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Despite improvements in management and prevention of intracerebral hemorrhage (ICH),
there has been little improvement in mortality over the last 30 years. Hematoma expan-
sion, primarily during the first few hours is highly predictive of neurological deterioration,
poor functional outcome, and mortality. For each 10% increase in ICH size, there is a 5%
increase in mortality and an additional 16% chance of poorer functional outcome. As such,
both the identification and prevention of hematoma expansion are attractive therapeutic
targets in ICH. Previous studies suggest that contrast extravasation seen on CT Angiog-
raphy (CTA), MRI, and digital subtraction angiography correlates with hematoma growth,
indicating ongoing bleeding. Contrast extravasation on the arterial phase of a CTA has been
coined the CTA Spot Sign.These easily identifiable foci of contrast enhancement have been
identified as independent predictors of hematoma growth, mortality, and clinical outcome
in primary ICH. The Spot Sign score, developed to stratify risk of hematoma expansion,
has shown high inter-observer agreement. Post-contrast leakage or delayed CTA Spot Sign,
on post contrast CT following CTA or delayed CTA respectively are seen in an additional
∼8% of patients and explain apparently false negative observations on early CTA imag-
ing in patients subsequently undergoing hematoma expansion. CT perfusion provides an
opportunity to acquire dynamic imaging and has been shown to quantify rates of contrast
extravasation. Intravenous recombinant factorVIIa (rFVIIa) within 4 h of ICH onset has been
shown to significantly reduce hematoma growth. However, clinical efficacy has yet to be
proven.There is compelling evidence that cerebral amyloid angiopathy (CAA) may precede
the radiographic evidence of vascular disease and as such contribute to microbleeding.
The interplay between microbleeding, CAA, CTA Spot Sign and genetic composition (ApoE
genotype) may be crucial in developing a risk model for ICH.
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INTRODUCTION
Intracerebral hemorrhage (ICH) accounts for 10–15% of all stroke
events (Qureshi et al., 2001). Despite vast improvements in stroke
management and prevention, there has been little improvement
in the prevalence and mortality of ICH over the last 30 years
(Lovelock et al., 2007). In-hospital rates of mortality and patient
disability following ICH are 40 and 80% respectively (van Asch
et al., 2010) and the 1 month mortality rate is 30–50% (Brod-
erick et al., 1999; Nilsson et al., 2002). In approximately half of
ICH cases which ultimately prove fatal, death occurs within 48 h
of symptom onset (Broderick et al., 1999; Nilsson et al., 2002).
The impact of disability is also far-reaching. The vast majority of
patients who survive the ICH ictus do not regain their indepen-
dence within 6 months of symptom onset. At 6 months only 20%
achieve independence in their daily lives (Broderick et al., 1999).

Hemorrhages are generally categorized as primary or sec-
ondary. ICH is considered primary in 78–88% of cases often
attributed to hypertensive vasculopathy and cerebral amyloid
angiopathy (CAA; Broderick et al., 1999). CAA is seen in 40–60%
of patients older than 70 (Gilbert and Vinters, 1983; Vinters and
Gilbert, 1983), and is considered responsible for the majority of

primary lobar ICH occurring in the elderly population (Gilbert
and Vinters, 1983; Vinters and Gilbert, 1983; O’Donnell et al.,
2000; Walker et al., 2004). Secondary ICH can be caused by
arteriovenous malformations (AVMs), ruptured aneurysms, anti-
coagulation, hemorrhage into neoplasm, and infarction (Mayer,
2005). As the population ages, the rates of ICH are expected to
rise, largely due to increased incidence of CAA, high prevalence
of hypertension, and the widespread use of anticoagulants (Fla-
herty et al., 2007; Mayo et al., 2007). Recent studies in the United
States have shown an 18% increase in hospital admission for ICH
over the last 10 years (Qureshi et al., 2007). As such, detection and
management of ICH are particularly important in reducing rates
of mortality and disability attributed to hemorrhage.

SIZE OF HEMATOMA AND HEMATOMA EXPANSION
Hematoma size in ICH is an important prognostic indicator of
the extent of tissue damage, neurological deficit and functional
outcome. ICH volume is a powerful predictor of 30 day mor-
tality (Broderick et al., 1993). In many instances ICH patients
present with modest deficits, indicative of a smaller hematoma size,
followed by a rapid clinical deterioration secondary to ongoing

www.frontiersin.org May 2012 | Volume 3 | Article 86 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RaphaelJakubovic&UID=47336
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RichardAviv&UID=50823
mailto:raphael.jakubovic@{\penalty -\@M }sunnybrook.ca
http://www.frontiersin.org
http://www.frontiersin.org/Stroke/archive
http://www.frontiersin.org/Stroke/10.3389/fneur.2012.00086/abstract


