Abd-Rabbo and Michnick BMC Systems Biology (2017) 11:38
DOI 10.1186/512918-017-0418-0

Delineating functional principles of the

BMC Systems Biology

@ CrossMark

bow tie structure of a kinase-phosphatase
network in the budding yeast

Diala Abd-Rabbo'? and Stephen W. Michnick'?"

Abstract

Background: Kinases and phosphatases (KP) form complex self-regulating networks essential for cellular signal
processing. In spite of having a wealth of data about interactions among KPs and their substrates, we have very
limited models of the structures of the directed networks they form and consequently our ability to formulate
hypotheses about how their structure determines the flow of information in these networks is restricted.

Results: We assembled and studied the largest bona fide kinase-phosphatase network (KP-Net) known to date for
the yeast Saccharomyces cerevisiae. Application of the vertex sort (VS) algorithm on the KP-Net allowed us to elucidate
its hierarchical structure in which nodes are sorted into top, core and bottom layers, forming a bow tie structure with a
strongly connected core layer. Surprisingly, phosphatases tend to sort into the top layer, implying they are
less regulated by phosphorylation than kinases. Superposition of the widest range of KP biological properties
over the KP-Net hierarchy shows that core layer KPs: (i), receive the largest number of inputs; (i), form bottlenecks
implicated in multiple pathways and in decision-making; (i), and are among the most regulated KPs both temporally
and spatially. Moreover, top layer KPs are more abundant and less noisy than those in the bottom layer. Finally, we
showed that the VS algorithm depends on node degrees without biasing the biological results of the sorted network.
The VS algorithm is available as an R package (https://cran.r-project.org/web/packages/VertexSort/index.html).

Conclusions: The KP-Net model we propose possesses a bow tie hierarchical structure in which the top layer appears
to ensure highest fidelity and the core layer appears to mediate signal integration and cell state-dependent signal
interpretation. Our model of the yeast KP-Net provides both functional insight into its organization as we understand

today and a framework for future investigation of information processing in yeast and eukaryotes in general.

Keywords: Kinase-phosphatase signalling network, Network hierarchical structure, Topological properties, Biological
properties, Vertex Sort algorithm, Functional principles of cell behaviour, Saccharomyces cerevisiae

Background

To maintain normal homeostasis, living cells continuously
accommodate changes to their internal and external
environment via signalling pathways. Protein KPs play
an essential regulatory role in signalling pathways
through phosphorylation and dephosphorylation inter-
actions (PDI) that cause profound effects on substrates,
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affecting their turnover, localization and interactions
with other proteins [1].

Numerous efforts have been made to reconstruct the
budding yeast KP-Net from various types of interactions
[2-7]. Despite these efforts, KP-Nets assembled so far
are not fully mature to represent genuine networks in
which a KP acts directly on its substrate for the following
reasons. First, dephosphorylation interactions are under-
represented in KP-Nets, because on one hand, dephos-
phorylation interactions are poorly annotated in public
databases (Additional file 1: Table S1) and on the other
hand, phosphatases have been modestly studied in com-
parison to kinases. Second, kinase networks that were
assembled from in vitro phosphorylation interactions do
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not include phosphatases and contain a considerable
number of false positives due to non-specific phospohory-
lation of proteins by kinases in vitro [5-7]. Finally, KP-
Nets that were assembled from protein-protein interac-
tions and from genetic interactions, and KP-Nets that
were built by knocking out a KP lack two crucial proper-
ties: causality and directionality [2—4]. These crucial prop-
erties characterize the command-execution aspect of
regulatory networks. Causality determines which KP dir-
ectly acts on which substrate, whereas directionality indi-
cates the direction of the interaction between the two
interactors, which is required when substrates are them-
selves KPs. Interestingly, KP-Nets assembled from high
quality PDIs are not characterized by the previously
mentioned drawbacks and hence describe better genu-
ine KP-Nets. Despite the large number of KP-Net stud-
ies, to our knowledge, no investigations in the budding
yeast included in vivo interactions characterized by
both causality and directionality [2—4]. KP-Net studies
that did include interactions characterized by both
causality and directionality were not performed in vivo
and did not include phosphatases [5-7] (Additional file 1:
Table S2). Hence, constructing a bona fide KP-Net re-
mains an essential goal for analysis of signalling networks.

There have been a number of efforts to determine
rules governing the organization and function of bio-
logical regulatory networks. For instance, a number of
studies invoke command-execution organization charac-
terizing directed networks to elucidate their hierarchical
structure using network decomposition methods on
various regulatory networks [5, 6, 8—13]. Decomposition
methods classify network nodes into different layers to
elucidate information flow in network hierarchies. The
majority of these efforts were aimed at transcription net-
works, but rarely at other regulatory networks, including
KP networks. In addition, network layers in these studies
were characterized by topological and rarely by bio-
logical properties of their nodes; that is, KP-Nets are
rarely characterized according to the features of the gene
products that represent nodes such as stability, abun-
dance and noise in mRNA and protein gene products
(Additional file 1: Table S2). However, biological proper-
ties are the ones that profoundly affect the regulatory
state of any biological network.

