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ABSTRACT Calcium-selective microelectrodes were used to measure the free calcium-ion 
concentration ([Ca2+]~) in early-cleaving embryonic cells of the golden medaka, Oryzias latipes, 
a fresh water teleost fish. Embryos could be dechorionated as early as the four-cell stage using 
a three-step technique consisting of removal of some yolk to enlarge the perivitelline space, 
partial digestion of the chorion with pancreatin, and removal of the weakened chorion with 
forceps. Dechorionated embryos underwent cleavage at a normal rate. 

Intracellular cytosolic [Ca2+]~ was monitored by impaling blastomeres first with a microelec- 
trode filled with 5 M potassium acetate to measure membrane potential, and a few minutes 
later with a calcium-selective microelectrode. During nine rounds of cytokinesis from a total 
of six different embryos, cytosolic [Ca2+]~ remained constant (with apparently random fluctua- 
tions of <+0.1 pM). During two successive cleavages in one embryo, however, [Ca2+]i rose 
transiently fourfold above the original resting level to 1.32 and 1.20 #M in synchrony with 
each period of cytokinesis and returned after each rise to submicromolar levels. Because a 
calcium-selective microelectrode can detect [Ca2+]~ changes only in the immediate vicinity of 
its 2-pm tip, we interpreted these data to suggest that, although [Ca2+]~ in most areas of the 
cytosol remains between 0.01 and 0.40 pM (mean of 0.14 pM), there may be small regions of 
the cell in which [Ca2+]i undergoes a substantial increase at the time of cleavage. Evidence 
also is presented to suggest that the membrane potential in these blastomeres undergoes a 
slow net hyperpolarization during early cleavage stages. 

The free calcium-ion concentration in the intracellular cytosol 
([Ca2+]0t has been studied intensely in marine invertebrate 
eggs and found to play many roles in embryonic development 
(1-3). The presence of contractile proteins in cleavage furrows 
(4, 5) suggests a possible role for calcium in cytokinesis. 
Application of calcium ionophores (6, 7) may induce forma- 
tion of cleavage furrowlike structures, perhaps by increasing 
intracellular [Ca2÷]i, whereas injection of calcium chelator 
solutions into cells (8) may interfere with cytokinesis by 
reducing [Ca2*]~ (although in none of these studies was 
[Ca2+]i actually quantitated). Recently, several techniques for 
measuring [Ca2+]~ have been described (9, 10). Use of one 
such technique, calcium-selective microelectrodes (CSMs), 

Abbreviations used in this paper: [Ca2+]i, intracellular cytosolic free 
calcium-ion concentration; CSM, calcium-selective microelectrode; 
Era, membrane potential. 

has indicated that there is no change in [Ca2+]~ during cyto- 
kinesis in Xenopus laevis (11). However, injection of the 
calcium-sensitive fluorescent protein, aequorin, into eggs of 
the golden medaka, Oryzias latipes, detected very small 
changes in fluorescence that might be associated with cell 
division (12). Unfortunately, the aequorin technique used was 
not sensitive enough to demonstrate convincingly that a cor- 
relation existed between changes in [caa+]i and cytokinesis. 
The sensitivity of CSMs to very low levels of [Ca2+]i in vivo 
surpasses that of aequorin (9, 10, 13-16), and provides the 
additional advantage of allowing direct and continuous ob- 
servation of cytokinesis. 

The embryos of teleosts, including those of O. latipes are 
surrounded by a tough, protective chorion. A procedure for 
its removal, without damage to the embryo, is required before 
CSMs can be used to measure cytosolic [Ca2+]i during cyto- 
kinesis. Although a slow and difficult microdisseetion of the 
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chorion with ultrasharp forceps or irridectomy scissors is 
possible after fertilization and enlargement of the perivitelline 
space, the technique was actually devised for the larger em- 
bryos of Fundulus heteroclitus, and even granting experience 
and manual dexterity, is never applied to O. latipes with 
much success (17, 18). Few chemical methods for removing 
teleost chorions are successful when applied to the medaka. 
A mixture of pancreatin, plus the hatching enzyme found in 
the buccal tissues near the time of hatching (19), has been 
reported to dechorionate embryos with no adverse effects 
(20). However, collection of adequate quantities of hatching 
enzyme is time consuming and requires a large, steady supply 
of embryos. Pronase has been applied successfully to embryos 
at later stages of development (21), but results in lysis of the 
early-cleaving embryo (22). Thus, heretofore no routinely 
successful and convenient method has been available for 
dechorionating teleost embryos, especially at very early stages 
of cleavage and in a type of teleost available in the laboratory 
year-round. 

The dechorionation method described herein combines 
mechanical and enzymatic techniques modified from a pro- 
cedure used by Sakai (20). This procedure is more rapid than 
most solely enzymatic methods and requires less practice and 
dexterity than purely mechanical techniques. It provides em- 
bryos that are still in the early stages of development (often 
at the four-cell stage) and which develop at a normal rate. 
Application of CSMs to dechorionated embryos during early 
cleavage has allowed direct measurement of cytosolic [Ca2+]i 
and shown that the resting levels of [Ca2+]i a r e  very low and 
rise significantly during cytokinesis, although the rise appears 
to be a localized one. 

