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1 |  INTRODUCTION

Noninvasive detection and monitoring of disease using cir-
culating tumor DNA (ctDNA) is an active area of research 
in cancer with considerable implications in clinical manage-
ment. Liquid biopsies have increasingly become the tool of 

choice in cases where multiple biopsies are needed for lon-
gitudinal monitoring of cancer progression,1 detecting emer-
gent drug‐resistance,2 evaluating minimal residual disease,3 
or profiling metastatic tumors.4 In addition, liquid biopsy can 
be an alternative when core and needle biopsies of solid tu-
mors yield DNA of insufficient quantity or poor quality.
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Abstract
Liquid biopsy is increasingly gaining traction as an alternative to invasive solid 
tumor biopsies for prognosis, treatment decisions, and disease monitoring. Matched 
tumor‐plasma samples were collected from 180 patients across different cancers with 
>90% of the samples below Stage IIIB. Tumors were profiled using next‐generation 
sequencing (NGS) or quantitative PCR (qPCR), and the mutation status was queried 
in the matched plasma using digital platforms such as droplet digital PCR (ddCPR) 
or NGS for concordance. Tumor‐plasma concordance of 82% and 32% was observed 
in advanced (Stage IIB and above) and early (Stage I to Stage IIA) stage samples, 
respectively. Interestingly, the overall survival outcomes correlated to presurgical/
at‐biopsy ctDNA levels. Baseline ctDNA stratified patients into three categories: (a) 
high ctDNA correlated with poor survival outcome, (b) undetectable ctDNA with 
good outcome, and (c) low ctDNA whose outcome was ambiguous. ctDNA could be 
a powerful tool for therapy decisions and patient management in a large number of 
cancers across a variety of stages.
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To elucidate the clinical utility of ctDNA, it is important 
to first establish the sensitivity of the technologies being used 
for its detection through tumor‐plasma concordance studies. 
Since most concordance studies have heavily relied on ad-
vanced and metastatic stages of cancers2,5,6 to validate de-
tection technologies, comprehensive data are sporadic in the 
pre‐metastatic stages across multiple cancer types.4,7,8 Given 
that tumor burden and cell‐free DNA (cfDNA) yields vary 
depending upon tissue of origin, stage of cancer, ongoing 
treatment regimen, and other physiological parameters,4,9,10 
a pan‐cancer study across stages would provide evidence for 
the widespread applicability of ctDNA as a biomarker.

Research has shown that detection of ctDNA requires digital 
technologies of high sensitivity. BEAMing PCR, droplet digital 
PCR (ddPCR), or next‐generation sequencing (NGS) are the plat-
forms of choice to quantify low‐frequency mutant alleles.4,11,12 
While ddPCR has been shown to reliably identify mutant alleles 
up to 1 in 1000‐10 000 copies depending upon cfDNA yield, its 
use is limited to assessing a single or a few mutations simultane-
ously.13,14 For profiling a number of loci across multiple genes, 
NGS with unique molecular identifiers (UMIs) is preferred. The 
UMIs distinguish individual DNA copies from PCR duplicates 
and therefore enhance the limit of detection to 0.5%‐1% allele 
frequency15,16 which is important for ctDNA detection. The best 
practices with respect to sample handling as well as the standard 
procedures for each technology are yet to be established.

Studies have correlated cfDNA and ctDNA levels to dis-
ease outcomes in patients.17-19 Some studies have even estab-
lished the utility of post‐surgery ctDNA levels in predicting 
disease relapse.2,20,21 However, there is no consensus across 
cancer types and the presurgical levels or levels at biopsy 
(referred to as baseline levels hereon) of these markers.7,11,20

In this study, tumor‐plasma concordance in 180 patients 
across seven cancer types in the early and the advanced 
stages was assessed. We saw a concordance of 82% in the 
advanced stage (Stage IIB and above) cancers and 32% in the 
early stage (Stage I to Stage IIA) cancers. We observed that 
ctDNA levels indicated survival outcomes—patients with 
low (<211 copies/mL plasma) and no detectable baseline 
ctDNA levels had a survival advantage of 198 and 280 days, 
respectively. Our data demonstrate that ctDNA can be a re-
liable marker of the solid tumor in a large number of tissue 
types in non‐metastatic cancers. Additionally, these presurgi-
cal ctDNA can serve a surrogate marker for patient prognosis.