Despite the wealth of available evidence, deciphering
the complexity of KP-Nets to gain insights into their
functional principles is still challenging. Here, we over-
came two basic gaps in knowledge in previous studies:
first, we constructed the largest bona fide KP-Net for the
yeast Saccharomyces cerevisiae. Second, we elucidated
the KP-Net hierarchical structure using the VS algorithm
and unprecedentedly, we integrated the widest range of
KP biological properties within this hierarchy in order to
describe the functional principles of the KP-Net with
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our current knowledge. We found that the KP-Net has a
bow tie hierarchy formed of three layers (top, core and
bottom) and that the different biological properties of
KPs are unevenly distributed among KP-Net layers. This
uneven distribution reveals general biological properties
of KPs in each layer from which we could postulate the
behaviours and information processing functions of each
layer in the KP-Net hierarchy. We suggest that high pro-
tein abundances and low protein noise in KP-Net top
layer could result in signal fidelity, whereas enrichment
for decision-making and bottleneck proteins in the core
layer may underlie signal integration. Finally, we showed
that node degrees affect the way the VS algorithm sorts
nodes within a network but we also showed that our re-
sults and conclusions are not biased by node degrees. We
developed an R package called the VertexSort to facilitate
VS algorithm application to other networks (https://
cran.r-project.org/web/packages/VertexSort/index.html).

Results

The kinase-phosphatase network (KP-Net)

The kinase interaction database (KID) provides the most
detailed and specialized annotation of kinase-protein in-
teractions; its annotation is based on 31 experimental
categories including genetic, biochemical, physical and
phenotypic experimental evidence [14]. However,
phosphatase-protein interactions are not included in and
many kinase-protein interactions are missing or partially
annotated in this database. Hence, we collected these in-
teractions from different sources, then, curated, annotated
and scored the collected interactions according to the KID
database pipeline with minor adjustments to annotate
phosphatase-protein interactions (Fig. 1a and Additional
file 1: Supplementary Methods) [2, 15-20]. The KID pipe-
line associates a confidence score to each interaction
based on the extent to which the different experimental
methods that validate an interaction contribute to identi-
fying a true positive Kinase-protein interaction. To ensure
that the interactions assembled in the KP-Net represent
PDIs rather than simply Kinase-protein or phosphatase-
protein interactions, we selected interactions having a
confidence score > 4.52 (corresponding to a P<5 x 1072
and those validated by at least one biochemical experi-
ment showing the occurrence of a PDI (in vitro kinase
assay, in vivo or in vitro phosphosite mapping, mobility
shift of phosphoproteins on gel or substrate trapping by a
dead phosphatase catalytic domain). The assembled KP-
Net contains 1,087 directed interactions (918 and 169
PDIs, respectively) implicating 616 proteins [101 kinases
and 31 phosphatases, covering ~77% of these enzymes
and 484 proteins, most of which are KP substrates that
are not KPs, (Fig. 1la and Additional file 2)]. Similar to
other biological networks, the KP-Net possesses a scale-
free structure (P(K) ~ K2°® with a goodness-of-fit test P =
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Fig. 1 The pipeline used to assemble and to sort the KP-Net, and the KP-Net bow tie structure. a The steps followed to elucidate the KP-Net hierarchical
structure starting from the different sources used to collect kinase-protein and phosphatase-protein interactions, passing through the data annota-
tion procedure and filtering criteria applied to select high quality PDIs, to the assembly and sorting of the KP-Net by the VS algorithm. b
The bow tie structure of the KP-Net showing how KPs are classified in top, core and bottom layers. Top layer KPs control core layer KPs;
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1.3 x 107%) in which most KPs regulate few proteins and
few KP hubs regulate a large number of proteins (Add-
itional file 1: Supplementary Methods and Figure S1).

The KP-Net possesses a “corporate” hierarchical structure

in the form of a bow tie with a strongly connected core layer
We assessed the amount of the hierarchical structure of
the KP-Net by calculating its global reaching centrality
(GRC), which represents a normalized average of the
proportions of nodes accessible from each node in the
network [21]. The closer the GRC is to 1, the more hier-
archical the network is. The KP-Net has a moderate
GRC of 0.61, suggesting that the KP-Net represents a
hierarchical structure that could be placed between two
extremes: (i) an autocratic structure comparable to a
complete tree and (ii) a democratic structure in which
collaborative regulation dominates and no hierarchy ex-
ists [5]. Bhardwaj et al. observed a similar moderate hier-
archy in a co-phosphorylation network and described it
as a corporate hierarchy [5]. Obviously, the KP-Net does
not represent a complete tree, as it is enriched for many
logic motifs that do not occur in trees: feed-forward
loops (a structure in which a node regulates another
node and together they regulate a third one), two node

feedback loops (two nodes that regulate each other), and
bi-fans (a structure in which two nodes regulate two
other nodes) (P <1073, Methods). Moreover, the KP-Net
does not represent democracies and encapsulates a hier-
archical structure, as its GRC is significantly higher than
that of Erd6s—Rényi random networks (non-hierarchical
networks) having the same number of nodes and edges
as the KP-Net (P<107* Methods). Interestingly, the
GRC of the KP-Net is significantly smaller than that of
random networks generated by degree preserving
randomization (DPR, Methods). This result is not sur-
prising, as the degree distribution of a network is essen-
tial to determine its organizational structure, meaning
networks having same degree distributions will have
similar organizational structures. Thus the GRC of the
KP-Net was expected to be comparable to that of DPR
networks, but it was found to be significantly smaller
than the GRC of DPR networks, probably indicating en-
richment for feedback loops that generally exist in KP-
Nets.