Jakubovic and Aviv Imaging in intracerebral hemorrhage

bleeding and hematoma expansion (Kazui et al., 1996; Leira et al.,
2004). Hematoma expansion occurs in up to 40% of ICH (Brott
et al., 1997; Fujii et al., 1998), usually manifesting within the
first few hours and is highly predictive of neurological deterio-
ration, poor functional outcome, and mortality (Broderick et al.,
1993; Kazui et al., 1996, 1997; Leira et al., 2004). For each 10%
increase in ICH size, there is a 5% increase in mortality and
16% increase in the probability of poorer functional outcome
(Davis et al., 2006). Hematoma growth is considered a hypera-
cute phenomenon. Expansion generally occurs primarily within
3 h of symptom onset, but can manifest up to 12 h post ICH ictus
(Kazui et al., 1996; Brott et al., 1997; Fujii et al., 1998; Qureshi
et al., 2006). This time dependence is highly sensitive and signifi-
cant ICH growth (>33% volume increase from baseline) occurs in
18–38% of patients scanned within 3 h of symptom onset (Kazui
et al., 1996; Brott et al., 1997; Fujii et al., 1998; Flaherty et al.,
2006) and 8–16% scanned within 3–6 h (Kazui et al., 1996; Che-
ung, 1998; Fujii et al., 1998). A recent report indicated that any
absolute growth predicts poor clinical outcome; an increase of
only 3 mL has a positive predictive value of 70% for death or
major disability (Dowlatshahi et al., 2011). The pathological evo-
lution of hematoma growth has not been characterized, but may be
attributed to continuous bleeding or rebleeding of the initial hem-
orrhage (Fisher, 1971). Dowlatshahi et al. (2011) recently showed
that any measure of hematoma expansion independently predicted
poor outcome. As such, both the identification and prevention of
hematoma expansion is of significant importance in the treatment
of ICH. Successful prevention of hematoma growth is long consid-
ered the goal of ICH management. Theoretically, by limiting the
extent of the hematoma, through effective management and inter-
vention it may be possible to reduce mortality rates and improve
functional outcomes.

BLOOD PRESSURE MANAGEMENT
Blood pressure control following acute ICH has been shown
to reduce the risk of hematoma expansion (Fogelholm et al.,
1997; Ohwaki et al., 2004). Lowering blood pressure in an acute
phase should limit hematoma growth and result in better func-
tional outcomes. American Heart Association (AHA) guidelines
for the management of ICH recommend treatment with anti-
hypertensive agents for patients with mean arterial pressure greater
than 130 mmHg (Broderick et al., 1999). In order to reduce the
risk of further tissue damage attributed to hypotension, cerebral
blood pressure should be maintained above 70 mm Hg (Broderick
et al., 1999). A recent study demonstrated that early aggressive
blood pressure management in acute ICH reduced hematoma
growth within 6 h of ICH onset (Anderson et al., 2008). An
aggressive approach relative to standard clinical care based on
AHA guidelines (target: SBP < 140 mm Hg vs. SBP < 180 mm Hg)
resulted in a 22.6% reduction in hematoma size (Anderson et al.,
2008). Thus, effective management of blood pressure particularly
in a hyperacute phase is an imperative, irrespective of imaging
surrogates.

IMAGING OF INTRACEREBRAL HEMORRHAGES
Since ICH growth is considered to be time dependant, early identi-
fication of ICH is crucial. Although clinical symptoms may suggest

ICH, confirmation can only be obtaining through CT or MR imag-
ing. A non-contrast CT (NCCT) is considered the gold standard
for identification of acute ICH, while T2∗ susceptibility weight
MR is superior at detecting remote hemorrhage (Fiebach et al.,
2004; Chalela et al., 2007). MR imaging can provide informa-
tion regarding the time of hemorrhage, degree of perihematomal
edema, cerebral microbleeds, and cavernomas (Morgenstern et al.,
2010). American Heart Association/American Stroke Association
(AHA/ASA) guidelines indicate that both NCCT and MR images
are appropriate in diagnosing ICH, however due to the wide
availability, low cost, and rapid scan times, NCCT is widely used
(Broderick et al., 1999, 2007; Morgenstern et al., 2010).

The 2007 AHA/ASA guidelines recommended digital subtrac-
tion angiography (DSA) or CT angiography (CTA) for all patients
without a clear cause for hemorrhage, who are surgical candi-
dates (Broderick et al., 1999). Other emphasized indications for
angiography include: the presence of subarachnoid hemorrhage,
abnormal calcifications, and patients with isolated intraventric-
ular hemorrhage (IVH; Broderick et al., 2007). The guidelines
indicated that DSA is not required in older hypertensive patients
with so-called typical hypertensive bleeds within the basal ganglia,
thalamus, cerebellum, or brainstem unless the NCCT findings are
suspicious for an underlying lesion. The most recent AHA/ASA
guidelines recommend neuroimaging with CT or MRI in order to
distinguish ischemic from hemorrhagic stroke, in addition to CTA
and contrast enhanced CT (CECT) to assess risk of hematoma
expansion (Morgenstern et al., 2010). When secondary ICH is
suspected, CT venography, CECT, contrast enhanced MR, and
MR angiography/venography can be used to diagnosis underlying
lesions (Morgenstern et al., 2010).