2 |  MATERIALS AND METHODS

2.1 | Patient recruitment and sample 
collection
Patients (n = 180) for the study were primarily enrolled from 
three cancer centers (Table S1) following patient consent 

and clearance from their respective medical ethics boards. 
Matched tumor and blood samples were collected from each 
patient either as fresh tissue or formalin‐fixed, paraffin‐em-
bedded (FFPE) samples at surgery/diagnosis. Ten millilit-
ers of venous blood was collected in Cell‐Free DNA BCT® 
(Streck, NE, USA).

2.2 | Tumor DNA extraction and profiling
DNA was isolated from fresh tissue biopsy using QIAamp 
DNA mini kit (Qiagen, Hilden, Germany) and from FFPE 
curls using the AllPrep DNA isolation kit (Qiagen). DNA 
extraction, quantitation, and quality checks were performed 
as recommended for each panel.22,23 Solid tumor DNA 
was profiled using either the 152‐gene StrandAdvantage 
(Strand Life Sciences, Bangalore, India) panel (SA152) 
or the Accel‐Amplicon 56G Oncology Panel v2 (Swift 
Biosciences, Ann Arbor, MI, USA). Two hundred na-
nograms was used as input for the SA152 panel while 
20‐40 ng was used for the Swift panel. Somatic variants 
were identified and prioritized using Strand’s proprietary 
tools, Strand NGS (www.strand-ngs.com), and StrandOMS 
(previously StrandOmics), respectively.22 Sixty‐four lung 
cancer samples were tested for EGFR mutations on cobas 
EGFR Mutation Test v2 (Roche Molecular Systems, Inc, 
CA, USA) at source. The maftools package (ver. 1.2.3)24 in 
RStudio (ver. 1.0.136) was used to depict the tumor muta-
tional landscape.

2.3 | Cell‐free DNA extraction from blood
Following collection of blood in Streck tubes, plasma was 
isolated within 48‐72 hours of collection. Total cfDNA was 
extracted from plasma using QIAamp Circulating Nucleic 
Acid Kit (Qiagen, Cat. No: 55114), as per standard proto-
col. The genomic DNA contamination in the cfDNA was 
established using an ALU‐based qPCR assay.25

2.4 | ddPCR
Cell‐free DNA (700‐20,000 genome equivalents) was in-
terrogated for the presence of tumor‐specific mutations 
using validated ddPCR assays. Droplet generation and PCR 
were performed using QX200™ Droplet Digital™ PCR 
System (Bio‐Rad Laboratories, Hercules, CA, USA).13 All 
analyses were performed using the QuantaSoft™ software 
(v.1.7.4.0917; Bio‐Rad Laboratories) as per the recommen-
dations in the manual.

2.5 | Liquid biopsy NGS
Cell‐free DNA library preparation was carried out using: (a) 
Accel‐Amplicon 56G Oncology Panel v2 (without UMIs) 

www.strand-ngs.com
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with 40 ng of input cfDNA, (b) Human Tumor Actionable 
Mutations Panel (GeneRead DNAseq Targeted Panels V2; 
Qiagen; with UMI) with 80 ng of input cfDNA, (c) Rubicon 
ThruPLEX DNA‐Seq Kit (Rubicon Genomics, Ann Arbor, 
MI, USA; without UMI), or (d) Rubicon ThruPLEX Tag‐Seq 
Kit (with UMI) with 20 ng of input cfDNA. Libraries were 
prepared as per standard instructions from the manufacturers. 
For the Rubicon kits, the enrichment was performed using 
the StrandAdvantage 152 gene panel.

