Brunvand et al. BMC Cardiovascular Disorders (2017) 17:133
DOI10.1186/512872-017-0551-0 BMC Cardiovascular Disorders

Advanced glycation end products in @
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Abstract

Background: Reduced diastolic function is an early sign of diabetes cardiomyopathy in adults and is associated
with elevated levels of HbA1c and advanced glycation end products (AGEs).

Objective: To assess the associations between early reduced diastolic function and elevated levels of HbA1c and
AGEs in children and adolescents with type 1 diabetes (T1D).

Methods: One hundred fourty six T1D patients (age 8-18 years) without known diabetic complications were
examined with tissue Doppler imaging and stratified into two groups according to diastolic function. A clinical
examination and ultrasound of the common carotid arteries were performed. Methylglyoxal-derived
hydroimidazolone-1 (MG-H1) was measured by immunoassay.

Results: At inclusion, 36 (25%) participants were stratified into a low diastolic function group (E//A-ratio < 2.0).
Compared to the rest of the T1D children, these participants had higher body mass index (BMI), 22.8 (SD = 4.0) vs. 20.1
(SD =34) kg/mz, p < 0.001, higher systolic blood pressure 104.2 (SD = 8.7) vs. 99.7 (SD = 9.3) mmHg, p = 0010, and
higher diastolic blood pressure, 63.6 (SD = 8.3) vs. 59.9 (SD = 7.9) mmHg, p = 0.016. The distensibility coefficient was
lower, 0.035 (SD = 0.010) vs. 0.042 (SD = 0.02) kPa™", p = 0013, Young's modulus higher, 429 (SD = 106) vs. 365

(SD = 143), p = 0.009, and MG-H1 higher, 163.9 (SD = 39.2) vs. 150.3 (SD = 33.4) U/ml, p = 0.046. There was no
difference in carotid intima-media thickness between the groups. There were no associations between reduced
diastolic function and years from diagnosis, HBA1c, mean HBATc, CRP or calculated glycemic burden. Logistic
regression analysis showed that BMI was an independent risk factor for E'/A"ratio as well as a non-significant, but
relatively large effect size for MG-H1, indicating a possible role for AGEs.

Conclusions: Early signs of reduced diastolic function in children and adolescents with T1D had higher BMI, but not
higher HbA1c. They also had elevated serum levels of the advanced glycation end product MG-H1, higher blood
pressure and increased stiffness of the common carotid artery, but these associations did not reach statistical
significance when tested in a logistic regression model.
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Background

Diabetic cardiomyopathy is associated with increased
stiffness in the atrial and ventricular walls of the heart,
and also with arterial stiffness [1]. Increased stiffness of
the left ventricle leads to a reduced peak early (E’), and
increased peak late (A) diastolic velocity of the mitral
ring [2]. The late peak velocity reflects the contraction
of the left atrium. When diastolic function is impaired,
the peak early blood velocity (E) across the mitral valve
(MV) will initially be reduced [3]. Later, in more ad-
vanced diastolic dysfunction, the pressure in the left
atrium increases and the blood flow across the valve will
increase (pseudo-normalization). Consequently, the E/E’
ratio will increase with more severe diastolic dysfunc-
tion. E; A’ and E can easily be measured with Doppler
techniques in a standard echocardiographic examination
[3]. Adult patients with T1D have a considerable preva-
lence of diabetic cardiomyopathy, but some studies have
also demonstrated cardiac changes in diabetic children
and young adults [4-6].

Glucose residues or metabolites of glucose can react
non-enzymatically with proteins to form advanced glyca-
tion end products (AGEs) [7]. Such modifications may im-
pair the function of key proteins [8]. Some AGEs also
have the ability to create cross-links between long-lived
structural proteins like collagen, contributing to the devel-
opment of arterial stiffness [9]. Production of AGEs occurs
in healthy subjects as well, but the formation is markedly
accelerated in diabetes patients due to the increased avail-
ability of glucose [10]. Elevated levels of AGEs are consid-
ered important pathogenic factors in the development of
diabetic cardiomyopathy [11]. This is supported by studies
showing associations between AGEs and both arterial
stiffness and impaired left ventricular function [12-16].
Furthermore, anti-AGE treatment improved collagen
solubility and attenuated diabetes induced cardiac disease
in rodents [17-19]. Various AGEs exist in different tissues,
but methylglyoxal-derived hydroimidazolone-1 (MG-H1)
is the most abundant AGE in human plasma [20]. We
have previously shown that increased levels of MG-H1 in
children with T1D are associated with early signs of ath-
erosclerosis [21]. To our knowledge, the influence of MG-
H1 as a risk factor for diastolic dysfunction in the early
stages of cardiomyopathy in children and adolescents with
T1D has not previously been studied.