Subsequently, we applied the VS algorithm to the KP-
Net to elucidate the network hierarchical structure and
the signal flow within the elucidated hierarchy. The VS
algorithm is among the best network decomposition
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algorithms available. It was conceived and applied by Jothi
et al. to the transcription regulatory network of the budding
yeast Saccharomyces cerevisiae to elucidate the network
hierarchical structure [5, 6, 8—11, 22]. The VS algorithm
sorts nodes into different levels so that nodes in upper
levels control those in lower levels [8]. It first transforms a
cyclic graph to an acyclic one by collapsing each strongly
connected component (SCC, a sub-graph where each node
pair is related by two paths of opposite directions) into a
super node and then it applies the leaf removal algorithm
to the resulting graph and to its transpose. This generates
global solutions in which a node could span a range of
levels, reflecting the huge amount of missing data in and
the dynamic nature of biological networks.

Application of the VS algorithm to the KP-Net revealed
a hierarchical structure in which KPs are sorted into 9
levels that we subsequently grouped into three non-
overlapping layers: top, core and bottom (Additional file 1:
Figure S2a). As in Jothi et al., we first identified KPs of the
largest SCC and classified them as belonging to the core
layer (19 KPs); we then classified KPs that regulate core
layer KPs to the top layer (38 KPs) and those that are reg-
ulated by core layer KPs to the bottom layer (36 KPs)
(Fig. 1b) [8]. Thirty-eight nodes, of which 33 KPs and five
proteins that are not KPs, were excluded from further ana-
lysis, because the former are not connected to any KP
and the latter are substrates of the excluded KPs (Add-
itional file 1: Figure S2b). The three layers of the KP-Net
generated a bow tie structure in which the core layer has
relatively fewer nodes than top and bottom layers (Fig. 1b).
It is important to note that the bow tie shape of the KP-
Net represents an intrinsic property of this network and it
is not the result of the application of the VS algorithm.
More specifically it is not not the result of choosing the
core layer as the SCC of the KP-Net. This is because by
applying the VS algorithm in the same way, the hierarch-
ical structure of the regulatory network elucidated by Jothi
et al. do not have a bow tie shape (top, core and bottom
layers contain 25, 64 and 59 nodes, respectively) [8].

Interestingly, KP-Net top, core and bottom layers
regulate 235, 276 and 148 proteins, respectively, corre-
sponding to 38, 45 and 24% of the KP-Net nodes, re-
spectively. Although the core layer is ~2 times smaller in
size than top and bottom layers, it regulates a number of
substrates that is 1.2 and 1.9 times larger than that regu-
lated by top and bottom layers, respectively, implying an
essential role of the core layer in the KP-Net.

The three layers of the KP-Net have dissimilar biological
roles and subcellular localizations

To unravel biological roles of the KP-Net layers, we per-
formed a Gene Ontology (GO) enrichment/depletion
analysis for KPs in each of these layers (Additional file 1:
Supplementary Methods). We found that the KP-Net
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top layer is enriched mostly for signal regulation and
transduction; interestingly, the core layer is enriched for
signalling also, for metabolic processes, but mostly for
cell cycle, organization processes related to cell cycle
and decision-making (Additional file 1: Table S3), con-
firming the essential role of the core layer in the KP-
Net; and the bottom layer is enriched for few GO terms,
suggesting that it has a less specialized and more diverse
biological roles (Fig. 2a). These results are in line with
the findings of Bhardwaj et al. [5].

On another level, the top layer is depleted for, whereas
the core layer is enriched for KPs located in the bud neck
(Fig. 2b), a result that has been already observed by Cheng
et al. [6]. We further found that the bottom layer is
enriched for KPs located in the mating projection tip
(Fig. 2b). The latter observations suggest that top layer
KPs might remain in the mother cell to regulate signalling,
while core layer KPs may be polarized towards the daugh-
ter cell to contribute to mitosis, and bottom layer KPs
might reside in the cell projection to contribute in mating.

Strikingly, dephosphorylation is enriched in the top layer
and depleted in the bottom layer of the KP-Net (Fig. 2a),
suggesting that phosphatases are over-represented in sig-
nalling pathway upstream and depleted in downstream
arms of signalling pathways. The latter results are consist-
ent with dynamic phosphoproteomic studies showing that
at least 50% of early responses to cell perturbations are de-
phosphorylation of phosphosites [23].

Phosphatases are less regulated by phosphorylation
than kinases

Our findings confirmed our proposition that the top layer
is enriched whereas the bottom layer is depleted for
phosphatases (Additional file 1: Figure S3a, P=22 x 107
and P=4.1 x 107* respectively; hypergeometric test (HT)).
In addition, we observed that 81% of the top layer phospha-
tases have a zero in-degree. Using high quality phosphopro-
teomic data annotated in the PhosphoGRID database, we
also found that the number of phosphosites identified in
phosphatase protein sequences is smaller than that identi-
fied in kinases (Additional file 1: Figure S3b, P=2.3 x 107%;
randomization test (RT), Methods). These results suggest
that phosphatases are less regulated by phosphorylation
than kinases are. Our suggestion is also supported by the
great variety of regulatory subunits controlling phospha-
tases [24] and by the large number of cellular mechanisms,
other than phosphorylation, reported to regulate phospha-
tases, including phosphorylation of the regulatory subunits
of phosphatases [25-30].

