. 123).

Thus, according to Nelson (1984), it is not possible to
obtain a stable per-participant estimate of resolution unless
there are 100 or more observations, due the inherent vari-
ability of Ag (and hence Gtrap). However, in our view, the
more appropriate approach to understanding the effect of
variability would be to compare the relative variability of
measures such asGpairs andGtrap rather than focusing solely
on one measure or the other. Our simulations allowed us to
do just that; that is, it was possible to compare the between-
subjects standard deviations for both Gpairs and Gtrap across
our 100,000 virtual participants in each simulation. The re-
sults of this comparison indicated that, for both the equal-
and unequal-variance Gaussian models with low resolution
(standardized distance between the evidence distributions =
0.5), there was less variability for Gtrap than for Gpairs in all
cases, whereas the opposite was true for all cases of high
resolution (standardized distance = 2.0). However, if the
magnitudes of the differences are considered, Gtrap was the
less variable measure overall; that is, collapsing over the
equal- and unequal-variance models, the mean advantage
thatGtrap had overGpairs at low resolution was 0.023, where-
as the mean advantage that Gpairs had over Gtrap at high
resolution was only 0.008, nearly a threefold difference.

One criticism with this analysis is that each of our simula-
tions involved 100 items (50 correct, 50 incorrect), and Nelson
(1984) claimed that 100 items or more would make nonpara-
metric SDT analyses acceptable. Hence, the real question is
how the variability of each gamma estimate compares when
there are fewer items. To answer this question, we repeated all
36 simulations reported earlier with only 20 items per partic-
ipant (10 correct, 10 incorrect).We also reduced the number of
virtual participants from 100,000 per simulation to just 40. If
Nelson’s claims are correct, then the variability ofGtrap should
become large and unmanageable with these parameter settings
and should far exceed that of Gpairs. However, although the

Behav Res (2019) 51:108–125 121



per-participant standard deviations increased with the reduc-
tion in items, they increased for both Gtrap and Gpairs. In terms
of the comparison of the two measures, the results were very
similar to the previous results; that is, there was less variability
for Gtrap than for Gpairs for both the equal- and unequal-
variance Gaussian models in all cases at low resolution,
whereas the opposite was true for all cases of high resolution.
Again, however, if the magnitudes of the differences are con-
sidered,Gtrap was the less variable measure overall. As before,
collapsing over the equal- and unequal-variance models, the
mean advantage that Gtrap had over Gpairs at low resolution
was 0.020, whereas the mean advantage that Gpairs had over
Gtrap at high resolution was 0.018.

Overall, these comparisons of the between-subjects stan-
dard deviations of Gtrap and Gpairs indicate that, if anything,
Gtrap is the less variable measure regardless of the number of
items or the number of virtual participants that contribute to
the estimates, at least with Gaussian evidence distributions.
Hence, there is no evidence that nonparametric SDT should
be rejected on the basis of high variability, as Nelson (1984)
claimed, regardless of whether one is computing Ag orGtrap as
the measure of resolution.

Parametric versus nonparametric measures
of resolution

As we noted earlier, if the underlying evidence distributions
are Gaussian and the true (population) values of the zROC’s
y-intercept and slope are entered into Eq. 10, Az is a perfect
estimate of AUC. Indeed, the Az value from Eq. 10 was
substituted for AUC in Eq. 8 in order to compute Gtrue for
our simulations, the gold standard against which Gtrap and
Gpairs were compared. Why, then, did we use the trapezoidal
rule to estimate gamma in our simulations rather than Az,
particularly since we assumed Gaussian distributions for
our simulations, anyway? There were two reasons for this
decision. First, very little is known about the nature of the
evidence distributions in metacognition. In one of the few
formal tests that have been conducted to determine the na-
ture of these distributions, Higham (2007) found that an
equal-variance Gaussian model was a good fit for the
metacognitive ROC curves generated by performance on
the SAT. However, whether this finding is generally true
across the myriad ratings that are used in modern
metacognitive research is an open question.