M A T E R I A L S  A N D  M E T H O D S  

Microelectrodes: Single-barrel pyrex capillary tubing (l .5-mm outer 
diameter [o.d.], 1. l-ram inner diameter [i.d.]) (Glass Co. of America, Millville, 
N J) containing an internal fiber was used in the construction of microelectrodes 
for measuring the resting membrane potential (E~). Tubing without an internal 
fiber was used for CSMs. All capillary tubing was cleaned with 75% ethanol 
followed by a boiling water bath (23) before pulling into submicron-tipped 
micropipettes. Particulate matter was removed from backfill solutions by 
filtering them through rinsed Millipore filters of 0.45-~m pore size (Millipore 
Corp.. Bedford, MA). The tapered end of all microelectrodes was painted with 
silver conducting paint diluted with ethanol (Electrodag 416, Acbeson Colloids 
Co., Port Huron, MI) leaving only the terminal 0.5 mm of the tip uncoated. 
At the shoulder of the microelectrode, a thin ring of vacuum grease was applied 
so as to overlap the silver conducting paint, thus preventing the development 
of short circuits through moisture that might accumulate on the outer surface 
of the glass. Several centimeters of one end of a thin silver wire (0.005 in diam) 
(Medwire Corp., Mt. Vernon, NY) was electrolytically chlorided in 3 M KCI. 
Droplets of KCI solution were rinsed from the Ag/AgCI wires with triple-glass 
distilled water. To reduce clogging of microelectrode tips with AgCI precipitate 
(24), the chlorided wires were not inserted into microelectrodes until immedi- 
ately prior to use. 

Micropipettes for measuring membrane potential were backfilled with 5 M 
potassium acetate (Fluka Chemical Corp., Hauppauge, NY) using an atten- 
uated, integral plastic needle (25). Tip resistance was 12-60 M r  in Yamamoto's 
medium (12). Results were discarded if tip resistance was altered by cell 
membrane penetration. 

Tips of micropipettes for CSMs were beveled at a 25 ° angle from the 
horizontal in a milky suspension of distilled water and 0.05 ~m Alumina 
powder (Union Carbide Corp., Indianapolis, IN) (model P~:-I0 micropipette 
beveler, Sutter Instrument Co., San Francisco, CA). Tips were sharp and had a 
2-3-~m diam opening. These micropipettes were placed tips up in a Coplin jar 
filled with 6 x 50-ram test tubes. The open Coplin jar containing - 2 0  
micropipettes, along with a ground glass lid, was slowly heated to 200 *C. N.N- 
dimethyl-trimethylsilylamin (5 el) (Fluka Chemical Corp.) was added to the 
jar, which was immediately seared with the hot glass lid and placed back into 
the oven. After 15 min the Coplin jar  was opened and the silanized micropi- 
pettes were slowly returned to room temperature while remaining in the oven 

9 4 8  T.E IOURNAL OF CELL B'OtOC'~ ' VO~U"E ~00, 1985 

with its door slightly ajar. Next, we injected a backfill solution of 0.1 M CaC12 
into a silanized micropipette by using an attenuated integral plastic needle. The 
large end of the micropipette was cemented into the tip of a l-ml disposable 
plastic syringe (No. 5623, Becton Dickinson & Co., Rutherford, N J) with 
molten sealing wax. The syringe was filled with backfill solution and pressure 
was applied in order to fill the micropipette tip. The filled micropipette was cut 
free from the syringe and observed to assure the absence of air bubbles. CSMs 
contained 12% ETH 1001 (calcium ligand, Fluka Chemical Corp.), 6% tetra- 
phenylarsonium tetrakis (p-biphenylyl) borate (extremely hydrophobic salt, W- 
P Instruments, Inc., New Haven, CT), 72% o-nitrophenyl octylether, and 10% 
high molecular weight polyvinylchloride (a gift from Dr. W. Simon from the 
Max-Planck-lnstitute, FRG). This solution was mixed 1:2 (wt:wt) with tetra- 
hydrofuran (15). A droplet of the neutral-carrier ligand solution was drawn 
into a large (~300 um i.d.) micropipette by capillary action, and the enlarged 
micropipette was attached to a micromanipulator. The tip of a microelectrode 
previously backfilled with 0.1 M CaCI2 was briefly inserted into the ligand- 
containing pipette. The operation was observed with a Nikon MS inverted 
microscope (Nikon Inc., Garden City, NY). The dipping process was repeated 
until, by capillary action, the microelectrode tip became filled with a 200-325- 
um-long column of the final ligand solution. Bubbles in the calcium-selective 
ligand solutions in the tip of the electrode could sometimes be removed by 
repeated and rapid dipping of tips into the ligand mixture. Because CSM tips 
were so large, it was necessary that all Iigand solution was removed from the 
external surfaces of the tips (using a rinse of tetrahydrofuran, or by manual 
scraping) to achieve stable intracellular records. 

