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Simple Summary: Red wood ants (Formica rufa goup) are dominant ant species widespread in the
Eurasian continent. These species have a strong ecological impact on the habitats they dwell in,
being top-ranked predators. One of the most striking features of these ants is represented by the
large nest mounds they build. In this study, we investigated how nest mound shape and colony
organization of imported populations of Formica paralugubris varied in three different habitat types.
We found that nest mounds differed in size, number and shape in the three habitats. In all the three
sites, nests were connected by trails of workers, but the size of these nest-networks differed. We also
investigated the pattern of intraspecific aggression among ants from different nests, and we showed
that aggressiveness was higher within each population than between separate populations, a finding
in line with a “nasty neighbor” behavior.

Abstract: Ants belonging to the Formica rufa group build large nest mounds, which aid their survival
during severe winters. We investigated whether different environmental features of the habitats
affected the nest mound shape and the population structure. We assessed the shape of all the nest
mounds and mapped inter-nest trails connecting mounds for three imported populations of Formica
paralugubris in three forest habitats: fir-dominated, beech-dominated, and a mixture of fir and beech.
Single-nest mounds were averagely smaller and flatter in the beech-dominated forest, probably
because of lighter building materials. Nonetheless, by summing the volumes of all interconnected
nests, the size was similar among all three sites. In fir- and beech-dominated forests, large nests were
also central in the networks, suggesting a central place foraging model with these nests as reference.
We finally performed aggression tests, and found that aggressiveness was significantly higher among
nests belonging to the same population than between populations. The results highlight the plasticity
of the species to adapt nest and colony structure to different environments. Additionally, it appears
that none of these populations is unicolonial, as observed in various alpine sites, there and the
observed patterns of aggression are coherent with the ‘nasty neighbor” effect.

Keywords: red wood ants; introduced populations; nest mound shape; soil material; unicoloniality;
trail networks

1. Introduction

Ants belonging to the Formica rufa group, commonly known as red wood ants (RWAs),
are widespread throughout the mountain and continental forests of Europe [1]. One of
the most striking features shared by these cold-adapted species is the construction of large
epigeous nest mounds that protect their inner chambers from severe winter conditions [2]
and modify the chemical characteristics and nutrient concentration of the soil [3-6]. The
materials used by workers to build such structures are highly variable, and include soil
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particles, small pebbles, resin granules, twigs, and other litter elements [7]. One of the most
important components of the mounds are the needle-shaped leaves of coniferous trees [8],
although it is still unclear how much this choice is influenced by their availability in the
habitats they colonize [9].

Several RWA species are polydomous, i.e., the colonies are subdivided into spatially
separated but interconnected nests, each housing a portion of the workforce and brood [10].
Nest fission or budding is a phenomenon where new nests are founded near the mother
colony and are initially occupied by a small group of workers with one or a few queens [11].
This biological trait may lead to the onset of polydomy, as a relationship between the
new nests and their mother colony is maintained. Polydomy in some RWA species can be
flexible according to habitat type [12] and resource distribution [13], and in some contexts
monodomy can also occur [14]. The identification and analysis of trail networks connecting
different nests in polydomous species can provide important insights on foraging efficiency
and the subdivision of tasks within a colony [15,16].

Formica paralugubris was described in the mid-nineties and native populations are
restricted to the European Alps [17]. Alpine ant populations studied to date exist as super-
colonies, with behavioral relationships among the nests suggesting unicoloniality [18,19].
Unicolonial supercolonies are polydomous colonies composed of many nests across vast
areas, where workers are only weakly related and are free to move between nests without
eliciting aggression from non-nestmates [20]. Over several decades, hundreds of nests
of this alpine species were collected and introduced outside of their natural range of dis-
tribution as biological control agents against arthropod pests [21,22]. Some of these ant
populations introduced into the Apennine forests in Italy have survived and are now
expanding [23]. In some sites, such as the Campigna Biogenetic Nature Reserve (Central
Italy), populations were introduced at locations spatially segregated by several hundred
meters or a few kilometers [24,25]. The majority of introductions occurred in fir-dominated
forests (Abies alba), which resemble the original alpine habitat [26], but also in forests with
increasing beech (Fagus sylvatica) density. It is known that environmental context and isola-
tion are two factors that may influence colony arrangement and intraspecific relationships
of RWA populations [12,27], and we may therefore expect that these populations may differ
to some extent. Recently, it has been demonstrated that RWAs prefer conifers to forage
on aphids, a detail suggesting a harder adaptation to broadleaves forests [28]. Assessing
the relationships among nests in populations located in different habitats may provide
interesting insights on the ecological plasticity of this species, which is, to date, only known
to be unicolonial. Furthermore, it is known that RWAs adapt their nest-building according
to available materials [21]; thus, we expected to find different mound structures in the
different populations.