CONTRAST EXTRAVASATION
Early vascular imaging may be beneficial in identifying surrogates
for active bleeding and hematoma expansion. One particular sur-
rogate for identifying ongoing bleeding is contrast extravasation.
Previous studies suggest that contrast extravasation seen on CTA,
MRI, and DSA, in patients with ICH correlates with hematoma
growth and indicates active bleeding (Kowada et al., 1972; Yamaki
et al., 1983; Kobayashi et al., 1985; Komiyama et al., 1995; Becker
et al., 1999). Wada et al. (2007) showed contrast extravasation
to be an independent indicator of hematoma growth. Goldstein
et al. (2007) found contrast extravasation in 56% of patients and
the single most powerful predictor of ICH expansion (sensitivity
94%, specificity 50%, NPV 98%). Kim et al. demonstrated contrast
extravasation independently predicts ICH growth and mortality:
30-day mortality was 53% in those with extravasation vs. 19.5%
without (Aviv et al., 2008; Kim et al., 2008). The identification of
contrast extravasation can potentially serve as an acute surrogate
marker of poor outcome, and aid in the treatment process.

CTA SPOT SIGN
Contrast extravasation on the arterial phase of a CTA has been
coined the CTA Spot Sign. The Spot Sign was initially proposed
in 2007 as an indicator of hematoma expansion (Goldstein et al.,
2007; Wada et al., 2007). Described as tiny foci of enhancement
seen on CTA of spontaneous ICH, the Spot Sign is highly predic-
tive of hematoma expansion (Goldstein et al., 2007; Wada et al.,
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2007; Kim et al., 2008; Delgado Almandoz et al., 2009; Hallevi et al.,
2010), mortality and clinical outcome (Kim et al., 2008; Delgado
Almandoz et al., 2009; Hallevi et al., 2010) (Figure 1). Enhance-
ment is thought to represent extra-luminal extravasation and may
appear serpiginous to spot-like, single or multiple and demon-
strate a density approximately double that of the surrounding
hematoma (Thompson et al., 2009; Li et al., 2011). To differenti-
ate from secondary vascular malformations, extravasation should
occur within the hematoma without identifiable external vessel
connection (Figure 2). The radiographic definition of a Spot Sign,
different morphological patterns, and potential mimics are now
well documented (Gazzola et al., 2008; Thompson et al., 2009).
Figure 3 demonstrates a Spot Sign with contrast extravasation
which resulted in hematoma expansion. These contrast-enhancing
foci are of uncertain etiology but are postulated to represent
pseudoaneurysms, Charcot–Bouchard aneurysms (Charcot and
Bouchard, 1868), fibrin globes or a focal vessel defect in an abnor-
mal vessel segment (Fisher, 1971). Irrespective of the pathophysi-
ology, the Spot Sign is regarded as a potent radiological marker of
acute primary, or possibly secondary, vessel damage.

The first study to describe the Spot Sign, demonstrated a preva-
lence of 33%. The presence of the Spot Sign served as a predictor
of ICH growth, defined as an increase in size of more than 30% of
the initial volume or an absolute increase of 6 ml (sensitivity 91%,
specificity 89%, PPV 77%, NPV 96%). ICH expansion was found
to be more common in patients presenting with a Spot Sign, and
the Spot Sign was shown to independently predict ICH expansion.
Functional outcomes were worse in patients presenting with the
Spot Sign than those without. Death or severe disability occurred
more often in patients with the Spot Sign, than those without (50
vs. 35%). Recently, a large study (n = 367) has provided strong
validation of the Spot Sign (Delgado Almandoz et al., 2009, 2010).
The positive predictive value (PPV) for significant ICH growth was
highest for a Spot Sign with greater than or equal to three spots
(PPV 96%), axial dimension greater than 5 mm (PPV 91%), and
attenuation greater than 180 hounsfield units (HU; PPV 84%).
Recent findings of the multi-centered PREDICT study confirmed
the Spot Sign as a predictor of hematoma expansion in acute ICH
(Demchuk et al., 2012). The Spot Sign score, based on number of
Spot Signs, size of ICH, and attenuation of signal, was specifically

FIGURE 1 | A 61-year old male patient presenting within 80 min of

symptom onset. (A) Axial non-contrast CT demonstrates massive
intraparenchymal hemorrhage projected over the basal ganglia with severe
mass effect and ipsilateral ventricular hemorrhage. (B) Multiple Spot Signs
were present on CTA raw images. (C) Patient underwent emergent
craniectomy and hematoma evacuation demonstrated 1 day later.