In order to avoid problems of drift (23), pCa 6 buffer solution (15) was used 
to continuously bathe CSM tips for 1-2 d before an experiment. CSMs were 
discarded 5 d after construction because sensitivity to [Ca 2÷] decreased, and 
hysteresis increased dramatically after this time. presumably due to increased 
tip resistance (26). 

CSMs were calibrated in a series of buffered solutions (See Table ! of 
reference 15 for recipes) before and after cellular impalements. Data were 
rejected when the microelectrode response to [Ca 2÷] changed by >5 mY/decade 
[Ca2+]. 

Embryo Oechorionation: Embryos were separated from female me- 
dakas (Carolina Biological Supply Co., Burlington, NC) with watchmaker's 
forceps immediately after spawning. Six fertilized eggs were placed into a 60 x 
15-ram bacteriological plastic petri dish (Falcon No., 1007, Oxnard, CA) 
containing 10 ml of Yamamoto's medium at pH 7.3 (12). With observations 
being made through a dissecting microscope, two sets of No. 5 watchmaker's 
forceps were ground under oil to long fine points on a soft Arkansas stone, 
followed by a final sharpening under oil on a hard Arkansas stone, to produce 
paired tips no more than 2 #m in diameter. 

All observations of embryos were made with the use of a Wild M-5 dissecting 
microscope (Wild Heerbrugg Instruments Inc., Farmingdale, NY) and trans- 
mitted light. Embryos always remained in a dish of Yamamoto's medium at 
room temperature (24 4- 1 *C) unless otherwise specified. As soon as the 
embryos completed first cleavage, the dechorionating manipulations were be- 
gun (manipulation of the yolk cell before first cleavage prevented further 
development). First, under a dissecting microscope at x 17.5, one pair of 
ultrasharp watchmaker's forceps was brought to each side of the embryo. The 
embryo was positioned with the vegetal and animal poles to the left and right, 
respectively. One set of forcep tips was held closed and pressed against the 
vegetal pole, while those on the right side were held open so as to contact the 
chorion almost tangentially above the equator between animal and vegetal 
poles. Slight pressure was applied tangentially across the chorion so that one of 
the forcep tips over the animal hemisphere side of the equator penetrated into 
the perivitelline space. Next, the penetrating forcep tip was gently pushed ~20 
um through the yolk cell membrane near the equator. This produced a small 
wound. The forceps were gently removed and the yolk cell was slowly and 
gently squeezed to release a small volume of yolk before the membrane resealed 
itself. The embryos, now with shrunken yolk cells, were immediately placed 
onto a 50-#1 droplette of frozen 3% pancreatin (Sigma Chemical Co., St. Louis, 
MO) in a phosphate buffer composed ol ~ 0.34 mM Na2HPO4, 0.44 mM 
KH2PO4, and 4.2 mM NaHCO3, pH 6.0, in a small plastic test tube. The 
droplet immediately thawed (submerging the embryo) and was incubated at 
24 *C for 95 min. This brief exposure to cold seemed to cause a pause in 
development, so that embryos were still in very early stages of development 
when dechorionated. The enzyme apparently entered the slit in the chorion 
and began digesting the zona radiata interna (27), for when the four-celled 
embryo was returned to Yamamoto's medium at the end of the digestion 
period, the remaining chorion, retaining its external decorations, had been 
changed into a semiflaccid sac. In such embryos, the yolk cell membrane 
remained taut, although reduced in diameter to -0 .89 mm from an original 
1.09 mm. Therefore, only ~54% of the original yolk cell volume remained. 
Embryos were rinsed well with at least two 10-ml rinses of Yamamoto's medium 
to halt further enzymatic digestion. Then the chorion was removed carefully 



using ultrasharp forceps and either the manipulative steps described by Trinkaus 
(18), or by simply tearing away very small patches of the chorion, gradually 
forming a hole through which the embryo could easily roll out. 

Embryos dechorionated in the manner described above (heareafter referred 
to as dechorionated embryos) were kept in Yamamoto's medium, together with 
various control groups. Each group was observed at 30-min intervals until the 
commencement of epiboly, and daily thereafter. Control and test groups were 
obtained from the same clutch in experiments in which the rates of development 
were compared. It is possible to dechorionate immediately after wounding 
(eliminating enzymatic digestion), thus obtaining freed two-celled embryos, 
however, the tough bits of chorion cling tenaciously to the forceps making the 
process quite difficult. 