In this study, we selected three geographically close but distinct populations, character-
ized by different tree composition (fir-dominated, mixed fir-beech, beech-dominated), and
whose colonial arrangement was unknown. In the three selected populations we compared
nest mound size and shape, and we assessed the type of nest material used. To check if
differences in mound size and form were due to structural properties of the material used,
we experimentally calculated the angle of repose of each class of materials [29]. Finally,
we mapped connecting trails between nests to identify colony boundaries, and to check
whether these populations were unicolonial as those in the Alps, we performed aggression
tests between workers from different colonies, both within and between populations.

2. Materials and Methods

A census of the nests of three F. paralugubris populations introduced into the Campigna
Biogenetic Nature Reserve, Italy (43°52/20” N, 11°44’40” E) was performed from June to
July 2016. The specific sites, which will be used to refer to the populations, were Avorniolo
Alto (AA), a fir-dominated forest with sparse beeches; Le Cullacce (LC), a mixed forest
with beeches and firs in approximately equal proportions; and Fosso Fresciaio (FF), a
beech-dominated forest with sparse firs (Figure 1). The GPS coordinates and measurements
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of total and half-height, upstream to downstream base width, and the width perpendicular
to this last measure were recorded for each nest.
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Figure 1. Map of F. paralugubris populations in the Campigna Biogenetic Nature Reserve. Green areas
indicate the three populations analyzed in this study and white areas are populations not analyzed in
this study. AA, fir-dominated forest; LC, mixed forest; FF, beech-dominated forest.

The volume of each nest was calculated using the method described by Ronchetti et al. [24]
and used by Frizzi et al. [25]. Formulas for calculating volumes were:

Thi?
=g
and:
. th (1% + 413)
b= 24

where h is the total height, [ is the average between the larger and the shorter diameter at
the base, and [; is the half-height of the mound. The first formula was applied when mound
height was equal to or greater than 75% of the mean base diameter, the second otherwise.
As a summary measure to describe nest shape, we used the ratio between the height and
the mean width of the base (here called size-ratio index, SRI). The lower the value of this
measure, the flatter the nest. We subdivided all the SRI values into three intervals according
to the 25, 75 and 100 quantiles, and the difference in the frequency distribution among
the three sites was assessed by the Pearson’s chi square test. To investigate the effect of
the nest material on the shape of the nest mounds, we collected >0.5 L of nest material
(15 cm deep) from 10 randomly chosen nests/site and we assessed the angle of repose,
which can provide important information about the physical properties of the material [29].
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Small nests (<150 L) were excluded from sampling. All samples were transported to the
laboratory within 3 h of collection, where they were stored in 5-cm diameter, 15-cm tall
glass cylinders. Cylinders were capped with a plastic sheet, overturned onto a smooth
surface, and slowly lifted following removal of the plastic sheet. The angle of repose for
each sample was calculated as the mean angle of the two slopes of the resulting heap, from
the top to the base margins (Figure 2). We also performed an analysis of the materials
composing ten randomly chosen nests from each site.

Fir-dominated forest (AA) Mixed forest (LC) Beech-dominated forest (FF)
A .,; - %‘ 3 ¢ A %

Figure 2. Examples of mound shape (A,D,G), nesting material composition (B,E,H), and angle of
repose (C,FI) at the three sites. In C, the two angles (x1 and «2) used for assessing the angle of repose
are indicated in red, with the average of these values reported.