For both amplicon panels, the primers were trimmed 
using cutadapt v1.9.1.26 Reads were aligned against the 
whole genome build hg19 (UCSC). Poor quality reads were 
filtered as part of QC. For samples prepared on GeneRead, 
UMI clustering was performed as described by Peng et al27 
The BAM files were modified with custom scripts to in-
clude UMIs in the read IDs to make them compatible with 
smCounter.28 Custom scripts were used to compute average 
UMI‐depth for each sample and was specified as an input to 
smCounter to perform variant calling. Since tumor‐specific 
variants were being queried, we reduced the PI threshold and 
set a threshold of at least two families of ≥3 reads per fam-
ily. For the Accel‐Amplicon panel, the Strand® NGS bino-
mial variant caller was used to detect variants in the target 
regions covered by a minimum of 10 reads, having at least 
two variant reads and a confidence score of at least 50. Single 

nucleotide polymorphism (SNP) level quality check (QC) 
was performed to eliminate false positives. A threshold of 
0.3% supporting reads (%SR) was set for SNP detection and 
0.2% for insertions and deletions (InDels) spanning multiple 
bases.

For the Rubicon DNA‐seq, reads that mapped to a partic-
ular locus in the genome and had the same alignment start 
and end positions were assumed to be derived from the same 
cfDNA molecule and were grouped into single family based 
on the start and stop positions of each read which served as an 
UMI. The reads from FASTQ files were aligned against the 
whole genome as previously described. At known COSMIC 
loci, reads were grouped into endogenous UMI families with 
a minimum of 5 reads. A variant was considered bona fide if 
it was represented by two families of ≥5 reads with >95% of 
the reads within the family representing it.

In case of the Rubicon Tag‐Seq, FASTQ files were pro-
cessed according to the manufacturer’s instructions using 
Connor (version 0.5), an open source Bioinformatics tool 
(https://github.com/umich-brcf-bioinf/Connor). Consensus 
reads from UMI‐based, positional read families were created 
using Connor with default parameters. The output BAM file 
containing the consensus reads was used for SNP detection 
and downstream analyses using Strand NGS as described 
above. For tumor‐specific variants, we performed a check for 
known variants (CKV) and lowered the threshold to 0.4% for 
SNPs and 0.2% for InDels spanning multiple bases.

2.6 | Survival analysis
Overall survival (OS) was calculated from the time of enroll-
ment to the clinical endpoint (death) or till the end of the 
study. The study was carried out for a period of 27 months. 
Patients reported to be alive were censored at the end of the 
study or at the date of last follow‐up. The ctDNA level in 
each sample was represented by the mutation with the high-
est mutant allele frequency. First, we split the sample set 
into two categories: where tumor‐specific mutations were 
detected and where they were not. The sample set where 
mutations were detected were further divided into ctDNA 
high and ctDNA low groups based on an optimal cut point of 
210.53 copies/mL plasma. The cut point was arrived at using 
the implementation of the maxstat package within the sur-
vminer package in R.

The Kaplan‐Meier estimator29 was used to determine the 
differences in the median survival between the three groups, 
using a log‐rank test to estimate the statistical significance. 
The Cox proportional hazard model was used to assess the 
effect of categorization on overall survival. The survival 
analysis and the statistical tests performed were implemented 
using the survminer package (www.sthda.com/english/wiki/
survminer-r-package-survival-data-analysis-and-visualiza-
tion) within RStudio (ver. 1.0.136).

T A B L E  1  Patient demographics

Patient details

Total number of patients 180

Age (years)

Mean (SD) 53.99 (±12.63)

Median (Range) 55 (21‐91)

Unknown (%) 6 (3.33%)

Gender, n (%)

Female 78 (43.33%)

Male 102 (48.67%)

Tumor type, n (%)

Bladder 12 (6.67%)

Breast 42 (23.33%)

Colorectal 22 (12.22%)

Esophageal 1 (0.56%)

Lung 93 (51.67%)

Ovarian 9 (5%)

Sarcoma 1 (0.56%)

Clinical stage classification, n (%)

Earlya 36 (20%)

Advanceda 133 (73.89%)