Measurement of [Ca2÷]~ and Era: Embryos at the four- to eight- 
cell stage were placed into a small plastic dish, dechorionated, and held in 
position in a notch cut into the edge of a microscope slide. (Because these 
embryos cleave rapidly [every 20-30 min at 24 *C] all reached the eight-cell 
stage before measurement of [Ca~+]i). All manipulations were done in the same 
dish, because dechorionated embryos were very fragile. A dividing cell was 
penetrated first with a microelectrode filled with 5 M potassium acetate to 
allow recording of Era. After several minutes, a CSM was inserted into the same 
cell, or an adjacent cell of the same embryo, to allow recording of CSM 
potential (adjacent blastomeres are electrically coupled in F. heteroclitus [28]). 
Preliminary current injection experiments (not shown) indicated that all blas- 
tomeres of the two- to eight-celled medaka embryo, like those of Fundulus, are 
>85% electrically coupled. Changes in Er, are very small relative to voltage 
changes needed to indicate a change in [Ca2÷]~ during an experiment, and so 
even if coupling were not as complete as in Fundulus, only a very small error 
would be introduced. 

The circuit used for measuring potentials consisted of a grounded calomel 
reference electrode (13-639-79, Fisher Scientific Co., Pittsburgh, PA) in 3 M 
KCI connected via a salt bridge (3 M KC1 in 2% agarose gel) to either the 
calibration solution or the dish of Yamamoto's medium used for cell impale- 
ments. Mieroelectrodes, with their tips in the test solutions, were connected by 
a Ag/AgC1 wire in the backfill solution to a dual-channel high-impedance 
differential electrometer with driven probes (model F-223, W-P Instruments, 
Inc.). Outputs were displayed as traces on a two-pen strip chart recorder (No. 
7132A, Hewlett-Packard Co., Palo Alto., CA): E= (from the potassium acetate 
microelectrode) and corrected CSM potential (the CSM potential minus the 
E=; subtraction performed automatically by the electrometer). Both voltages 
were recorded simultaneously until the completion of sixth cleavage, or until a 
substantial drop in E,, indicated damage to the cell membrane. The two 
electrodes were often partitioned into different cells as cytokinesis proceeded, 
but the cells probably remained electrically coupled (28). However, changes in 
Em were not directly related to cytokinesis in any manner that should have 
affected the results presented here, even if cells had been uncoupled. Also, it 
has been previously shown that membrane potential changes are not involved 
in early cleavage in the marine mudsnail, llyanassa obsoleta (29). All microe- 
lectrode manipulations were performed inside a grounded Faraday cage. 

In one set of experiments, dimethylsulfoxide (DMSO) in Yamamoto's 
medium was added (without stirring) during a stable impalement to give a final 
DMSO concentration of not <0.5% surrounding the embryo. In another set of 
experiments, a calcium ionophore solution (A23187 [Sigma Chemical Co.] 
dissolved in DMSO and Yamamoto's medium) was added, without stirring, 
during a stable impalement so as to give a final concentration of at least 9.5 
t*M A23187 and 0.5% DMSO in the medium surrounding the embryo. Each 
experiment was done repeatedly, with the impaling electrode being either a 
CSM, or a potassium acetate-filled microelectrode. Such single microelectrode 
impalements were resorted to after numerous techniques for adding ionophore 
solution all failed to be gentle enough for maintaining most doubiy impaled 
embryos in a healthy state. No other experiments were designed to measure 
pCa~ 2÷ without dual-impaling microelectrodes. 

To measure E~ in embryos that had neither been dechorionated nor treated 
with enzyme, a micropipette with a tip diameter <30 #m was inserted through 
the chorion into the perivitelline space above the embryo. The micropipette 
then was broken just above the outer surface of the cborion. Finally, a 
micropipette for measuring E,, was guided through this chorionic shunt and 
inserted through the plasma membrane of the embryo (Fig. 1). E= was success- 
fully recorded from 19 embryos that had received chorionic shunts. 

RESULTS 

Effects o f  Dechor ionat ion  

The rate of development of dechorionated embryos was 
compared with that of control embryos that were simply 
transferred from the spawning female to a dish of Yamamo- 
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FIGURE 1 This illustration depicts a cross-sectional view of a two- 
celled medaka embryo surrounded by a chorion (Ch) that has been 
shunted by a glass tube (S) to allow for recording of the Em without 
subjecting the embryo to the dechorionation process. A microelec- 
trode (M) is shown penetrating a cell of the embryo proper (EC). 
The yolk cell (YC) and oil droplettes of the yolk (OD) are also shown. 
Shunt is shown disproportionately large for clarity. 

to's medium at 24 *C _+ 1 *(2. Embryos in these two groups 
were always found to develop at the same rate ___ one stage (as 
defined by Kirchen and West [30]) until the experiment was 
terminated (Fig. 2). Epibolic movements occurred at the same 
time in both groups, and were soon followed by rhythmic 
contractions over the yolk cell. Daily observations of a group 
of 12 dechorionated embryos revealed that 75% began actively 
swimming and feeding by the 17th day after fertilization (25% 
depleted their yolk cells and died during the 2nd or 3rd wk of 
development). Dechorionated embryos produced smaller 
than normal fry. Successful microelectrode penetrations did 
not alter these results. A control group of untreated embryos 
held at 4 *C in 3% pancreatin solution for 95 min stopped 
cleaving until being returned to room temperature. Cytoki- 
nesis then resumed at a normal rate within l h. Because these 
chilled embryos went on to become normal hatchlings, it was 
assumed that placing embryos to be dechorionated on a 50- 
tzl droplette of frozen pancreatin buffer solution, which 
reached room temperature within minutes, did nothing more 
than briefly retard development so that, at the time of decho- 
rionation, embryos were still at the four- to eight-cell stages. 