All the nests and their surrounding area were carefully examined to identify trails of
workers connecting different nests. A nest network is defined as a group of nests connected
by trails of workers [15]. As nest networks are highly dynamic [30], all nests in each site
were evaluated three times at two-week intervals. All nests connected in at least one of
these sampling events were considered as belonging to the same network. We focused on
the relationships among nests, thus foraging trails towards trees were not considered. For
each network, we computed the size (i.e., number of nests), total volume (i.e., the sum of
the volumes of all component nests), and the betweenness centrality. The betweenness
centrality is the number of shortest trails passing by each nest (i.e., a node in the network
jargon) considering all possible connections between pairs of nests in the network [31].
This may be an indication whether colonies are organized with some central nests as a
reference [13].

We performed group aggression tests between equally-sized ants from different nests
belonging to different networks, from both the same and different populations [32]. Differ-
ent networks are not necessarily equivalent to different colonies [33], but connected nests
share individuals and cannot be considered as independent in dyadic aggression tests. Five
ants from each nest were used in each test. We performed 10 tests within each population
and 25 tests for each pair of populations, giving a total of 105 tests. We also performed
10 control tests for each site using ants collected from nests of the same network. No more
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than 15 tests were conducted each day, with all tests performed on sunny days. Twenty
workers or fewer were collected with a small brush, to minimize manipulation stress, into
a 50 mL Falcon tube, which was sealed with a fine mesh to allow air circulation. Ants
were transported to a field laboratory within 15 min of collection and were acclimatized
for 20 min prior to performing the aggression tests. Paired groups were simultaneously
dropped into a neutral arena constructed from a 4.5 cm Petri dish with Fluon®-coated
walls to prevent escape. Aggressive behaviors were scored as 0 or 1, with 0 indicating no
aggression (avoidance, short antennation, trophallaxis) or attention (prolonged antennation,
retreat following contact) behaviors and 1 indicating aggressive displays (open mandibles,
gaster flexion) or physical aggression (biting, venom spraying). Ants were observed for
5 min, and the test was scored based on the most aggressive behavior detected. All tests
were blind, with the ants” provenance unknown to the observers [34].

All comparisons were carried out using generalized linear models (GLM). Gaussian
models were fitted to analyze volume sizes and angles of repose, with the site as main
factor. Poisson models with the Wald x? test were used to compare the number of nests
forming a network within each site and the betweenness centrality; in the former, the site
was the main factor, whereas in the second the betweenness was compared with the nest
volume. Finally, logistic regressions were used to analyze aggression tests, and the type of
test, i.e., intra-site or inter-site, was the main term [35]. Tukey’s test was used for multiple
comparisons. Nest volumes were transformed by logarithm because of the great difference
between them. All analyses were performed using R version 4.0.1 software [36].

3. Results

Thirty-nine nests were mapped at AA, 46 at LC, and 88 at FF (Figure 3). Examples of
nest mound shape, composition, and angle of repose of the nesting material in the three
sites are shown in Figure 2.

The frequency distribution of the SRI index differed among sites (x*> =29.44, df = 4,
p <0.001, (Figure 4). In particular, FF significantly differed from AA and LC, having a
higher amount of low SRI values (i.e., flatter nests). On the contrary, no significant difference
was found between AA and LC. These distributions were significantly different between
AA and FF (x? = 8.63, df = 2, p = 0.013) and between LC and FF (x? = 24.47, df = 2, p < 0.001),
but not between AA and LC (x? = 5.80, df = 2, p = 0.055). In these last tests, the significance
must be considered with « < 0.017 after the Bonferroni correction for multiple comparisons.