Unknown 11 (6.11%)
aPatients with cancer upto Stage IIA are classified as “Early” while patients with 
cancers which are Stage IIB and above are “Advanced.” 

https://github.com/umich-brcf-bioinf/Connor
www.sthda.com/english/wiki/survminer-r-package-survival-data-analysis-and-visualization
www.sthda.com/english/wiki/survminer-r-package-survival-data-analysis-and-visualization
www.sthda.com/english/wiki/survminer-r-package-survival-data-analysis-and-visualization
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3 |  RESULTS

3.1 | Patient characteristics and study 
design
One hundred and eighty patients across several different can-
cer types were enrolled for this study. Lung was the most 
common site of the primary tumor, followed by breast and 
colorectal cancers. Other cancers included in the study are 
bladder, ovarian, esophageal cancers, and sarcoma. The 
median age at enrollment was 55 years. About 27% of the 
tumor samples were categorized under Stages I and II by 
histopathological evaluation as per the American Society of 
Clinical Oncology (ASCO) staging guidelines (www.cancer.
net). The stages were classified as follows: (a) Early—upto 
Stage IIA, (b) Advanced—Stage IIB and above. According 
to this, 20% of the samples were from early stages, 73.89% 
were advanced tumors of which 5.67% were metastatic in 
nature and was undetermined in 6.11%. Patient characteris-
tics are summarized in Table 1. Twenty‐eight samples were 
excluded from the study either due to poor tissue quality or 
insufficient sample availability. The schematic of the study 
design is shown in Figure 1.

To establish concordance, we tracked the mutational sta-
tus in the matched plasma in both patients who tested positive 
and those who negative for tumor type‐specific somatic mu-
tations. We determined the baseline mutational burden in the 
mutation‐positive patients. We utilized two different types of 
digital technologies to detect ctDNA in the plasma—ddPCR 
and NGS. Seventy‐four samples were tested on ddPCR while 
39 were run on NGS, and 25 samples were run on both plat-
forms for cross‐platform validation. We tracked survival sta-
tus in 105 patients over a period of 4‐27 months (Table S2).

3.2 | Landscape of mutations in the 
solid tumors
At least one tumor type‐specific somatic mutation was iden-
tified in 98 tumor samples. Approximately 59.18% samples 
had only one mutation to follow while around 35.71% re-
ported 2‐3 somatic mutations per sample where a majority 
was single nucleotide changes (Figure S1A). When the tumor 
samples were profiled using NGS, TP53 was the most fre-
quently mutated gene. There were 53 unique mutations iden-
tified in the samples, of which only TP53 p.R175H and TP53 
p.R249S were detected in more than one sample. The tumor 
mutation landscape is summarized in Figure 2 and Table S3.

To establish concordance between tumor and plasma, 
samples where somatic mutations had validated TaqMan as-
says from Bio‐Rad Inc, ddPCR was used to test the matched 
plasma sample. In 71 samples, at least one somatic mutation 
detected in the tumor could be followed using a validated 
ddPCR assay (Table S3). For the rest, NGS technologies, 

namely SA152, Swift, GeneRead panels, were used depend-
ing upon whether the mutation loci were covered.

3.3 | Performance characteristics of liquid 
biopsy tests
The yield of cfDNA ranged from 7.13 to 405 ng/mL 
plasma across all samples. We observed that the yield in-
creased with stage and was significantly higher when com-
pared to that from healthy individuals (Figure S1B). Using 
a qPCR‐based assay, the mean tumor‐origin DNA fraction 
in cfDNA samples was estimated to be ~65%. The mean 
recovery of cfDNA was established at 82%. Both of these 