Because in another teleost fish, F. heteroditus, it has been 
noted that the embryo proper is less damaged by wounding 
than is the yolk cell (28), one group of six embryos was 
wounded by puncturing an early cleaving embryonic cell, 
rather than the yolk cell. After enzyme treatment and chorion 
removal, daughter cells of  the undamaged parent cell under- 
went rounds ofcytokinesis at a normal rate. However, daugh- 
ter cells of  the cell that had received the wound were slow to 
develop, and often cleaved at an angle to the normally ex- 
pected cleavage plane. These embryos ceased development 
before eight rounds ofcytokinesis were completed. In contrast, 
of  those embryos subjected to the standard dechorionation 
procedure, only 1 of 20 examined showed any skew from the 
normal cleavage pattern, and all developed at the same rate 
as control (intact) embryos. The only visible developmental 
difference between dechorionated and intact embryos was a 
change in the path of contractile waves over the yolk cell just 
after completion of epiboly (stage 18). In control embryos, 
contractile waves initiated at the lateral surface of the embryo 
proper, and propagated to the vegetal polar region where they 
often slowed down, halted, and relaxed, In dechorionated 
embryos, contractile waves initiated at the lateral surface of 
the embryo proper, propagated in a slightly anterior or pos- 
terior direction to the vegetal polar region, and then continued 
around the shrunken yolk cell to the opposite side of the 
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FIGURE 2 Untreated medaka embryos (a, c, and e) and dechorionated embryo, beside its empty chorion (b, d, and f) taken 
from the same clutch develop in Yamamoto's medium at 24 °C. The eight-cell stage (a and b) and the 64-cell stage (c and d) 
were reached at 3 and 4.5 h postfertilization, respectively. By 12 h postfertilization (e and f), embryos had reached the flat 
blastula stage. Bar, 175 ttm. x 23.4. 

embryo at the animal polar region. In summary, these exper- 
iments indicated that development of dechorionated embryos 
was essentially normal, especially during the first day of 
development, when the microelectrodes were used to measure 
[Ca2+]i and E,, during cleavage. 

Calcium-selective Microelectrodes 
The CSMs in these experiments displayed almost no hys- 

teresis and had nearly Nernstian slopes when the [Ca 2+] was 
~10/~M (Fig. 3). Below 10/Lm [Ca2+], there was only slight 
hysteresis; however, responses became substantially more sub- 
Nernstian with each 10-fold decrease in [Ca 2+] (Fig. 3). As a 
result, this technique could not reliably quantitate [Ca :+] 
<0.10 #M. Thus, values <0.10 #M are necessarily estimates. 
CSM sensitivity to [Ca 2+] in the presence of interfering ions 
found in vivo was good, as has been shown by others using 
these types of CSMs (11, 15, 23, 31, 32). An accurate pCa 2+ 
of 2.74 was indicated for pure Yamamoto's medium contain- 
ing Na ÷ and K ÷ concentrations >2 raM. When distilled water 
was introduced on dissecting instruments into the 1-2 ml of 
solution bathing an embryo during some dechorionations, 
the CSMs again responded well, indicating a pCa 2+ >2.74 
(Fig. 4). 

Cytosotic [Ca2+]i during, Cytokinesis--Generally 
No Change 

Embryos were penetrated with 5 M potassium acetate mi- 
croelectrodes, and resting Em was recorded for several minutes 
before a CSM was also placed into the same or adjacent cell 
of the embryo. After impalement of an embryonic cell at the 
8- to 16-cell stage with a CSM, a rapid drop in the CSM 
potential usually occurred equivalent to -pCa~ 2+ 6, followed 
by a slow decrease in intracellular [Ca2+]i over many minutes 
(Fig. 4). For six embryos these changes were followed by a 
stable, nonfluctuating recording of the resting level of cyto- 
solic [Ca2+]i, whereas the embryonic cells continued to 
undergo one round of cytokinesis every 20-40 min through- 
out the experiment and for several hours thereafter. In six 
separate experiments cytosolic [Ca2+]i was found to be 0.01- 
0.40 ~M (Table I) throughout a total of nine rounds of 
cleavage. Within the cells of a single embryo [Ca2+]~ remained 
constant, but it varied significantly among embryos. Small 
fluctuations of [Ca2+], (--_ ---0.10 #M) did not correlate with 
the occurrence of cytokinesis in number or in time. 