developed to stratify risk of hematoma expansion, and ultimately
mortality, in patients with ICH. The calculation is based on (1)
number of Spot Signs (1–2 spots = 1 point, ≥3 spots = 2 points),
(2) maximum axial dimension (1–4 mm = 0 points, ≥5 mm = 1
point), and (3) maximum attenuation (120–179 HU = 0 points,
≥180 HU = 1 point), for a maximum of 4 points. The Spot Sign
score was able to predict significant ICH growth independent of
ICH volume, blood pressure, INR, and time from onset to scan.
Mean ICH growth for patient with Spot Sign scores of 3 or 4 was
21–36 vs. 11 mL for Spot Sign negative patients. Most notably,
inter-observer agreement for identification of the Spot Sign score
was excellent (k = 0.88–0.93). While the Spot Sign score can be
rapidly performed and does predict hematoma expansion rea-
sonably well, it is suboptimal for predicting in-hospital mortality
(sensitivity 41%, specificity 85%, PPV 56%, NPV 76%, Acc 71%)
and poor functional outcome 3 month post ICH ictus (sensitivity
23%, specificity 89%, PPV 51%, NPV 70%, Acc 67%) due to poor
sensitivity and accuracy.

A crucial factor in the assessment of Spot Sign and contrast
extravasation presence is the timing of the CTA acquisition. Addi-
tional regions of contrast accumulation, not detected by the initial
CTA acquisition, and independent of the Spot Sign, may still be
present (Wada et al., 2007; Delgado Almandoz et al., 2009; Ederies
et al., 2009). These addition sites of contrast extravasation, visi-
ble on a post-contrast CT, performed minutes after the CTA or
a delayed CTA, are referred to as post-contrast leakage (PCL) or
delayed CTA Spot Sign respectively (Figure 4). Approximately 8%
of purportedly Spot Sign negative ICH that undergo hematoma
expansion (Delgado Almandoz et al., 2009; Ederies et al., 2009)
harbor PCL which increases the sensitivity for hematoma expan-
sion by 16% (Ederies et al., 2009). Figure 5 demonstrates a Spot
Sign positive hematoma that does not contain PCL. The inclusion
of a post-contrast CT or delayed CTA into the ICH protocol may
allow for a more robust Spot Sign score and allow for better stratifi-
cation of the risk and rates hematoma expansion. However, better
strategies are now available including dynamic Spot evaluation.

DYNAMIC CT IMAGING AND A DYNAMIC SPOT SIGN
Dynamic CT imaging provides an alternative to the use of a post-
contrast CT or a delayed CTA by allowing real time assessment

FIGURE 2 | A 61-year old male patient presenting within 60 min of

symptom onset. (A) Unenhanced CT demonstrates acute putamen
hemorrhage. (B) CT angiography demonstrates a Spot Sign with contrast
extravasation. The contrast density was not continuous with the
lenticulostriate vessels seen displaced posteromedial to the hematoma. (C)

Post-contrast CT demonstrates contrast accumulation posteriorly within the
hematoma consistent with extravasation.
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FIGURE 3 | A 86 year old female patient presenting within 90 min

of symptom onset. (A) Unenhanced CT demonstrates right thalamic
and internal capsule hematoma with associated third ventricle mass
effect. (B) A small focus of enhancement consistent with the Spot
Sign is seen on the CTA raw image. (C) Post-contrast CT performed

immediately following the CTA shows increase in contrast density
from the CTA consistent with active contrast extravasation. (D)

Unenhanced follow up CT at 6 h demonstrates early hematoma
expansion. A trace of intraventricular hemorrhage is present within
the right trigone.

FIGURE 4 | A 63 year old female patient presenting within 100 min of

symptom onset. (A) Axial non-contrast CT demonstrates acute hematoma
in the left thalamus and intraventricular blood. (B) No Spot Sign was
present on CTA source images. (C) Post-contrast leakage was
demonstrated on the post-contrast CT image.

FIGURE 5 | A 65 year old female patient presenting within 3 h of

symptom onset. (A) Axial non-contrast CT demonstrates acute hematoma
in the left cerebellum. (B) Spot Sign is present at the margin of hematoma.
(C) Post-contrast CT demonstrates no evidence of extravasation or
post-contrast leakage.

of contrast extravasation. Conventional CT imaging is limited
by lower spatial coverage compared to 320 slice scanners. These
newer scanners can rapidly acquire the entire brain allowing for
multiple whole head acquisitions. The acquisitions may be recon-
structed to provide simultaneous CTA and CTP data. Acquiring
dynamic images demonstrate the evolution of contrast extrava-
sation, including Spot Sign presence and post-contrast leakage.
A single report using dynamic CTA identified delayed con-
trast extravasation in a purportedly CTA Spot Sign negative
hemorrhage (Chakraborty et al., 2010). Disadvantages of such

acquisitions include increased radiation dose and the large amount
of raw data acquired.