Methods

Research design and study population

In 2006, all children and adolescents with T1D aged 8—
18 years enrolled in the Norwegian Childhood Diabetes
Registry (NCDR) and living in the South-East Health
Region of Norway (n = 800) were invited to participate in
the Atherosclerosis and Childhood Diabetes study at Oslo
University Hospital, Ulleval, focusing on risk factors and
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early signs of cardiovascular disease. Forty percent of the
invited (n = 314) agreed to participate. None had signs of
diabetes nephropathy, retinopathy or neuropathy. Details
from this study have been published earlier [22]. A total of
146 patients were examined by echocardiography as de-
scribed previously [6], and included in the present study.

Clinical and laboratory measurements
The baseline measurements of weight and height were
recorded, and the body mass index (BMI) was calculated
as the ratio of the individual’s body weight to the square
of the height. Tanner stages of puberty were obtained
from the Norwegian Childhood Diabetes Registry along
with self-rating [22]. Arterial blood pressure (BP) was
measured according to the National High Blood
Pressure Education Program Working Group on High
Blood Pressure in Children and Adolescents [23].
Glycated hemoglobin (HbA1C) was determined for all
participants by liquid chromatography (Variant; Bio-Rad,
Richmond, CA). The intra-assay coefficient of variation
was <3%. Annual HbA1C values were available from the
NCDR since 2001 or from the time of diagnosis for the
majority of the patients. Mean HbA1C was calculated
from all the HbA1C values available for each patient.
MG-H1 was measured by dissociation-enhanced lanthan-
ide fluorescent immunoassay (DELFIA) as previously
described [24, 25]. The applied anti-hydroimidazolone anti-
bodies showed high sensitivity and little cross-reactivity. The
assay was significantly and positively correlated with a stable
isotopic dilution analysis liquid chromatography-mass spec-
trometry (LC-MS/MS) technique. (Unpublished observation
by Dr. V. Monnier, Cleveland, OH, USA.)

Glycemic burden

The glycemic burden (Al months) was calculated using a
modified version of the formula applied by Orchard et al.
[26]. The first number of A1 months is the sum of months
from the diagnosis of diabetes until the first HbAlc value
registered in the NCDR multiplied by HbAlc units above
the upper normal reference value (6.4%) of the first regis-
tered value. The same procedure is followed for every sub-
sequent HbAlc measurement until the time of inclusion
in the study. The sum of all the calculated A1 months rep-
resents the glycemic burden.

Echocardiography

Tissue Doppler images (TDI) of left ventricle (LV) and
right ventricle (RV) were measured from standard apical
two and four chamber and long axis position as previ-
ously described in detail [6]. EchoPac software (EchoPac
PC SW, GE, Horten, Norway) was used for post pro-
cessing of the TDI indices. Early peak diastolic velocity
(E’), atrial late peak velocity (A’), E'/A’-ratio and systolic
peak velocity were analyzed from the lateral, septal,
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anterior and posterior mitral annulus. Peak systolic
velocity (TDI S’) was measured at the maximum height
of the systolic velocity curve.

With color tissue Doppler imaging (cTDI) we have
previously demonstrated that 25% of children with T1D
have E’/A’-ratio < 2.0, thus showing echocardiographic
signs of reduced diastolic function, compared to only
10% of healthy control subjects [6]. In the present study,
the patients were stratified accordingly.

Common carotid artery ultrasound

A standard ultrasonic protocol was used for measuring the
common carotid artery intima-media thickness (cIMT) as
previously described in detail [22]. The distensibility coeffi-
cient (DC) as a measure of elasticity was calculated from
the expression (DC = (AA/A)/AP = ((d + Ad)2-d2)/d2/Ap).
Ap represents the change in pulse pressure, d the end-
diastolic diameter (including the intima-media complex)
and Ad the change in diameter from diastole to systole, as-
suming a circular lumen cross-section of the vessel. Young’s
modulus, which reflects the elastic properties of the artery,
was then calculated from these measurements as well as
blood pressure assessment by a standard oscillometric de-
vice over the brachial artery [27].