Furthermore, some authors have suggested that signal
detection measures of resolution are inappropriate in the
first place, because there may be only a single distribution
of items rather than two (signal and noise). The reasoning
here seems to be that, unlike in tasks that lend themselves
easily to signal detection analyses, such as old–new recog-
nition, there are no distractors in the usual sense of the
word in recall tasks; therefore, there is only one

distribution of items (e.g., Murayama, Sakaki, Yan, &
Smith, 2014, note 1). The spirit of this single-distribution
assumption is captured in Jang, Wallsten, and Huber’s
(2012) stochastic model of JOL accuracy. However, in
our view, this reasoning confuses Type 1 (stimulus-
contingent) and Type 2 (response-contingent) discrimina-
tion. Metacognitive discrimination is essentially a Type 2
SDT task involving accuracy discrimination, so distractors
are not defined by their stimulus characteristics (e.g., old
vs. new items), but rather by their response characteristics
(e.g., correct vs. incorrect responses on a criterial test). In
the context of recall, then, the distractors are errors of
commission or omission on the memory test (see Arnold
et al., 2013; Higham, 2007, 2011, for discussion).

Nonetheless, for the present purposes, the important point
is that there is some doubt regarding the nature of the evidence
distributions. Consequently, we thought it would be hasty to
jump to the conclusion that the distributions are unquestion-
ably Gaussian. Such an assumption seems plausible, which is
why we adopted it for the simulations that we reported, but it
is not a certainty.3 Because neitherGtrap norGpairs is reliant on
any particular evidence distribution shape, Gaussian or other-
wise, these were the measures we chose to compare. However,
it should be noted that if the ROC data conform to a Gaussian
model—and there are fairly straightforward statistical
methods for testing this assumption (see, e.g., DeCarlo,
2003)—then gamma estimated via Az would certainly bemore
accurate than gamma estimated via Ag.

The second reason we focused on nonparametric measures
is more pragmatic. Unlike recognition tasks, in which the num-
ber of targets and distractors making up the signal and noise
distributions are defined a priori by the experimenter and are
often equated (i.e., 50% targets, 50% distractors), the correct
versus incorrect evidence distributions in metacognitive appli-
cations of SDTare determined by participants’ accuracy on the
criterial test. Depending on the experimental circumstances,
accuracy can be extreme, which would result in only a few
items populating one distribution or the other. The high vari-
ability in HRs and FARs derived from only a few items in
cases of extreme accuracy can result in many zeroes and/or
ones in the dataset. For example, suppose participants are en-
gaged in a very difficult recall task with 100 items and they are
informed in advance that the test will be difficult. Because the
memory test is hard, suppose that accuracy is only 10%.
Furthermore, because participants are told about the difficulty

3 Apart from this plausibility, the other reason that we assumed Gaussian
distributions for our simulations was that this assumption would provide a
conservative test of Gtrap accuracy. It is well-known that the trapezoidal rule
underestimates AUC if the ROC is bowed, as it is with Gaussian distributions.
If Gtrap performs well under these circumstances (which it did, at least relative
to Gpairs), it is likely that it would perform even better if there were a linear
relationship between the HRs and FARs, which would occur if the underlying
distributions were uniform.
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of the upcoming memory test, the few correct responses that
are made on the test are assigned the lowest JOL. Under these
circumstances, all the HRs on the metacognitive ROC (apart
from the [0,0] point) would be equal to 10/10 = 1.0.

The problemwith HRs and/or FARs equal to either 0 or 1 is
that parametric estimates such as d', da, and Az are undefined.
Of course, some commonly used corrections can be applied to
the frequencies prior to computing the HRs and FARs, to
avoid 0s and 1s. However, when the frequencies underlying
these rates are low, these corrections can distort the rates con-
siderably (see Hautus, 1995, for cases of distortion caused by
common corrections even when frequencies are not low). To
illustrate, consider again the participant who produced only
ten correct responses on a difficult recall test that were all
assigned the lowest JOL. If the common 1/(2N) rule is applied,
the HRs = 10/10 = 1.0 are corrected to 1.0 – 1/(2*10) = .95. If
the participant’s performance was even worse, such that there
were only five correct responses (5% recall accuracy), the 1/
2(N) rule would adjust the HRs from 1.0 to .90. Although
these examples are extreme (i.e., very few correct responses),
they illustrate the point that in the context of metacognitive
discrimination, the magnitude of the correction using the 1/
2(N) rule is confounded with accuracy on the criterial test.
Such confounding means that the correction would greatly
distort all parametric indices if accuracy were extremely high
or low. The situation would be even worse if both the HRs and
the FARs required correction (as in cases of HR = 1.0 and
FAR = 0). Critically, however, HRs and/or FARs equal to 0
or 1 do not need to be corrected at all in order to compute
either Ag or Gtrap. For this reason, we recommend avoiding
corrections altogether in the context of metacognitive research
and relying on nonparametric estimates of resolution.