KP-Net upper levels are the least regulated and KP-Net
lower levels are the least to regulate other KPs

Top layer KP in-degrees are on average smaller than KP
in-degrees in core and bottom layers (Fig. 3a, P < 10™% RT,
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Methods). This observation is a direct result of the VS al-
gorithm application (P=10"% degree non-preserving
randomization (DNPR), Methods) to a network, but it
agrees with organizational principles found in hierarchical
systems in which members of upper levels are the least
regulated (e.g. pyramid networks). In contrast, the out-
degree of the bottom layer is significantly smaller than
that of top and core layers (Fig. 3b, P =3 x 1073 RT,
Methods). This finding is independent of the VS algorithm
application (P =0.7; DNPR, Methods) on a network and
has been previously observed in the hierarchical structure
of a yeast transcriptional regulatory network elucidated
by a decomposition algorithm (Breadth-First Search)
different than the VS algorithm [9]. Finally, the observed
features related to node in- and out-degrees were imple-
mented in two network decomposition algorithms, other
than the VS algorithm, to classify nodes in top and bottom
layers, respectively [5, 12].

The KP-Net core layer is enriched for essential genes,
bottlenecks, and pathway-shared components

To better grasp our knowledge of signal flow in the KP-
Net, we analysed the distribution of hubs, bottlenecks,
pathway-shared components (KPs involved in at least

two pathways) and essential genes in the three layers of
the KP-Net. Hubs and bottlenecks are defined as the
20% of KPs in the KP-Net that have, respectively, the
highest degree and the highest betweenness (fraction of
shortest paths between all pairs of nodes that pass
through a single node; this measure captures how much
signalling passes through a node). The hubs are equally
distributed among the three layers, reflecting the preva-
lence of parallel regulation as a principle emerging from
the three layers of the KP-Net (Fig. 3c). Interestingly, the
core layer is enriched for bottlenecks, pathway-shared
components and essential genes (Fig. 3d—f, P=4.3x 10
, P=14x10"2 and P=3.8x107% respectively; HT),
suggesting that most of the signal integration and cross-
talk between pathways occur in the core layer.

Molecular switches are enriched in KPs in core and
bottom layers

Molecular switches represent phosphosites within or ad-
jacent to linear binding motifs (LBM) which mediate “on
demand” controls switching proteins between different
functional states (on-off, specificity, cumulative and se-
quential switches) [31]. Given their fundamental role in
controlling signalling networks, we investigated the
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layer of the KP-Net. The broken line in bar plots represents the expected disordered regions, (b) the percentage of predicted linear binding
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Additional file 1 Supplementary Materials in Additional file 1

distribution of KP molecular switches in the KP-Net
hierarchy. We predicted protein disordered regions in
KP protein sequences and LBMs within these predicted
disordered regions using the IUPred and ANCHOR al-
gorithms, respectively (Additional file 1: Supplementary
Methods) [32, 33]. We then overlaid bona fide in vivo
phosphosites from the PhosphoGRID database on top of
KP protein sequences (Additional file 1: Supplementary
Materials). We found that percentage of predicted disor-
dered regions in KP proteins in core and bottom layers
are on average higher compared to the top layer (Fig. 4a,
P < 2.3 x107% RT, Methods). The same trend is observed
for: (i), the percentage of sequences predicted to contain
LBMs (Fig. 4b, P<2.1x107% RT, Methods); (ii), the
number of phosphosites in KP sequences generally
(Additional file 1: Figure S3c, P<6.1x 1074 RT,
Methods) and (iii), in the predicted LBMs particularly
(Fig. 4c, P<2.2 x 10~% RT, Methods); and (iv), the num-
ber of potential molecular switches in each KP (Fig. 4d,

P<3.1x107% RT, Methods). Interestingly, our findings
suggest that phosphorylation of KPs in lower layers
could form molecular switches important for KP tem-
poral regulation. Two out of many examples confirming
our suggestions are: (1) the specificity switch in Hsll
(core layer kinase and morphogenesis checkpoint regula-
tor) leading to a G2 arrest essential for cell survival upon
osmotic shock and (2) the on-switch in Swel (core layer
kinase) maintaining Cdc28 in an inhibited form essential
for entry of cells into mitosis [34, 35].