CT perfusion acquisitions are available on all modern 64 slice
scanners and has been shown to accurately quantify regions of
contrast extravasation (Aviv et al., 2009). A biphasic CT Perfu-
sion (CTP) protocol accurately quantifies regions of increased
blood-brain barrier (BBB) permeability in acute ischemic stroke
(AIS) and more recently in ICH by measuring CTP-PS (Aviv
et al., 2009). Biphasic perfusion protocol use allows for simultane-
ous measurement of perfusion and permeability while reducing
the radiation exposure to the patient. CTP-PS is the unidirec-
tional rate of contrast extravasation from the intravascular to
the extravascular space through a disrupted BBB (St Lawrence
and Lee, 1998; Konstas et al., 2009a,b). Extravasation of contrast
material leads to prolonged enhancement of the tissue beyond
the intravascular (first) phase which can only be properly charac-
terized by a two-phase CTP study. The CTP protocol includes
an initial 45 s phase with continuous scanning at 1 rotation/s
followed by 7 acquisitions 15 s apart for a total scan time of
∼2 min (Aviv et al., 2009; Konstas et al., 2009a). The prolonged
scan time circumvents the need for early or late CTA timing
and more importantly allows accurate identification and quan-
tification of the differential rates of contrast extravasation over
time. This provides significant advantages over CTA/PCT studies
which represent single arbitrarily timed snapshots of contrast leak-
age. Preliminary work indicates that differential rates of contrast
extravasation account for the differential appearance of contrast
leakage patterns which may be quantified with CTP-PS (D’Esterre
et al., 2011). The differential rates of contrast extravasation may
have significant implications in patient selection for hemosta-
tic therapy and response to such therapy. Disadvantages of such
CTP acquisitions include the inability to extract meaningful CTA
data due to thick slices (5 mm), limited spatial coverage (∼4 cm)
and the need for a separate CTA acquisition for vascular assess-
ment. Figure 6 demonstrates the formation and evolution of a CT
Perfusion Spot Sign.

INTRAVENOUS RECOMBINANT FACTOR VII(a (rFVIIA)
Hemostatic therapy with intravenous recombinant factor VIIa
(rFVIIa) within 4 h of ICH onset has been proven to significantly
reduce hematoma growth in phase IIb (n = 399) and phase III
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FIGURE 6 |The dynamic evolution of a CT Perfusion Spot Sign. A 86-year

old female patient presenting within 105 min of symptom onset.

Individual frames extracted from a dynamic CT perfusion study are

presented. (A,B) No contrast enhancement is seen within the first 9 s. (C,D)

At 18 s early contrast is seen within a CT Spot Sign, peaking at 36 s (E).
Dissipation of contrast material is seen on delayed image at 36 s (F).

(n = 841) trials (Mayer, 2005; Mayer et al., 2005, 2008). Clinical
efficacy has yet to be proven. Despite encouraging results in the
phase IIb trial where rFVIIa reduced mortality rates and resulted
in better functional outcomes, no significant differences in 90 day
mortality or 90 day functional outcome were seen in the phase III
trial. This may in part relate to the unselected nature of patients
included. In particular, the majority of patients presenting with
ICH do not have substantial early hematoma growth and would
not benefit from hemostatic therapy (Mayer et al., 2009). Patients
with larger hematomas are also predisposed to poorer outcomes
independent of hematoma expansion. Stratification of patients
based on the presence of a CTA Spot Sign and active extravasa-
tion may have impacted the outcome of the trial. Additional risk of
cerebral infarction or myocardial ischemia conferred by factor VIIa
underscores the limitations of its widespread clinical use (Mayer
et al., 2008). A post hoc analysis restricted to patients treated within
2.5 h from symptom onset revealed that patients treated with rFVII
had better outcomes (Mayer et al., 2009). This result underscores
the importance of early imaging and reinforces the importance
of early pathophysiological processes in hematoma expansion.
Based on the robustness of the Spot Sign as an early surrogate
of hematoma expansion in several studies (Wada et al., 2007; Kim
et al., 2008; Delgado Almandoz et al., 2009), it is now being evalu-
ated as a target for selecting patients for rFVIIa in two prospective
studies (Spot Sign for Predicting & Treating ICH Growth “STOP-
IT”Study and the Spot Sign Selection of Intracerebral Hemorrhage
to Guide Hemostatic Therapy “SPOTLIGHT” Study). A recent
prospective, international study, validating the utility of the Spot
Sign for hematoma growth, supports the continued investigation

of Spot Sign stratification for haemostatic treatment (Demchuk
et al., 2012).