F I G U R E  1  Study design. Matched tumor‐plasma samples 
were collected from a hundred and eighty cancer patients. Samples 
were excluded for quality or quantity insufficiency of either tumor 
or plasma, no reported mutations, or technical failures. The tumor 
DNA was profiled using targeted NGS sequencing or cobas® EGFR 
Mutation Test. The mutational status of the matched plasma samples 
were queried by either ddPCR or NGS or both for concordance

www.cancer.net
www.cancer.net
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parameters were in the expected range.4 To establish the 
precision and recall of ddPCR platform in clinical sam-
ples, 68 lung samples with known EGFR mutation status 
for Exon 19 deletions and p.L858R were run. The results 
matched the expected mutation status for the loci of in-
terest in all except two samples (Table S4), thus showing 
a precision of 92%. The discordant variant in one sample 
was confirmed by NGS as a true positive. Recall was estab-
lished at 100% using the same samples. For precision and 
accuracy in NGS, we looked at the same two loci, EGFR 
Exon 19 deletions and p.L858R, in all the samples run on 
the platform (Table S4). There could be a few reasons for 
the discrepancy between the solid and liquid biopsy in the 
two discordant samples—(a) the sensitivity of the cobas 
platform used to determine the EGFR status in solid tumor 
biopsies is at 1.4%‐5%, or (b) genetic profiling of fine nee-
dle aspirate cytology (FNAC) solid tumor biopsies may 
miss mutations depending upon the site of biopsy due to 
tumor heterogeneity.

A total of 25 liquid biopsy samples were tested on both 
ddPCR and NGS, for a cross‐platform comparison. Twenty‐
four samples were concordant between the NGS and ddPCR 
platforms (Table S5). This affirms the thresholds set for de-
tecting known variants. The %SR of the mutations tested 
ranged from 0.28% to 94.7%. Hence, the platforms show high 
accuracy, precision, and suitability to test clinical samples.

3.4 | Evaluation of tumor‐plasma 
concordance
We report a concordance of 71.2% across all cancer stages 
and tissue types, irrespective of the technology used (Table 
2). For the early stage cancers (≤Stage IIA), the concordance 
was about 32%, where cfDNA levels are known to be lower4 
(Figure S1B). For locally advanced and metastatic cancers 
(≥Stage IIB), tumor‐plasma concordance is 81.8%. We fur-
ther analyzed our data by each cancer type. Lung cancer sam-
ples reported the highest concordance, followed by ovarian 
and colorectal cancers. The modest concordance observed 
in bladder and breast cancers could be attributed to the fact 
that a majority of the bladder samples and at least half of the 
breast samples were at an early stage. The mutations detected 
in esophageal cancer and sarcoma were in complete agree-
ment with the solid tumor profile. The concordance data are 
summarized in Table 2, and the detailed information is pro-
vided in Table S6.

To call a sample concordant by ddPCR, we set a strin-
gent threshold of 0.03% mutant allele frequency which trans-
lates to a minimum of 2 cp/mL plasma given that the median 
cfDNA yield was ~22 ng/mL plasma. This resulted in an 
overall concordance of 79.8% for all samples and was as high 
as 87.05% in the locally advanced and metastatic stages tested 
on ddPCR. For NGS analysis, we used three different panels. 

F I G U R E  2  Mutation landscape of tumor samples. A heatmap of mutations across the ten most frequently mutated genes in the tumor 
samples is shown. Individual samples are depicted along the X‐axis while the mutation summary in the gens is indicated along the Y‐axis. Samples 
are colored by tissue types, as indicated by the strip along the X‐axis, while the mutations are distinguished by the variant types in the heatmap as 
indicated in the key. Frequency of mutations per gene is summarized by a histogram along the Y‐axis. The samples represented in the heatmap are 
sorted by their tissue type
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Two commercially available amplicon panels (GeneRead and 
Swift), and a laboratory‐developed, hybridization‐based en-
richment panel, SA152, were used. For the Swift panel, an 
in‐house noise‐reduction model was utilized to distinguish 
low‐frequency true variants from false positives. Therefore, 
irrespective of the presence of UMIs, a minimum of ≥0.3% 
and ≥0.2% mutant allele frequencies were considered con-
cordant for SNPs and InDels, respectively. Across all NGS 
panels tested, we report a concordance of 70% for advanced 
stage tumors and 57.81% overall concordance.