Yamamoto's medium containing 0.5% DMSO caused no 
change in Em (two trials) or pCai 2+ (two trials). However, 
addition of ionophore solution (see Materials and Methods) 

9 5 0  THE JOURNAL OF CELL BIOLOGY • VOLUME 100, 1985 



> 
E 

i 

7 6 5  :3 
pCai 2÷ 

O. 

2O 

40 

60 

80 

I 0 0  

120- 

140- 

160. 

FIGURE 3 Calibration curve 
for CSM with 1.5-#m o.d. tip. 
This CSM was used for the 
experiment shown in Fig. 4. 
Arrows indicate the order in 
which solutions were changed 
during calibration. Changes in 
[Ca 2+] can be detected below 
the micromolar range despite 
sub-Nerstian responses. 
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FIGURE 4 Pen recorder traces of pCai 2÷ and Em in an embryonic 
cell of O. latipes during the fifth cleavage. Vertical blips on pCa~ 2÷ 
trace are a result of changing channels in order to observe digital 
readouts on the differential potentiometer used. Penetration (P) of 
the cell with the large CMS produced a temporary drop in the Era. 
The cell quickly recovered and Em continued to undergo a net 
hyperpolarization. After penetration, a rapid drop in [Ca2÷]~ is 
shown, followed by a slow decline over many minutes. Subsequent 
measurements indicated [Ca2÷]~ remained approximately constant 
at 0.40 #M, indicated by the dotted line. Cytokinesis (C) was seen 
to occur over a period of ~4 min as indicated. 

TABLE I 

/Ca2+]i and Em Levels during Early Cleavages 

Rounds of cytoki- 
nesis observed Em at cleavage [Ca2+]i 

-mY nM 
1 15 10 
4 12-20 14 
1 20 51 
1 23 63 
1 16 126 
1 22 400 

Summary of data from six experiments in which [Ca2% remained constant, 
even during cytokinesis. Membrane potential (Era) underwent a net hyper- 
polarization in each experiment. The value of Em given is the mean Em during 
the period of time when cleavage was occurring. Only the third through sixth 
cleavages were examined. 

to embryos with single microelectrode impalements (two 
trials), and in a doubly impaled blastomere in one case, 
indicated that, had large changes in cytosolic [Ca2÷]i occurred, 

they would have been readily detected by the CSMs used. 
Addition of  ionophore solution to embryos between the 16- 
and 32-cell stages indicated that in six trials Em was affected 
by not >_+ 2 mV by the ionophore solution, and a slow net 
hyperpolarization was still indicated regardless of  the drug's 
presence. However, when an embryo at the 64-cell stage was 
presented with the ionophore solution, microelectrode read- 
ings rapidly became more positive (Fig 6). Because the drugs 
had almost no effect on Era, and because addition of  the same 
concentration of  ionophore solution to calibration solutions 
had no effect on CSM response, the positive deflection must 
have been due to a real rise in [Ca2+]i. 

The Em in the dechorionated embryos always followed a 
course of  gradual net hyperpolarization with small transient 
depolarizations of  several millivolts interspersed in a seem- 
ingly random manner. An experiment was performed to 
determine whether this was an artifact of  dechorionation. 
Chorions surrounding intact, nontreated embryos, received 
chorionic shunts (a glass tube through the chorion as described 
above) through which the membrane potential electrode was 
inserted (Fig. 5). Embryos which appeared least damaged by 
dechorionation (i.e., the puncture in the yolk cell membrane 
sealed cleanly rather than forming a plug of xanthic material) 
usually displayed Em with +5 mV of the values from nonde- 
chorionated, i.e., shunted, ones. Therefore, the data suggest 
that the dechorionation procedure per se does not cause the 
steady hyperpolarizations observed. Instead, steady hyperpo- 
larization of  the embryonic cells appears to represent a normal 
developmental phenomenon. Not shown in Fig. 5 are values 
of  Em obtained from two embryos, with shunted chorions, at 
approximately the seventh cleavage (~128 cells). In these 
instances, Em was - 4 0  mV and - 5 0  mV, indicating that net 
hyperpolarization of  medaka blastomeres probably continues 
into the range of  the so-called "normal" resting potentials 
( - - 7 0  mV) found in most cells of  most organisms. 
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FIGURE 5 A chorionic shunt was used to determine Em (in milli- 
volts; circles), which is shown for 17 different embryos (overlapping 
data at open symbols). A net hyperpolarizati0n (indicated by linear 
regression line; r = 0.90) was observed in embryos retaining their 
chorions, indicating that the net hyperpolarization found to occur 
in cells of all dechorionated embryos is not an artifact of the 
dechorionation process. Squares indicate Em of the six CSM-impaled 
embryos from Table I. The difference between the mean membrane 
potentials for these two groups is _< 6.7 mV during the 8- through 
32-cell stages, and 11.2 mV at the 64-cell stage. 
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FIGURE 6 Simultaneous recordings of pCa 2+ and Em for an embryo 
during early cleavage stages. Penetration (P) of the blastomer by 
the CSM caused a small, transient fall in E,. indicating that (a) the 
CSM had penetrated the membrane of the same blastomere that 
already contained the 5 M K acetate electrode, and (b) that the 
membrane did seal around the CSM. Resting [Ca2+]~ was ~0.32 #M 
until just before the fifth cleavage. Then it rose to 1.32 #M. After- 
wards, [Ca2+]i fell to 0.63 #M until the sixth cleavage, when it again 
rose to 1.20 #M. Arrows at A and (I + A) indicate artifactual spikes 
in the traces caused when / touched the Faraday cage. I indicates 
the time of addition of the calcium ionophore A23187. Ionophore 
caused no change in Era, but caused [Ca2+]~ to rise to 7.59 #M. Em 
increased from -10 to -16  mV during this experiment. Cytokinesis 
was visible during the time bracketed by the bar under each C. 