Negative resolution

We have focused solely on positive relationships between
metacognitive ratings and accuracy. However, in rare circum-
stances this relationship can be negative, such as when decep-
tive general-knowledge questions are used (e.g., Higham &
Gerrard, 2005; Koriat, 2018). With such questions, people
typically respond with, and are more confident in, incorrect
rather than correct answers (e.g., many people confidently, but
erroneously, believe that Sydney is the capital of Australia).
This results in negative resolution, and if gamma is computed
with the original concordance/discordance formula, it as-
sumes values less than 0. Is computing gamma with ROC
curves still possible under these circumstances? The short an-
swer is Byes.^ The ROC curves would bow below, rather than
above the chance diagonal, yielding area measures that were
less than 0.5.Gtrap can be computed in the sameway as before:
doubling Ag and subtracting 1, resulting in negative Gtrap

values. To illustrate with an example, suppose that participants
answer some deceptive questions and provide retrospective

confidence ratings regarding the accuracy of their answers.4

Because they assign higher confidence ratings to incorrect
than to correct responses, suppose that the area under the
metacognitive ROC curve is only 0.3. If this value is doubled
and 1 is subtracted from the product, the resultant gamma
value would be 0.3*2 – 1 = – 0.4. In the extreme case, AUC
would be equal to 0 and gamma would be equal to – 1.

Limitations

One drawback to computing Gtrap instead of Gpairs is that Gtrap

can only be used in situations in which there are two outcomes
on the criterial test (e.g., correct vs. incorrect recall). Hence,
Gtrap cannot be used to estimate resolution for criterial tests
such as trials to criterion or reaction times. However, the vast
majority of research in metacognition focuses on resolution
computed with respect to correct and incorrect responses, so
this is unlikely to pose a significant problem in most situations.

Our simulations showed that Gtrap does not perform well if
there is a combination of low resolution, unequal-variance
Gaussian evidence distributions, and liberal responding. With
this combination of factors, Gtrap is a poorer estimate of Gtrue

than is Gpairs. Indeed, four of the five cases in which Gtrap was
less accurate than Gpairs in our simulations occurred with the
unequal-variance Gaussian model and liberal responding. The
best way to identify cases such as these is to construct an ROC
curve of the data, as such curves provide information pertaining
to the levels of all three variables: Resolution is indicated by the
extent to which the ROC curve bows from the chance diagonal;
the shape of the ROC curve gives an indication of the nature of
the underlying evidence distributions (and can be formally eval-
uated using a goodness-of-fit test); and the level of bias can be
determined by where the points are clustered on the ROC. Of
course, there are limitations to this analysis, as well. For exam-
ple, if responding is highly biased, portions of the ROC curve
will not be represented by any points, so it will be difficult or
impossible to get an accurate indication of the full shape of the
ROC curve. Nonetheless, if the ROC coordinates are clustered
in either the bottom left (conservative) or top left (liberal) por-
tion of the ROC, then researchers will be alerted to response
bias. More generally, ROC curves usually provide an excellent
visual representation of metacognitive data. In our view, con-
structing an ROC should be the first step researchers take when
deciding on an analysis strategy.

Author note Portions of this research were presented at the
56th Annual Meeting of the Psychonomic Society, Chicago,
IL.

4 We have focused mostly on JOLs throughout this article, but it is important
to keep in mind that our arguments and simulation results apply equally to all
types of metacognitive ratings, including retrospective confidence.
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