3.5 | Prognostic value of baseline ctDNA
To understand the clinical significance of the baseline ctDNA 
levels, we followed 105 patients over a period of about 
27 months (Table S2). Our data show that higher baseline 
ctDNA levels correlate with poor survival irrespective of his-
topathological stage and tissue type. When partitioned by the 
number of ctDNA copies/mL plasma, patients with >211 cp/
mL plasma (high) show significantly lower survival than those 
with ≤211 cp/mL plasma (low, P = 5.99E‐06) and the unde-
tectable ctDNA (not detected) group (P‐value = 2.47E‐07) 
as shown in the Kaplan‐Meier plot (Figure 3A). Indeed, the 
undetectable group shows a distinct survival advantage of 
280 days compared to the high ctDNA group. The univariate 
Cox Proportional Hazard Ratio was calculated to be 0.2331 

for the low ctDNA group (95% CI: 0.12412‐ 0.4379) and 
0.1875 for patients in the undetectable ctDNA group (95% 
CI: 0.09929‐ 0.3542), therefore indicating a better prognosis 
(Table S7).

Since most of the patients with poor survival out-
comes were from the advanced stages (≥Stage IIB), we 
repeated the analysis on patients within this group and con-
firmed the results (P‐value = 0.00013 with not detected, 
P‐value = 0.00593 with low, Figure 3B). Interestingly, the 
same trend holds even in early stage cancers for the ctDNA 
levels. Of note were two bladder cancer cases, UB002 and 
UB012, reported as Stage I by histopathological evaluations, 
where the ctDNA levels were unexpectedly high at 1245.27 
and 6947.82 cp/mL plasma compared to the rest of the early 
stage samples, which reported levels between 0 and 211 cop-
ies. Both patients died of disease within the follow‐up period 
of a year.

To determine whether the absolute levels of baseline 
cfDNA or percent mutant allele frequency (%MAF) has a 
bearing on the levels of ctDNA, and therefore survival, we 
generated a scatter plot to compare the values (Figure 3C). 
The cutoff value for high and low cfDNA was determined in 
a fashion similar to identify the ctDNA threshold using the 
survminer package in R. With respect to %MAF, there is a 
correlation between the value and ctDNA level as indicated 
in the graph. The plot shows that patients with >2% MAF did 
worse than those with lower values. On the other hand, an 
equal proportion of patients with poor survival and disease 
progression were categorized under cfDNA high and cfDNA 
low. The levels of cfDNA could therefore be a less informa-
tive marker than either ctDNA or %MAF.

Although there was not a statistically significant differ-
ence in the survival outcomes of the low and the undetect-
able ctDNA groups (P‐value = 0.349), there appeared to 
be a separation of 97 days in the median survival of the 
two groups. However, there were two patients in the low 
category who died of disease. In addition, five patients in 
the ctDNA low group progressed while no patient in the 
not‐detected category relapsed. Thus, our data suggest that 
outcomes based on presurgical levels of ctDNA may be de-
finitive for the high and the not‐detected groups (poor and 
good, respectively). Its predictive value was less clear for 
the low ctDNA group, where the disease could either prog-
ress or report no change. Such patients might benefit from 
serial monitoring.

4 |  DISCUSSION

Recent studies in liquid biopsy have actively focused on the 
clinical utility of ctDNA as a surrogate marker in the detec-
tion in cancer. A majority of these involved only metastatic 
cancers,2,8,16 while there have been a few that have looked 

T A B L E  2  Tumor‐plasma concordance

Samples Concordant Discordant

All samples 138 99 (71.22%) 39 (28.78%)

By stage

Early (≤Stage 
IIA)

28 9 (32.14%) 21 (67.86%)

Advanced 
(≥Stage IIB)

110 90 (81.82%) 20 (18.18%)

By tissue

Bladder 10 3 (30%) 7 (70%)

Breast 27 10 (37.04%) 17 (62.96%)

Colorectal 11 6 (54.55%) 5 (45.45%)

Lung 81 73 (90.12%) 8 (9.88%)

Ovarian 6 4 (66.67%) 2 (33.33%)

Othersa 2 2 (100%) 0 (0%)

By platform

ddPCR 99 79 (79.8%) 20 (20.20%)