CEREBRAL AMYLOID ANGIOPATHY
ICH is considered primary in 78–88% of cases often attributed to
hypertensive vasculopathy and CAA (Broderick et al., 1999). CAA
accounts for the majority of primary lobar ICH in the elderly
(Vinters and Gilbert, 1983; O’Donnell et al., 2000; Walker et al.,
2004) and is seen in 40–60% of brains in patients older than 70
(Gilbert and Vinters, 1983;Vinters and Gilbert, 1983). A recent sys-
temic review of amyloid angiopathy found an association between
CAA and specifically lobar ICH, identifying CAA as a possible
cause of lobar ICH (Samarasekera et al., 2012). Determination of
ICH pathophysiology and etiology has been facilitated by the MRI
detection of microbleeds on sequences susceptible to blood prod-
ucts (Offenbacher et al., 1996; Fazekas et al., 1999; Roob et al., 2000;
Koennecke, 2006; Viswanathan and Chabriat, 2006). Fazekas first
showed the association between MRI detected microbleeds and
focal hemosiderin deposition (Fazekas et al., 1999). These findings,
suggest that microbleeds may be considered as imaging surrogates
of prior chronic, subclinical, hemorrhagic episodes from bleeding-
prone vessels affected by moderate to severe lipohyalinosis and/or
amyloid deposits (Fazekas et al., 1999; Tanaka et al., 1999). Several
studies have reported a correlation between microbleed number as
predictor of future ICH occurrence and pattern (Fan et al., 2003;
Greenberg et al., 2004; Soo et al., 2008). Amyloid deposition and
chronic hypertension histopathologically demonstrate vessel wall
thickening increasing with disease duration and severity (Fisher,
1971; Okoye and Watanabe, 1982; Mandybur, 1986).
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The mural changes occurring in leptomeningeal vessels, cor-
tical arteries, arterioles and capillaries, are present in both CAA
and chronic hypertension (Fisher, 1971). Both CAA and chronic
hypertension are characterized radiologically by the presence of
microbleed deposition. Microbleeds represent chronic, rather than
acute, leakage of blood products and are indicative of underlying
mural dysfunction (Fazekas et al., 1999; Tanaka et al., 1999). Cere-
bral amyloid initially deposits within the vessel wall without lumen
narrowing (Mandybur, 1986). Progressive concentric intimal pro-
liferation causes wall thickening and lumen reduction (Vonsattel
et al., 1991). It is plausible to suggest that the same mural char-
acteristics producing microbleeds may also impact upon vessel
contractility and therefore bleeding rate, hematoma growth and
Spot Sign frequency.

The degree of wall thickening and mural dysfunction may be
implied by the number of microbleeds. This may have impor-
tant implications for the type and incidence of future hemorrhage
(Greenberg et al., 2009). Currently definite diagnosis of CAA can
only be determined using pathology. A set of validated criteria,
the Boston criteria, allows for radiographic diagnosis of probable
CAA based upon number of microbleeds and location (Knudsen
et al., 2001). Although these criteria are reported as relatively spe-
cific for CAA-related hemorrhage they have only been validated
on 13 autopsy specimens (Groger and Marmarou, 1990). Never-
theless, based on the number of gradient recalled echo (GRE)-
MRI detected microbleeds, Greenberg hypothesized that patients
presenting with acute ICH can be divided into micro- or mac-
robleeders (Greenberg et al., 2009). Microbleeders present with
multiple small microbleeds and are histopathologically character-
ized by wall thickening in association with amyloid deposition.
This observation is consistent with several studies demonstrating
that extensive mural amyloid deposition is frequently associated
with wall thickening and multiple subclinical microbleeds (Fisher,
1971; Okoye and Watanabe, 1982; Mandybur, 1986; Vonsattel
et al., 1991; Fazekas et al., 1999; Tanaka et al., 1999; Goldstein
et al., 2007). In contrast, macrobleeders demonstrate few prior
microbleeds and are characterized histopathologically by vessel
wall thinning.

Considering the increased mural thickening with increased
disease severity in CAA and chronic hypertension (Okoye and
Watanabe, 1982; Vinters and Gilbert, 1983; Mandybur, 1986; Vin-
ters, 1987;Vonsattel et al., 1991) and the reported mural differences
between micro- and macrobleeders (Greenberg et al., 2009), we
recently proposed and confirmed that patients exhibiting MRI
microbleeds as surrogates of probable CAA were less likely to man-
ifest a CTA Spot Sign at acute ICH presentation (Figures 7,8). In
a retrospective study of 59 patients presenting within 6 h of pri-
mary ICH onset undergoing CTA and MRI, Spot Sign presence was
documented blinded to MRI. Hematoma expansion was defined
as growth of more than 6 mL or 30% enlargement. Patients were
dichotomized using the Boston criteria on GRE-MRI into probable
and negative CAA (Evans et al., 2010). Basal ganglia, thalamic, and
brainstem microbleed location were interpreted as chronic hyper-
tensive pattern. Univariate logistic regression and ordinal logistic
regression analysis identified significant predictive factors between
Spot Sign positive and negative patients, or microbleed pattern.
Spot Sign was seen in 42, 22, and 0% of CAA negative (n = 36),

chronic hypertensive (n = 9), and CAA positive (n = 14) patients
respectively (p = 0.01). Additionally, Spot Sign positive macrob-
leeders were less likely to have multiple microbleeds (mean ± SD;
0.53 ± 0.8) than Spot Sign negative patients (8.4 ± 14; p = 0.01).
CAA negative patients had higher baseline NIHSS (p = 0.039),
larger follow up hematoma volume (p = 0.02) and poorer Rankin
score (p = 0.049) than chronic hypertensive or CAA positive
patients. After age adjustment, Spot Sign positive (p = 0.023), Age
related white matter change (p = 0.041), number of microbleeds
(p < 0.0001), and modified Rankin score (p = 0.027) remained
significantly different between groups. These results suggest that
a probable CAA designation using MRI microbleed presence as a
surrogate may be somewhat protective of rapid ICH expansion as
characterized by the Spot Sign.