Core layer KPs employ scaffolding to prevent unwanted
pathway crosstalk

It is well established that redirecting information flow
within signalling networks is accomplished through in-
teractions of KP with scaffold proteins and is required for
the insulation of interconnected pathways [36]. Interest-
ingly, the KP-Net core layer is enriched for pathway-
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shared components (Fig. 3e) and for LBMs (Fig. 4b), sug-
gesting that core layer KPs that are shared between
pathways associate with scaffold proteins through
LBMs. Indeed, although core and bottom layers are
enriched for potential LBMs, only the core layer is
enriched for scaffold-associated KPs (Fig. 4e, P=2x 107%
HT). This indicates that scaffolding is extensively employed
at the core layer where most pathway crosstalk occurs
(Fig. 3d—e), in order to prevent inappropriate cellular
responses resulting from the activation of undesired
pathways. For instance, the mitogen extracellular
signal-regulated kinase kinase Stell, a core layer kin-
ase, is involved in three pathways: high osmolarity, fila-
mentous growth and pheromone pathway. Association
of Pbs2 (a MAPK kinase and a scaffold protein impli-
cated in the HOG signalling pathway) and Ste5 (a
pheromone-responsive MAPK scaffold protein) with
Stell reorients signal flow by activating the HOG sig-
nalling pathway and the mating pathway, respectively;
whereas, unavailability of both Pbs2 and Ste5 favours
filamentous growth [37].

Core layer KPs undergo more spatial organization
changes than top and bottom layer KPs

Controlling spatial distribution of KPs plays an essential
role in tuning KP activity and specificity towards their sub-
strates [38, 39]. By superposing microscopic subcellular
localization data of proteins in single cells under different
stress conditions [40] on top of the KP-Net hierarchy, we
observed that KPs in the core layer dynamically redistribute
among more subcellular compartments than KPs in top
and bottom layers (Fig. 4f, P<1.6x 10°% RT, Methods).
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This indicates that core layer KPs might be subject to a
more stringent control than top and bottom layer KPs to
tightly restrict their localization. Hogl is a relevant example
of a core layer kinase that is translocated from the cyto-
plasm to the nucleus to trigger a wide transcriptional re-
sponse on exposure to a high osmolarity stimulus [41].
Another typical example of tight localization control is
Cdcl14, a core layer phosphatase essential for mitotic exit,
which after its sequestration in the nucleolus, is released to
the nucleus and the cytoplasm where it associates with the
spindle pole body during early anaphase [42].

Top layer KP proteins are more abundant and less noisy
than bottom layer KPs of the KP-Net

Since KPs turnover determines their availability and thus
their activity, we overlaid various information of KP
turnover taken from the literature (Additional file 1:
Supplementary Materials) on top of the KP-Net hier-
archy [43-49]. While transcripts coding for core layer
KPs are synthesized at a higher rate than top and bottom
layers (Fig. 5a, P<3.9 x 107 RT, Methods), mRNA of
top layer KPs have longer half-lives than core and bot-
tom layers (Fig. 5b, P<4.6 x 107% RT, Methods). How-
ever, mRNA abundance has a similar trend to mRNA
half-life, implying that mRNA degradation (the process
that determines half-lives) is more important than syn-
thesis rate in determining mRNA abundance (Fig. 5¢, P
< 1.8 x 107 RT, Methods). Similarly, mRNA of top layer
KPs are translated at higher rates than core and bottom
layers (Fig. 5d, P<4.8 x 107% RT, Methods). However,
half-lives of KP proteins are statistically comparable
among the three layers of the KP-Net (Fig. 5e; RT,
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Methods), suggesting that proteins abundance should
have the same trend as the translation rate of mRNA
molecules. This is partially true, since top layer KP pro-
teins are more abundant than the bottom layer (Fig. 5f,
P=33x10"% RT, Methods), but not more abundant
than the core layer. This discrepancy might be due to
the fact that KP proteins in the core layer tend to have
longer half-lives (mean values are reported; 95 min,
Fig. 5e) than the top layer (69 min, Fig. 5e). On another
level, percentages of noisy KP genes at the mRNA level
are comparable among the three KP-Net layers (Fig. 5g;
HT). Moreover, top layer KP proteins are less noisy than
core and bottom layers in starving S. cerevisiae cells
(Fig. 5h, P<22x 1073 RT, Methods). Interestingly al-
though, we observed significant relative differences in
each of protein abundance and noise between KP-Net
layers, notably proteins were abundant (Fig. 5f, top 5,336
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The VS algorithm depends on node degree to classify
network nodes in three layers

As the findings of this study mainly result from the applica-
tion of the VS algorithm, we asked whether the VS algo-
rithm depends on a specific node property to sort nodes
into three layers and whether these findings reflect the biol-
ogy underlying the KP-Net. To address these questions, we
generated five sets of 1,000 random networks pro-
duced using five randomization methods: degree pre-
serving randomization (DPR), similar degree preserving
randomization (SDPR), in-degree preserving randomization
(IDPR), out-degree preserving randomization (ODPR), and
degree non-preserving randomization (DNPR) (Methods).
We then applied the VS algorithm on these random
networks and plotted means of KP properties in each
layer of the KP-Net (black diamonds, Fig. 6), means of
KP properties in each layer of random networks (points

molecules/cell, core 3,041 molecules/cell and bottom joined by coloured lines, Fig. 6) and the 95% confidence

2,436 molecules/cell) and not noisy (Fig. 5h, top
-0.94 a.u., core -0.05 a.u. and bottom 0.12 a.u.) in the
three layers of the KP-Net. Taken together, these results
suggest that higher protein abundance coupled with
lower protein noise in the three layers and in particular
in the top layer, might confer high signalling fidelity to
the KP-Net.

interval of random network means (coloured vertical
segments, Fig. 6).