The nest materials were similar (e.g., small twigs and soil granules), although nests in
FF and LC contained varying proportions of beech buds in place of fir needles. Considering
the number of fir needles and beech buds comprised in the nest material observed, the
latter represented approximately 63% (+5.31SE) of the total at FF and 13% (£2.16SE) at LC,
while no beech buds were found in AA nests. While beech leaf fragments were observed
in FF nests, they were rare or absent in AA and LC. The mean angle of repose of nest
materials differed significantly between the sites (F; o7 = 13.4, p < 0.001), being narrower
in FF than in the two other sites that did not differ between them. The average size of
the networks differed across the sites (x> = 7.19, p = 0.027), increasing from LC (range
1-9) to AA (range 1-13) to FF (range 1-35). In a pairwise comparison, the only significant
difference occurred between FF and AA (z value = 2.483, p = 0.034). Despite the difference
in network size, the average network volumes were not significantly different (F, 37 = 0.764,
p = 0.473). Additional details are reported in the Supplementary Table S1. Betweenness
was positively related with the mound volume both in AA (x? = 14.86, p < 0.001) and FF
(x? = 82.34, p <0.001), but not in LC (x? =230, p = 0.12) (Figure 5). Overall, in AA two size
groups were evident, and high values of betweenness were present only for large nests. In
LC, there was not a clear pattern, whereas in FF the majority of high values of betweenness
occurred for large nests (Figure 5).
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Figure 3. Map of nest network connections (lines) indicating nest size (circle markers) and location

at the three sites. AA: Avorniolo Alto, fir-dominated forest; LC: Le Cullacce, mixed forest; and FF:
Fosso Fresciaio, beech—-dominated forest.
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Figure 4. Barplot of the frequency distribution of the SRI index (height of the nest divided by the
mean width of its base) in the three sites. AA: Avorniolo Alto, fir-dominated forest; LC: Le Cullacce,
mixed forest; and FF: Fosso Fresciaio, beech-dominated forest. Letters above bars represent the
significance of multiple comparison tests.

We did not observe any aggressive behavior in the control tests. In the other con-
tests, aggressive behaviors—fighting, biting, and aggressive displays—occurred in 35
(20 inter-site, 15 intra-site) out of 105 tests. In the remaining confrontations, ants showed
no aggressive behaviors. Frequency of aggressive behaviors were significantly higher in
intra-site than inter-site contests (x? = 5.09, p = 0.024).
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Figure 5. Relation between betweenness and volumes of nest mounds (transformed by logarithm)
in the three sites, with models fitted (dashed lines). Each symbol is a nest having a betweenness >0.
Asterisks represent the significance of the model (** p < 0.001). ns = Not significant. (A), Avorniolo
Alto (AA), fir-dominated forest; (B), Le Cullacce (LC), mixed forest; (C), Fosso Fresciaio (FF), beech—
dominated forest.

4. Discussion

Nest mound shape and size differed significantly between the beech forest and both
the two other habitats, being on average smaller and flatter in the former than the latter (see
Figure 2A,D,G). Nest mound shape can be highly variable, and it is known it is influenced
by temperature and humidity variations across habitats, and can be dynamically adapted to
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cope with exposure to sunlight [37,38]. The observed differences in shape were associated
with variations in the building materials. Despite coniferous needles being generally the
principal constituent of the nest mounds, F. paralugubris behaved opportunistically, also
using beech buds when these were widely available and needles were scarcer [21,39]. In
our samples, ant nests in both the mixed and the beech forests contained varying amounts
of beech buds, with a considerably higher proportion found in the beech forest nests. While
beech buds are similar in shape to fir needles, they are hollow and lighter and possess
different physical properties. Our results suggest that the mechanical properties of the
materials used may be an important determinant of mound shape and size. The material
collected from the beech-dominated forest had a narrower angle of repose, suggesting
weaker friction forces among the units [29]. In short, increasing amounts of beech buds
make growth in height physically difficult, and cause the mounds to be flatter. The angle of
repose of the nest material from the mixed forest was similar to that of the fir-dominated
forest, suggesting that the small differences in their composition did not have significant
structural effect. As the form and size of a mound can affect its functioning in the protection
of the underground chambers during harsh winter conditions [2,40], a thorough analysis
of the physical properties of the building materials can be an important topic for future
investigations on the distribution of RWA in different types of habitats. Finally, we are
aware that our experimental approach is an extreme simplification of what really happens
in real situations. Building materials are arranged in a specific, overlapping manner so that
the nest is protected against the penetration of water, snow, or heat, for example, and all
the construction details can contribute to make up the final mound performances.