AMYLOID IMAGING
With the recent development of novel amyloid binding agents,
the unique opportunity to visualize CAA in vivo is available.
Investigation with an amyloid binding agent may strengthen the
hypothesis that CAA deposition is somewhat protective of CTA
Spot Sign-associated macrobleeds.

N -methyl-[(11)C]2-(4′-methylaminophenyl)-6-hydroxy-
benzothiazole (or [(11)C]PIB for “Pittsburgh Compound-B”)
uptake is well described in Alzheimer’s disease (AD). Mintun et al.
(2006) showed increased binding potential values for 11C-PIB in 9
of 10 patients with AD. Little work has been done in the context of
CAA and vascular amyloid imaging. Johnson and Ly both demon-
strated that non-demented CAA patients showed intermediate
11C-PIB uptake compared to Alzheimer’s and normal control
patients (Johnson et al., 2007; Ly et al., 2010). The distribution of
increased uptake was higher within the occipital lobes compared to
both groups and consistent with CAA predilection for these lobes.
Similarly, Remes demonstrated increased striatal, posterior cingu-
late and to a lesser extent putamen uptake compared to controls in
two patients with autosomal dominant CAA related to APP locus
duplication (Remes et al., 2008). The pattern of uptake although
different from that seen in AD has been described in patients with
Presenilin 1 gene mutations (Klunk et al., 2007). Pathologically, 2
members of the same family demonstrated both vessel wall and
plaque Aßaccumulation. These observations, together with that of
others confirm that both vascular CAA and AD plaque uptake may
coexist in the same patient (Bacskai et al., 2003; Silva et al., 2005;
Johnson et al., 2007; Klunk et al., 2007; Lockhart et al., 2007; Remes
et al., 2008; Ly et al., 2010). Because of uptake in both locations,
exclusion of underlying dementia or mild cognitive impairment is
important. Further, limited imaging studies have to date consid-
ered the potential influence of the apolipoprotein E (ApoE) – ∈
4 allele on the pattern of amyloid binding (Lockhart et al., 2007;
Rowe et al.,2007). ApoE genotyping is important because ApoE ∈ 4
is linked with earlier dementia onset, more rapid cognitive decline,
and a more pronounced accumulation of both senile plaques and
CAA (Berg et al., 1998; Attems, 2005).

Very limited comparative MRI/radio-isotope studies are avail-
able in the context of CAA. In eight patients diagnosed with
probable CAA based on Boston criteria on GRE MRI, seven
demonstrated increased 11C-PIB uptake (88%; Ly et al., 2010).
The single patient without uptake had an unusual superficial
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FIGURE 7 | A 65-year old male patient presenting with lobar

hemorrhage. (A) Axial non-contrast CT demonstrates acute right frontal
hematoma. (B) No Spot Sign is present on CTA raw images. (C) Extensive

white matter changes are seen on fluid attenuated inversion recovery (FLAIR)
MRI. (D) Multiple susceptibility foci are present on echoplanar-gradient echo
MRI sequence fulfilling the Boston criteria for probable CAA.

FIGURE 8 | A 44-year old male patient presenting within 78 min

of symptom onset. (A) Axial non-contrast CT demonstrates a right
basal ganglia intracerebral hemorrhage. (B) Spot Sign present on
CTA source images. (C) Right basal ganglia hematoma visualized on

fluid attenuated inversion recovery (FLAIR) MRI 6 weeks post ictus.
(D) No microhemorrhage is seen on gradient echo MRI sequence
consistent with a CAA negative status according to the Boston
criteria.

unilateral distribution of microbleeds atypical for a probable CAA
diagnosis. A more recent study examined 11C-PIB uptake in a
42-year old man with early manifestations of Iowa-type heredi-
tary CAA, characterized by little or no plaque deposits of fibrillar
β-amyloid. Elevated 11C-PIB uptake within the occipital poles
in the absence of microhemorrhages provided compelling evi-
dence that CAA deposition may precede the radiographic evidence
of vascular disease (Greenberg et al., 2008). In a study of 16
patients undergoing MRI and 11C-PIB imaging, 11C-PIB reten-
tion was increased at microbleed sites compared to simulated
control lesions (p = 0.002) and declined with increasing distance
from the microbleed (p < 0.0001; Dierksen et al., 2010). To exclude
the possibility that 11C-PIB directly binds to cerebral microbleeds,
Prussian blue and 11C-PIB was used to stain formalin-fixed brain
tissue from three patients with definite CAA-related hemorrhages
and three with hemorrhagic lesions from causes other than CAA.
The locations of Prussian blue-positive microbleeds and 11C-PIB
fluorescence were compared in adjacent sections. 11C-PIB showed
no association with any of the hemorrhagic lesions. These find-
ings suggest that microbleeds occur preferentially in local regions
of concentrated amyloid.