Strikingly, we observed that the distribution of all
properties, except in-degrees, hubs and bottlenecks, of
the three layers form a straight horizontal line for DNPR
networks (Fig. 6, black line), showing that the VS algo-
rithm produces a particular global signature (they peak
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at the core layer) in completely random networks for
only these three properties that are all related to node
degrees. Interestingly, the distribution of all properties in
the DPR and SDPR networks (red and pink lines, Fig. 6)
are the closest to each other when node degrees are
similar to each other (DPR and SDPR cluster together in
Additional file 1: Figure S4). Taken together, our obser-
vations suggest that the VS algorithm depends on node
degree to sort network nodes in the different layers.
Moreover, on clustering the five sets of randomized
networks using the Euclidean distance between the
different properties of their KPs, we found that ODPR
networks are closer to DPR networks than IDPR net-
works (Additional file 1: Figure S4), suggesting that
the VS algorithm depends on node out-degrees more
than node in-degrees. However, the VS algorithm ob-
viously depends also on node in-degrees, as any node
with a zero in-degree will be automatically placed in
the top layer. Therefore, the VS algorithm depends on
both nodes in- and out-degrees. Nevertheless, al-
though the VS algorithm depends on node degrees to
classify network nodes into different layers, three ob-
servations suggest that KP biological properties are
not associated with KP degrees and that they are not
the result of a bias in the VS algorithm: (i) all bio-
logical properties showed a straight line distribution
in completely random networks (Fig. 6, black line);
(ii), most of the means of KP biological properties in
KP-Net layers (black diamonds, Fig. 6) are outside of
the 95% confidence interval of the means of the corre-
sponding properties in random network layers; and
(iii), most of the KP biological properties (12 out of 18)
are neither associated with their in- nor with their out-
degrees (Additional file 1: Supplementary methods).

Robustness of results and incompleteness of data

It did not escape our attention that the KP-Net that was
assembled in this study represents a small snapshot of
the whole phosphorylation network of the budding yeast.
Therefore, we assessed the robustness of our results to
missing interactions by generating noisy networks
(adding edges to the KP-Net) and the robustness of
our results to false positives by generating subsampled
networks (deleting edges from the KP-Net) (Methods).
We then assessed the stability of KP-Net layers using
the Jaccard coefficient as a measure of similarity between
KP-Net layers and noisy/subsampled network layers
(Methods) [50]. Also, we assessed the significance of the
overlap between KP-Net layers and noisy/subsampled net-
work layers using the HT (Methods) [50]. We observed
that the KP-Net is more robust to removing than to add-
ing edges (Fig. 7a and c). Moreover, the more edges are
added to and removed from the KP-Net, the more the
three layers become unstable (Fig. 7a and c). However, in
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spite of this instability, all layers in noisy/subsampled net-
works significantly overlap with the KP-Net layers (Fig. 7b
and d), showing that our findings are sufficiently robust to
describe the KP-Net with our current knowledge. Finally,
properties characterizing the KP-Net were retained to
different degrees in the noisy networks (Additional file 1:
Supplementary Methods and Figure S9), confirming
that the characteristics of the KP-Net elucidated in
this study represent the best of our knowledge to date
about KP-Nets.

Using the KP-Net as a gold standard to predict kinases
acting on substrates in the HOG pathway

Presently, one of the most active areas of research con-
sists of linking each KP to its substrates. As an example,
we attempted to predict the kinases that could phos-
phorylate substrates characterized by a change in their
level of phosphorylation in cells exposed to osmotic
shock. We used the KP-Net as a gold standard; we overlaid
on top of it phosphorylation consensus motifs curated from
the literature and proteins that undergo time-dependent
phosphorylation or dephosphorylation following osmotic
shock from Kanshin & Bergeron-Sandoval et al. [23]. We
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identified 57 interactions linking 19 kinases to 25 potential
substrates (Methods and Additional file 3). The overlap be-
tween the predicted kinases in our study and the kinases
that underwent changes in phosphorylation in Kanshin &
Bergeron-Sandoval et al. was significant (P=3.8 x 107>
HT). This result suggests, first, that a significant number of
the 19 kinases that we predicted to act on 25 potential sub-
strates do undergo time-dependent changes in phosphoryl-
ation that may reflect their activation or deactivation in
response to osmotic shock; second, that the interactions
forming the KP-Net that was assembled in this study are of
high confidence; and finally, that this same KP-Net could
be used as a benchmark with other phosphoproteomic data
to identify kinases and perhaps phosphatases that act on a
set of substrates.

Discussion

In this study, we assembled the largest bona fide KP-Net
known to date for the yeast Saccharomyces cerevisiae.
We found, first, that the KP-Net has a moderate hier-
archical structure made of three layers (top, core and
bottom) in the form of a bow tie structure having a
strongly connected core layer. Second, phosphatases are
for the first time shown to be less directly regulated by
kinases than are kinases by each other. Third, the ob-
served high abundance and low noise of KP proteins in
the three layers of the KP-Net, but notably in the top
layer, may reflect an adaptation by which maximal sensi-
tivity to signals at the earliest steps of signalling is as-
sured. Finally, the tight temporal and spatial regulation
that we observed for the core layer of the KP-Net could
be explained by both the high load of signals received by
this layer and its enrichment for KPs implicated in cell
cycle and decision-making.