Despite the evident differences in mound structure and in the interconnection among
nests, it appeared that the average volume of nest-networks was similar across sites.
Assuming that each network corresponded to a distinct colony, this finding suggests that
the average colony size did not vary in the three sites [41], which is quite surprising as
the three sites were considerably different, also in terms of potential productivity [42]. Of
course, it is possible that not all inter-nest connections could have been observed due to their
temporary nature [33,43], and the overall figure could be different. In light of this result,
using single nests as an index of colony size could be unreliable for this species [41,44,45].

Furthermore, this species displays organizational plasticity in the spatial arrangement
of nests according to its habitat. In polydomous ants, the spatial arrangement of nests
can be driven by the distribution of resources, e.g., food [46,47] or nesting places [13,22].
The intensity of budding activity can also be variable, for example, when central nests are
disturbed [48]. Given the different structure of the three habitats, all of these factors may
have had a role in the nest distribution, as well as local environmental features, such as soil
depth and texture, slope, and humidity [49].

In two of the three habitats analyzed, a positive relation was found between size and
centrality—betweenness—of nests. This result is different from the one found in F. lugubris
and it might suggest a certain central colony-level organization of nest connections in
this species [13]. In other words, it appears that larger nests, in the fir-dominated and in
beech-dominated forests, have a central placement in the nest networks, suggesting they
are the main references for resource distribution, following a typical central place foraging
model [50]. However, the imported populations collapsed during the first years after the
transplants, and a few surviving nests generated the present populations [25]. Thus, it is
possible that some of these nests are simply older, and therefore larger, than the others [51].

Finally, low but detectable aggressiveness was observed between ants of different
nests. Aggression was more frequent within each population than between different pop-
ulations. Their low inter-population aggressiveness was consistent with the results from
Chapuisat et al. [19], who confronted workers of two populations on the Swiss Alps sep-
arated by several hundred meters, or even a few kilometers, a distance similar to that
between our sites. On the contrary, the greater number of intra-population aggressions
contrasts with the findings by Holzer et al. [52], who did not report any aggressive interac-
tion to occur within the same population, and interactions between non-nestmates reduced
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to antennation. Our findings suggest that F. paralugubris are not completely unicolonial,
and that some form of competition among independent colonies still exists. The difference
between inter- and intra-population aggressiveness is consistent with the “nasty neighbor”
effect [53], a behavior described in several other polydomous but not unicolonial ant species,
including the RWA F. pratensis [54-56]. Unfortunately, the behavior of the population in
the Italian Alps, from which the imported population were collected, is not documented,
and it is impossible to say whether they are unicolonial like the Swiss populations, or,
instead, similar to the ones analyzed in this study. We can be sure that the three studied
populations originated from the few nests that survived the introduction [25], and this
could have determined a genetic bottleneck, reducing genetic diversity, which in turn may
have affected social behavior [57]. A population genetic study and the analysis of cuticular
hydrocarbons in the studied populations may shed light on this point.

5. Conclusions

In conclusion, we found that spatially close but separated populations of F. paralugubris
showed considerable plasticity in mound-building and degree of polydomy. The differences
observed between the sites were partially driven by habitat-specific features related to the
type of forest stand, although it is difficult to draw generalizations as further replicate
populations inhabiting similar habitats would be needed. To the best of our knowledge,
the FF population is the only one inhabiting a beech forest throughout the introduction
range, making replication of the observations impossible. Furthermore, the aggressiveness
recorded among sympatric colonies suggests that these imported populations do not behave
like the supercolonies described for the unicolonial Alpine populations. The populations
imported to Central Italy represent a unique “experiment” of the controlled introduction of
RWAs outside their native range of distribution, with the only notable exception being the
F. paralugubris population introduced to Canada [58], and are therefore a high-value case
study. A wider investigation of the fate and ecology of all populations imported into the
Apennine range might reveal interesting details on the biology and evolution of introduced
ant species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13020198 /s1, Table S1: (A) Volumes of nest mounds,
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performed. In “Nests per network” is reported the range of nests forming networks in that site.
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Significance levels of pairwise tests: ns, not significant; *, p < 0.05; ** p < 0.01; *** p < 0.001.
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