NGSb 64 37 (57.81%) 27 (42.19%)

Cross‐platform Validation

NGS‐ddPCR 25 24 (96%) 1 (4%)
aIncludes sarcoma and esophageal. 
bResults for the three NGS‐based tests, GeneRead, Swift, and the SA152 custom 
panel. 
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at the early stages.4,7 However, most of them have been spe-
cific to a cancer type/sub‐type.21,30-34 In our cohort, >90% of 
the patients were non‐metastatic, and spanned across seven 
different tissue types. Hence, these data provide useful in-
sights into the ctDNA levels across various stages and tis-
sues of origin. The reported concordance is highly variable 
since it is dependent on the tissue of origin, stage, grade, 
time of sample collection, and even the platform used for 
detection.2,4,6,8,16,19,35,36 Therefore, our finding of 71.22% 
overall concordance, 81.82% in stages IIB and above (clas-
sified as advanced) and 32% in stages up to IIA (classified as 
early) is promising. The concordance observed in the early 
stages gives hope that with some technological advances, 
early detection, and screening tests may be possible in the 
near future.

While absolute concordance between tumor and matched 
plasma has its merit, studies have further explored the clin-
ical utility of ctDNA levels at various time points in the 
course of the disease and its treatment in patients.7,11,12,20 
In our cohort, we have observed that the patients’ sur-
vival outcomes which strongly correlated to the baseline 
ctDNA levels. Indeed there appears to be two prognostic 

groups—those with high ctDNA levels indicative of poor 
survival, and those with undetected ctDNA who showed 
good outcome in this period. While the numbers of samples 
are small, the trends hold even when the data was subset 
into the early and advanced stages. Though we followed 
patients for a limited period of 27 months, the trends are 
stark. Further, the group with detectable ctDNA appears 
to have a subset with low levels which were less predictive 
of the survival outcome. These patients might benefit the 
most from close monitoring to identify relapse before PET‐
scans. For those who have undergone surgery, it is possible 
that post‐surgical MRD levels may be more relevant.8,11,20 
Equally important, if the patient shows response to therapy, 
particularly targeted therapy, it will have a higher bearing 
on the survival compared to any prognostic marker. An 
example of this is seen in our data, a lung cancer patient 
with high detected ctDNA (Figure 3C), being treated with 
Osimertinib upon developing resistance to initial TKI ther-
apy. We found that %MAF and ctDNA levels (in copies/
mL plasma) are equivalent prognosticators, with absolute 
levels of ctDNA stratification showing slightly better sta-
tistical significance (Figure S2).

F I G U R E  3  Survival outcomes and baseline ctDNA levels. The Kaplan‐Meier curves indicate the difference in the overall survival of (A) the 
total cohort and (B) within the advanced stages (Stage IIB and greater). Patients were sorted into three groups: those with high ctDNA (red), low 
ctDNA (blue), and no detectable ctDNA (green) cp/mL plasma. The median survival of the groups in days is indicated by black dotted lines. The P‐
values indicated in the graph are estimated using the log‐rank test. (C) Scatter plot indicating ctDNA (Y‐axis) versus cfDNA (X‐axis) cp/mL plasma. 
Each point represents one sample. The status of patients is indicated by the color and shape of the point: “Dead” by a red circle, “Progressed” by 
an orange triangle, and “Alive” by a blue square. The size of each point corresponds to the percent mutant allele frequency (MAF) of the mutation 
detected in the sample
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The absolute cutoffs for ctDNA levels may vary across 
datasets. However, the trend in survival outcomes high-
lights the clinical relevance of ctDNA levels in prognosis 
and calls for further research. Studies with larger cohorts 
may be needed to establish the cutoffs for ctDNA and 
%MAF in each cancer type for clinical adoption of these 
biomarkers. In conclusion, our study demonstrates that 
ctDNA can be used to track tumor‐specific mutations in 
a large number of cancers reliably and baseline ctDNA 
levels can be useful markers to stratify patients into 
prognostic groups which may have a bearing on patient 
management.
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