Cytosolic /Ca2+]i during Cytokinesis-- 
Occasionally A Sharp Change 

In a seventh embryo, cleavage was examined two more 
times. In this embryo an initial resting level of [Ca2÷]i was 
found to be 0.32 lzM. During the time periods when this 
impaled blastomere could be seen to undergo fifth and sixth 
cleavages, the [Ca2+]i rose to 1.32 and 1.20 #M, respectively 
(Fig. 6). Between successive rounds of cytokinesis, [Ca2+]i 
returned to submicromolar levels (albeit increasing). When 
the data from Fig. 6 were replotted on an expanded scale of 
[Ca2+]~, the rises in [Ca2+]i that occur in synchrony with 
cytokinesis could be seen more deafly (Fig. 7). 

DISCUSSION 

The results suggest that a practical technique for dechoriona- 
tion now allows access to the very early cleaving medaka 
embryo for microelectrode penetrations and other studies. 
Opportunities, therefore, are available for studying cytokinesis 
in a vertebrate embryo available in the laboratory year-round. 
Using CSMs it was found that overall cytosolic [Ca2+]~ in this 
teleost is held constant (__.-0. l0 #M) during successive rounds 
of cytokinesis between the 8- and 64-cell stages, inclusive, 
although there appears to be a localized rise in [Ca2+]i during 
cleavage. Resting [Ca2÷]i in such embryos was held at a value 
probably very near 0.10 #M. In contrast, the E~ undergoes a 
gradual net hyperpolarization during these stages. It would 
seem that these embryos may regulate cytokinesis through 
large but localized changes in [Ca2÷]i. 

Effects of Dechorionation 
Cleavage rate, epiboly, gastrnlation, and organogenesis ap- 

peared in dechorionated embryos to be no different from 
those in untreated control embryos, suggesting that basic 
cellular processes such as cytokinesis also were occurring in a 
normal manner. However, three specific properties of the 
embryos were altered. First, dechorionation reduced the mean 
Em by ~8 mV (Fig. 5). This indicates that the membranes 

952 THE JOURNAL OF CELL BIOLOGY • VOLUME 1 0 0 ,  1 9 8 5  

1 4 0 0 -  

8 mln 

I 0 0 0 -  

6 0 0  - 

5 0 0 -  

FIGURE 7 [Ca2+]~ at the time of cleavages in Fig. 6 is plotted at 2- 
rain intervals with a 10-fold expansion of the vertical axis. [Ca2+]i is 
indicated in nanomolar concentrations. The periods during which 
rounds of cytokinesis (C) were visible are indicated by arrows. 
Cleavages were clearly associated with transient increases in 
[Ca2+]~ in this embryonic cell. 

were sometimes made somewhat leaky by the treatment. 
However, because Em was near control levels in those embryos 
in which [Ca2+]i was measured, membrane damage should 
have been minimal in those cases. Second, dechorionation 
was associated with altered cleavage planes in 5% of decho- 
rionated embryos. This has not been reported previously when 
chemical methods (2 l, 33, 34), mechanical methods (17, 18, 
35), or a combination of both methods (20) have been used 
for removing chorions from teleost embryos. It is possible 
that the resulting skewed cell arrangements may occur even 
in 5% of normal, nondechorionated embryos (as is well 
known to occur in frog embryos), but have simply never been 
reported. Alternatively, the skewing may represent a phenom- 
enon unique to O. latipes. However, because most enzymatic 
dechorionation treatments require long incubation times, em- 
bryos may contain hundreds of cells before observations are 
made, and so it is likely that any skewing of early cleavage 
planes may have been missed in other systems. Third, the 
contractile waves normally seen in the yolk cell and envel- 
oping layer of cells appeared at the normal time and location, 
and seemed to travel at control rates, but traveled around the 
entire embryo in a path that was not quite perpendicular to 
the neural tube of the embryo proper. This may have arisen 
because of the reduced size of the yolk cell in dechorionated 
embryos. Except for the three features noted above, decho- 
rionated embryos develop in a fashion which still allows for 
their experimental analysis. 