Statistical analysis

The TID children were categorized into two groups
according to their E’/A’-ratio. The 25% with the lowest E’/
A-ratio were categorized in a low diastolic function group

Table 1 Clinical and metabolic characteristics
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(E’/A-ratio < 2.0) and the rest of them in a reference group
(E’/A-ratio > 2.0). The data are presented as either means
with their standard deviations or medians with 25th and
75th percentiles or proportions. Differences between the
two groups were tested with Student’s t-test when normally
distributed data, otherwise with Mann-Whitney U-test.

To identify possible independent baseline risk factors
for E’/A’-ratio, univariate logistic regression analysis was
employed. A significance level of 20% was deemed ne-
cessary for a variable to be included in the multivariate
regression model. Subsequently, a manual backward
stepwise elimination procedure was performed. The
effect sizes were quantified by odds ratio (OR) with its
95% confidence interval. The predictive accuracy of the
models was assessed by calibration and discrimination.
Calibration was evaluated by the Hosmer and Lemeshow
goodness-of-fit test. A statistically non-significant
Hosmer and Lemeshow result (p > 0.05) suggests that
the model predicts accurately on average. Discrimination
was evaluated by analysis of the area under the ROC
curve. We defined acceptable discriminatory capability
as an area under the ROC curve greater than 0.7.

Results

The clinical and metabolic characteristics of the partici-
pants are presented in Table 1. The patients categorized
as the low diastolic function group had higher serum
levels of MG-H1 and also echocardiographic signs of
increased pressure in the left atrium with a higher E/E’

EA <20 EA" > 20 p - value

n =36 n=110
Age, years 145 (2.2) 133 (2.9) 0.008
Girls, n (%) 21 (583) 50 (45.5) 0.249
Diabetes duration, years® 53 (35,62 5.1 (2.5, 8.0) 0.701
Body Mass Index, kg/m2 22.8 (4.0) 20.1 34) <0 .001
Systolic blood pressure, mmHg 104.2 (8.7) 99.7 (9.3) 0.010
Diastolic blood pressure, mmHg 63.6 (8.3) 599 (7.9) 0016
CRP mg/I® 0.59 (0.26, 2.08) 040 (027, 1.27) 0348
Actual HbATc, % 83 (1.0) 84 (14) 0516
Mean HbA1c, % 79 (0.8) 8.1 (1.0) 0.194
Glycemic burden, A1 months 103 (96) 122 (104) 0354
MG-H1, U/ml 1639 (39.2) 1503 (334) 0.046
E/E 86 (2.0 79 (1.5) 0017
cIMT, mm 045 (0.05) 0.45 (0.05) 0.901
DC, kPa™ 0.035 (0.010) 0.042 (0.015) 0.013
Young's modulus, kPa 429 (116) 365 (143) 0.009
Urine albumin/creatinine, mg/mmol® 06 (02,12 0.8 (04, 14) 0.248

Mean values (SD)
“Median (25th and 75th percentile)
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ratio than the control group. Furthermore, they had
higher BMI, systolic blood pressure and diastolic blood
pressure, as well as signs of increased arterial stiffness
with a lower DC and higher Young’s modulus. There
were no differences between the groups in years from
diagnosis, actual HbAlc, mean HbAlc, estimated
glycemic burden or CRP.

The final logistic regression model is presented in
Table 2. Only BMI was a significant risk factor for reduced
diastolic function. Although MG-H1, which has a rather
wide 95% confidence interval, did not reach significance
as a risk factor for E’/A’-ratio, we included it in the model
since the effect size, OR per 50 Uyml increase = 1.52, suggested
clinical importance. A 50 U/ml increase in MG-H1 corre-
sponds to moving from the 25th to the 75th percentile.
The Hosmer and Lemeshow goodness-of-fit test was not
significant, indicating a satisfactory fit of the model
(c2 = 849, df = 8, p = 0.39). The area under the ROC
curve was 0.71 (95% CIL: 0.62-0.81) indicating a good
discriminative ability between patients with high and low
E’/Al-ratio.