Despite encouraging early results of amyloid binding, the short
half-life (20 min) of the 11C isotope may limit the utility of 11C-
PIB as a tool for community based diagnostic screening and
therapeutic evaluation. In contrast, Florpiramine F18 (Florbe-
tapir) is a novel amyloid binding agent (Zhang, 2005; Zhang et al.,
2007) labeled with 18F which has a radioactive half-life of 110 min,

significantly simplifying its availability. Regional preparation and
shipping of doses is possible, thereby reducing the cost and increas-
ing the number of potential imaging centers. Studies conducted
to date suggest that Florbetapir may label amyloid plaques in
a manner similar to 11C-PIB, and may have the potential to
serve as an agent for in vivo imaging of Aβ pathology in humans
with AD. A comparison of the Florbetapir-PET semi-quantitative
visual evaluation (0–4 rating scale) with the quantitative mea-
surements of cortical amyloid burden using immunohistochem-
istry showed a statistically significant (Spearman’s rho = 0.78;
p < 0.0001, 95% CI, 0.58–0.89) correlation. In addition, strong
correlations between Florbetapir-PET measures of β-amyloid and
neuropathology measures of β-amyloid at autopsy were observed
(p < 0.0001) across all the different methods of evaluating the PET
images (qualitative and semi-quantitative visual ratings and quan-
titative SUVR) and the different methods of quantifying β-amyloid
at autopsy (quantification of Aβ and neuritic plaque density by sil-
ver staining) as well as in different brain regions (cortical average
and six individual cortical regions).

Florbetapir exhibits high-affinity, specific binding to amyloid
plaques with a Kd of 3.1 nM. In vitro autoradiography studies
further confirm that when applied at tracer concentrations Flor-
betapir labels Aβ amyloid plaques in sections from patients with
pathologically confirmed AD. The non-radioactive version of Flor-
betapir can be prepared at high concentrations and shows very
low to no affinity for all other central nervous system and cardio-
vascular receptors tested, including the hERG potassium channel
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binding site. Test-retest variance of Florbetapir-PET imaging has
been demonstrated to be low (less than 5%) in both AD patients
and cognitively healthy controls. To date however, no specific work
has been performed with this agent in CAA.

ROLE OF APOE GENOTYPE IN CAA-RELATED HEMORRHAGE
Previous studies have suggested that whereas ApoE ∈4 is associated
with increased Aßdeposition in cerebral vasculature (Schmechel
et al., 1993), ApoE ∈2 predisposes to increased hemorrhage in
CAA (Nicoll et al., 1997). Hemorrhage may also occur at an ear-
lier age in ApoE ∈2 carriers (Nicoll et al., 1996; Greenberg et al.,
1998). Although the pathophysiology of hemorrhagic predisposi-
tion in ApoE ∈2 patients is unknown, increased fibrinoid necrosis
(McCarron et al., 1999), and a combination of vessel wall split-
ting and paravascular hemorrhage (Greenberg et al., 1998) have
been described. ApoE ∈2 allele was also recently found to inter-
act with a number of clinical risk factors including antiplatelets,
anticoagulants, hypertension, and minor trauma predisposing to
a higher incidence of lobar hemorrhage. In a prospective study
evaluating the interaction between ApoE genotype and risk of
ICH in nearly 6000 patients, only patients with at least one ∈2
allele were significantly associated with ICH [Adjusted Hazard
ratio (HR) 2.05; 95% CI 1.26–2.26] compared to HR1.38 (95%
CI 0.86–2.21) for patients with at least one ∈4 allele (Tzourio
et al., 2008). Although APOE genotype does not appear sensitive
or specific enough as an isolated variable to diagnose CAA in

individual patients, the incidence of ∈2 or ∈4 positivity is reported
as 18–20 and 17–26% in imaging and pathological studies (Green-
berg et al., 1995, 1998; Nicoll et al., 1996; Premkumar et al., 1996).
The above data however suggests that in the appropriate imaging
setting of probable CAA, ApoE ∈2, or ∈4 genotypes may confer
additional risk for CAA presence and progression and may pro-
vide valuable additional information when stratifying risk. The
interplay between microbleeding, CAA, and CTA Spot Sign, as
well as APOE genotype may be crucial in developing a risk model
for ICH and expansion. Finally, CAA-specific agents also provide
imaging surrogates for the assessment of secondary preventive
therapy efficacy.

In conclusion, imaging remains at the forefront of understand-
ing acute ICH formation and hematoma progression. An early
surrogate marker of hematoma expansion, the CTA Spot Sign,
is being prospectively evaluated as a potential target for rVIIa
therapy. Modern CT protocols now facilitate direct quantifica-
tion of hematoma expansion rates and these measures corre-
late with the different morphological patterns seen on CTA and
CECT. It is likely that future treatment algorithms will be deter-
mined by absolute expansion rates rather than morphological
features alone. CAA remains a central pathophysiology in primary
ICH. In vivo imaging of CAA provides a unique opportunity of
understanding the complex relationship between amyloid load,
risk of hematoma formation, the CTA Spot Sign and genetic
factors.
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