Recently, Cheng et al. overlaid many of the biological
properties studied here on top of a kinase network as-
sembled from in vitro phosphorylation interactions in
the budding yeast (Additional file 1: Table S2) [7]. In
contrast to our findings, most of the examined biological
properties by Cheng et al. were statistically comparable
among the three layers (gene essentiality, abundance,
half-life and noise on mRNA and protein levels). It is
important to note that properties of each layer depend
on the identity and the properties of the proteins be-
longing to each layer. Difference between findings of
Cheng et al. and those of this study might be due to the
following reasons: (i), the lack of phosphatases in the
network analysed by Cheng et al; (ii), the high number
of false positives that normally exist in any data gener-
ated in vitro, which could affect sorting of nodes in the
different layers and thus directly affect layer properties;
(iii), the application of a decomposition method differing
from the VS algorithm, (iv), or a combination of all these
reasons. Interestingly though, protein noise results of
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Cheng et al. concord partially with our findings as pro-
teins in the top layer were less noisy than those in the
bottom layer.

A limitation of the KP-Net generated in this study is
that it cannot be used to predict novel PDIs or pathways.
Note, however, that this was not among the objectives of
this study. The KP-Net can serve as a gold standard in
future investigations of signalling networks to suggest a
set of KP candidates that might act on substrates under
a given condition, as we showed in predicting kinases
that act on substrates following osmotic stress. Another
limitation is that although the choice of the largest SCC
to represent the core layer was subjective and inspired
by previous application of the VS algorithm to a tran-
scription regulatory network, we can justify the validity
of our choice by the concordance of our observations
with those in the literature [8]. In the literature, a core
layer of a bow tie structure is usually associated with
critical decisions determining the system outputs [51].
This concords with our findings showing that 79% of the
core layer KPs are implicated in cell cycle and decision-
making processes, to note that the VS algorithm does
not necessarily generate a bow tie structure as in refer-
ence [8] (Figure 2a; Additional file 1: Table S3). Finally,
the assembled KP-Net represents a small snapshot of
the real-world KP-Net affecting 60% of the proteome.
Advances in high throughput technologies should even-
tually complete the KP-Net by unravelling missing PDIs.
As with any network reconstruction exercise, there is
the risk that a different sorting of KPs within the KP-Net
hierarchical structure could lead to different interpreta-
tions of the KP-Net. However, when we randomly added
edges to the KP-Net in order to create “noisy networks”,
we observed that the layers of the noisy KP-Nets became
less stable by adding more edges; but at the same time,
they overlap significantly with KP-Net layers (Fig. 7a
and b). These results show that the properties of the
KP-Net layers are robust to describe how the KP-Net
functions with the best of our current knowledge,
which represents the principal objective of this study.

Despite the limitations mentioned above, the func-
tional principles of the KP-Net that are proposed in this
study are consistent with other observations. Interest-
ingly, bow tie structures are frequently associated with
robustness against removal of some of their components
and to external perturbations [51-54]. Robustness of the
KP-Net bow tie structure could be ensured by the follow-
ing factors. First, the degeneracy (overlapping functions) of
many KPs in the top layer [e.g. PKAs, Tell-Mecl and cal-
cineurins, (Fig. 1b)] guaranties that failure of a KP to acti-
vate a given pathway is buffered by another KP having
partially redundant functions [51]. Notably, the degeneracy
observed in top layer KPs concords well with the low
number (13%) of KPs encoded by essential genes
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belonging to this layer. Second, the core layer possesses
the required features for generating coordinated responses:
(i), it receives and integrates various inputs (high node in-
degrees and enrichment for bottlenecks, pathway-shared
components, and scaffold-associated KPs (Figs. 3a, d, e
and 4e); (ii), it occupies a central position in the hierarchy
(Fig. 1b); (iii), it is involved in critical tasks (cell cycle and
decision-making) (Fig. 2a and Additional file 1: Table S3);
and most importantly, (iv) it is highly regulated at different
levels in time and space. Without such a tightly regulated
layer, coordinated responses would necessitate ample indi-
vidual controls and any misregulation of the latter controls
would easily impair cellular survival [53]. All these charac-
teristics contribute in delineating functional principles of
the KP-Net as known to date.

Conclusions

In this study, we built a KP-Net assembled from high
quality PDIs in the budding yeast, determined its hierarch-
ical structure and integrated the widest range of KP bio-
logical properties with elucidated hierarchical structure.
This allowed us to formulate hypotheses about the func-
tions of the KP-Net layers. As mentioned previously, the
KP-Net assembled in this study represents a snapshot of
the KP-Net that exists in the budding yeast. Advances in
large-scale screens, in particular those exploring substrates
of KPs will enhance coverage of the assembled KP-Net.
Also, with the enhancement of high throughput technolo-
gies, integration of other type of biological properties,
such as methylation, ubiquitination, and temporal PDIs,
with the KP-Net might become possible, which could re-
veal new functional principles of the KP-Net. A better per-
ception of how the KP-Net functions could also open new
opportunities to understand the actions of KP inhibitors
on normal and pathological processes such as cancers.