Discussion

Early signs of reduced diastolic function in children
and adolescents with T1D were associated with higher
BMI. This is in harmony with a study by Suys et al,,
with a similar patient population as in ours, which
showed increased BMI in the diabetes group as well as
a correlation between BMI-SDS and diastolic function
assessed by Tei-index, albeit only in boys [28]. Thus,
these studies support a stronger emphasis on preven-
tion of overweight and obesity than current guidelines
suggest [29, 30].

Reduced aortic distensibility has been shown to be
associated with reduced diastolic function in diabetic
children and adults [31, 32]. We found significantly
reduced carotid distensibility in the group of patients
with impaired diastolic function as well as increased
blood pressure. However, no measures of arterial
stiffness were independent risk factors in our multivari-
ate model.

It has been suggested that AGEs have a detrimental
effect on ventricular function through either the forma-
tion of cross-links between collagen molecules or activa-
tion of the receptor for AGEs, RAGE, or both [11].
Previous studies indicate that MG-H1 can both create
cross-links and activate RAGE, although this is still a
disputed matter [33-36]. Glucosepane seems to be the
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most important cross-linking AGE, and it is not formed
by the same pathway as MG-H1 [37]. This implies that
even though MG-H1 may not be directly involved in the
etiology of diabetic cardiomyopathy, it reflects an in-
creased production of AGEs, some of which also may
affect the heart. We found increased serum levels of
MG-H1 in the diabetes patients with reduced diastolic
function, but in the multivariate logistic regression
model MG-H1 was not a significant independent risk
factor. We believe this might be due to lack of statistical
power, since the effect size shown by the odds ratio sug-
gests a clinically relevant impact. In another study, we
observed a significant association between E/E; 2 D
strain and serum MG-H1 in long term type 1 diabetes
without significant coronary disease [13].

The relationship between diastolic dysfunction and
HbAlc is not clear in children with T1D. Of the several
studies of diastolic function in pediatric diabetes patients
compared with healthy controls, some report a signifi-
cant association with HbAlc [28, 38—40], while others
do not [29, 41]. Our present study has a larger number
of participants than all the comparable previous studies,
and it also has better assessment of HbAlc. With data
from the Norwegian Childhood Diabetes Registry, we
have several HbAlc registrations, all performed at the
same laboratory, in many patients as far back as the time
of diagnosis. Thus, we have been able to calculate the
glycemic burden over many years, strengthening the reli-
ability of the data. We found no associations between
diastolic function and years from diagnosis, HbAlc,
mean HbAlc or calculated glycemic burden. This is sur-
prising for two reasons. First, in addition to the referred
pediatric studies [28, 39-41], a prospective study in
young adults shows a convincing impact of HbAlc [42].
Secondly, given that AGEs play an important role in the
development of diabetic cardiomyopathy, an association
with HbAlc, itself an amadori product and a potential
AGE predecessor, would be expected. The lack of associ-
ation between metabolic control and reduced diastolic
function in this study could indicate that the early re-
duced diastolic function in children with diabetes is
partly caused by factors presented before the start of in-
sulin treatment, and not reflected by HbAlc measured
later. This needs further investigation.

The strengths of this study include a relatively large
number of participants and longitudinal registrations of
HbAlc. There are, however, also some weaknesses.
Young’s modulus, reflecting the elasticity of an arterial

Table 2 Independent risk factors for E'/A"-ratio using logistic regression analysis

Dependent variable Beta-value Standard error Odds ratio 95% Confidence Interval p-value
MG-H1 per 50 U/ml 042 0.29 1.52 0.86-2.69 0.15
Body mass index per kg/m? 0.19 0.06 1.21 1.08-1.35 0.001
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wall, requires blood pressure measurements from the
same artery and that the pulse pressure forces all work
in one direction. Pubertal stage was included in the
multivariate analysis, but puberty might still affect the
results in an unpredictable fashion.

Conclusions

Early signs of reduced diastolic function in children and
adolescents with T1D were associated with higher BMI,
but not higher HbAlc. They also had elevated serum
levels of the advanced glycation end product MG-H1,
higher blood pressure and increased stiffness of the
common carotid artery, but these associations did not
reach statistical significance when tested in a logistic
regression model.
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