Response of Embryos to Impalement 
with Microelectrodes 

The CSMs used in these experiments responded well to 
submicromolar levels of Ca 2÷ for 3-7 d after their fabrication. 
Successful impalements with these electrodes showed an ini- 
tial rapid response to micromolar [Ca2+]i, followed by a slow 
drop to submicromolar resting levels within several minutes. 
The slow decline may represent cellular buffering of small 
quantities of exogenous Ca 2÷ introduced by microelectrode 
impalement. The normal Em net hyperpolarization is reat- 
tained quickly after CSM impalement, indicating an adequate 
sealing of the membrane around the CSM. Therefore, the 
intraceUular measurements of cytosolic [Ca2+]i presented here 
should be representative of normal intracellular levels. Rapid 
response to addition of calcium ionophore A23187 indicated 
that the CSMs were capable of measuring changes in intra- 
cellular [Ca2+]i. Differences of [Ca2+]i between 0.01 and 0.40 
#M for different embryos probably indicates that the cells 
suffered various degrees of membrane damage even under the 



best conditions. Therefore, values in the lower end of this 
range are most likely to represent the genuine values for 
[Ca2+]i in vivo. 

Does [Ca2+]i Change during Cytokinesis? 
There were no changes in [Ca2+]i >0.10 #M during nine 

rounds of cytokinesis in the medaka embryos examined here. 
However, a localized or short-lived calcium transient involved 
in cytokinesis would have been very difficult to detect in the 
present experiments because the CSMs only monitor a small 
region of cytoplasm, and required 1-10 s to respond to a 10- 
fold change in [Ca2+]i. In fact, a study of [Ca2+]i in cleaving 
embryonic cells of X. laevis between the two-cell and 64-cell 
stages concluded that CSMs did not detect a change in 
[Ca2+]i at the time of cytokinesis (1 l). In that case, cleaving 
embryonic frog cells impaled with CSMs showed a relatively 
constant value of 0.079 ~M [Ca2+]i, similar to what is reported 
in the present paper. The investigators in that study also felt 
that damage to cell membranes caused by poor CSM impale- 
ments was responsible for very high resting values of [Ca2+]i 
observed in some embryos (a mean [Ca2+]i of 0.30 uM was 
given). Using calcium-stimulated aequorin fluorescence in 
order to determine [Ca2*]i in cleaving starfish embryos, it has 
been determined that there are no resolvable calcium tran- 
sients associated with cleavage (36), however, aequorin has 
more limited sensitivity to [Ca2+]i than CSMs. For the first 
time, we are now able to compare aequorin (12) and CSM 
data for cleaving embryonic cells in the same organism (O. 
latipes). In the present study, CSMs indicated that there are 
probably no [Ca2+]~ transients associated with most of the 
cytosol during cytokinesis in embryonic cells of O. latipes, 
whereas, in an earlier study (12), aequorin fluorescence sug- 
gested that a small transient rise in [Ca2+]i might occur with 
each round of cytokinesis in these embryos. Why would 
experiments using aequorin (12) and CSMs suggest apparently 
different correlations between [Ca2+]i and cleavage in early 
cleaving medaka embryos? There are several possibilities. 
First, the apparent resting and transient concentrations of 
Cai 2+ determined during cleavage were estimates made at the 
very limit of detection for the aequorin technique (9, 10, 14). 
The values obtained therefore were only approximations (12). 
One might still expect calcium transients to play a role in 
cytokinesis however, because increases in intracellular 
[Ca2÷]i do induce the formation of cleavage furrowlike struc- 
tures (6, 7, 37). A second possibility is that although the 
[Ca2+]i increases seen with aequorin occurred during the first 
and second cleavage, they do not occur after the second 
cleavage (an important difference between the two experi- 
ments is that the aequorin study ceased at the second cleavage, 
whereas the CSM penetrations could not begin until the third 
cleavage). Thirdly, it has been shown that anesthetics such as 
urethane and tetracaine enhance aequorin activity at constant 
[Ca2+]~ (38). Likewise, if a cellular mechanism were present 
for increasing the activity of calcium-binding proteins during 
cytokinesis and recognized the calcium-binding aequorin as a 
substrate, then transient increases in fluorescence might be 
seen with the aequorin technique, but not be matched by any 
change in CSM response. Finally, the aequorin experiments 
may have detected a real rise in [CaZ+]i, which was localized 
to a small region of the cell and thus unlikely to have been 
detected by the small, but sensitive microelectrode tip. This 
final explanation seems to be the appropriate one, because in 

one embryo out of seven studied in the present experiment, 
the CSM tip did detect a very large transient rise in [Ca2+]i, 
which was directly correlated in time with two rounds of 
cytokinesis. Resting cytosolic [Ca2+]i in this embryo was un- 
usually high (0.32 to 0.63 #m), indicating that a small quantity 
of extracellular ions was probably leaking into the egg. Even 
so, the cleavage-related Ca 2+ transients were large enough to 
be clearly visible. The simplest explanation of this positive 
result is that a localized [Ca2+]i transient does accompany 
cytokinesis. 
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