Methods

Over-representation of various logic motifs in the KP-Net
One thousand random networks were generated by de-
gree preserving randomization (DPR, Methods). Each of
the random networks was sorted by the VS algorithm
and the number of its feed-forward loops, feedback
loops, and bi-fan logic motifs was assessed. The P-value
is the fraction of times the number of each logic motif
in random networks is as large as that in the KP-Net.

Network randomization
In this study, we randomized the KP-Net using five types
of network randomizations:

Degree preserving randomization (DPR): we
randomly selected two edges of the KP-Net and ex-
changed their ends. We then removed multiple edges
having the same direction between two nodes by
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switching each of them with randomly selected edges.
The rewiring procedure was repeated 10,000 times to
each random network.

Similar degree preserving randomization (SDPR):
we used the matching algorithm (Methods) to generate
random graphs having similar degree distributions to
that of the KP-Net [55-57]. We then switched network
edges using the first randomization method (DPR) to
make sure that the generated random networks differ
from each other.

In-degree preserving randomization (IDPR):
interactions were represented as a table made of two
columns: “from” and “to”. We recreated the “from”
column by randomly selecting KPs with replacement.
We then switched network edges using the first
randomization method (DPR).

Out-degree preserving randomization (ODPR): we
recreated the “to” column by randomly selecting KPs
with replacement. We then switched network edges
using the first randomization method (DPR).

Degree non-preserving randomization (DNPR): we
created a random network from scratch by connecting
two nodes that were randomly selected with
replacement.

The matching algorithm

In order to generate networks having a degree distribu-
tion that is similar to that of the KP-Net, we defined the
degree distribution of the random network by randomly
selecting three groups of KPs: the first group had the
same in- and out-degrees as the KP-Net and the second
and third groups had the same in- and out-degrees as
the KP-Net, but incremented and decremented by 1, re-
spectively. Second, we connected the network using a
variant of the matching algorithm [58]. Briefly, each ver-
tex of the random network was assigned a number of in-
and out-stubs equal to its in- and out-degrees. In- and
out-stubs were selected in pairs and joined up to make
the network edges. In each step, the selection of in- and
out-stubs was weighted by the square of the current in-
and out-stubs that were not yet connected but should
be. This procedure produced random networks that have
very similar in- and out-degrees distributions to those of
the KP-Net.

Testing whether the KP-Net GRC is bigger than Erd6s-Rényi
network GRCs

We generated 10,000 Erd6és—Rényi random networks
having the same number of nodes and edges as the KP-
Net and calculated their GRCs [21]. The P-value of this
test is the proportion of random network GRCs that are
as large as the KP-Net GRC.
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Comparing means of node properties in two layers
using RT

Let L1 and L2 be the size of two layers of the KP-Net to
be compared; S the set containing the nodes of these
layers; S1 the set of L1 nodes randomly sampled without
replacement from S; S2 the set of the remaining L2
nodes in S after sampling. The difference between the
means of the node properties in S1 and S2 were calculated.
These steps were repeated 10,000 times. The P-value is
equal to the proportion of times the difference between
the means of the sampled sets are as big/small as the dif-
ference between the means of the two compared layers.

Generating subsampled/noisy networks and assessing
their layers stability and their overlap with KP-Net layers
We generated ten sets of 100 subsampled and noisy net-
works from the KP-Net. The five sets of subsampled/
noisy networks were produced by randomly removing/
adding 40, 80, 120, 160 and 200 edges to the KP-Net, re-
spectively. These steps were repeated 100 times, so that
each set contains 100 subsampled/noisy networks. We
then applied the VS algorithm to each subsampled/noisy
network to identify their three layers. Layer stability of
the generated networks was assessed using the Jaccard
coefficient as a similarity “cluster wise” measure between
the original and the subsampled/noisy layers [50]. Over-
lap between original and subsampled/noisy layers were
assessed using the hypergeometric test (HT).

Predicting kinases

First, we identified substrates in the KP-Net that contain a
phosphorylated residue modulated by time after osmotic
shock defined as dynamic phosphosite by Kanshin and
Bergeron-Sandoval et al. [23]. We also identified the con-
sensus phosphorylation motifs of each kinase in the KP-
Net when possible from the literature (Additional file 4).
We then connected each substrate containing a dynamic
phosphosite to all kinases having a consensus motif
matching the substrate phosphosite by edges to form
kinase-substrate interactions. Using the KP-Net as a
gold standard network, we retained kinase-substrate
interactions that occur in the KP-Net.

Additional files

Additional file 1: Supplementary materials, supplementary methods,
supplementary figures and supplementary tables. (DOCX 3242 kb)

Additional file 2: KP-Net phosphorylation and dephosphorylation
interactions: Phosphorylation and dephosphorylation interactions (PDI)
that were included in the KP-Net and the experimental methods that
validated them with the Pubmed references of the articles in which
PDIs were reported. The KID database pipeline was used to score
and annotate these interactions (Additional file 1: Supplementary
Methods). (XLSX 280 kb)
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Additional file 3: Predicted kinases implicated in the HOG pathway:
The kinase-substrate interactions that were predicted to be implicated
in osmotic shock in this study. (XLSX 14 kb)

Additional file 4: Kinase consensus phosphorylation sites: The consensus
phosphorylation sites of kinases and their evidence in the literature.
(XLSX 16 kb)
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