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Specific physiological responses and their relationship were analyzed in 12 recreational
endurance athletes (43.8 ± 7.9 years) during a period of intensified cycling training.
Heart rate (HR), HR variability (HRV), serum creatine kinase (S-CK) and haematocrit
(Hct) were measured in the mornings before (PRE) and following three consecutive
days of intensified training (POST 1–3). Morning HR increased during this period (PRE:
52.2 ± 6.7 bpm, POST 1: 58.8 ± 7.0 bpm, POST 2: 58.5 ± 8.1 bpm, POST 3:
57.9 ± 7.2 bpm; F (3,33) = 11.182, p < 0.001, ηp

2 = 0.554). Parasympathetic HRV
indices decreased from PRE to POST (F (3,33) ≥ 11.588, p < 0.001, ηp

2
≥ 0.563),

no effect was found for sympathetically modulated HRV (F (3,33) = 2.287, p = 0.101,
ηp

2 = 0.203). Hct decreased (PRE: 49.9 ± 4.0%, POST 1: 46.5 ± 5.1%, POST 2:
45.5 ± 3.8%, POST 3: 43.2 ± 3.4%; F (3,33) = 11.909, p < 0.001, ηp

2 = 0.520)
and S-CK increased during the training period (PRE: 90.0 ± 32.1 U/L, POST 1:
334.7 ± 487.6 U/L, POST 2: 260.1 ± 303.4 U/L, POST 3: 225.1 ± 258.8 U/L;
F (3,33) = 3.996, p = 0.017, ηp

2 = 0.285). S-CK release was associated with HR
(r = 0.453, p = 0.002, n = 44), RMSSD (r = −0.494, p = 0.001, n = 44) and HF-Power
(r = −0.490, p = 0.001, n = 44). A period of intensified training was associated with
haemodilution, parasympathetic withdrawal and S-CK-increase. Cardiac autonomic
control at morning rest correlated with the S-CK-release; and thus, may serve as a
practical mean to complementary monitor and prescribe training load in this population.

Keywords: training load, cycling, muscle damage, aerobic exercise, RMSSD, HF-Power, haemodilution,
haematocrit

INTRODUCTION

Regular physical activity is a key factor in healthy aging and is associated with many health
benefits including reduced risk for cardiovascular diseases, cancer, and diabetes (Warburton et al.,
2006; Shiroma and Lee, 2010). However, also detrimental effects of excessive endurance training
have been recently documented. Especially, in aging athletes and/or athletes with cardiovascular
risk factors or predisposed to cardiac abnormalities, excessive training loads may increase the
risk of cardiovascular diseases (Eijsvogels et al., 2016). Further, excessive endurance exercise
may lead to a transient loss in skeletal myocyte integrity contributing to muscle fatigue (Fitts,
1994). Muscle fatigue, in turn, may affect perceived effort (Pageaux, 2014) and thus pacing and
completion of exercise as well as adherence to the subsequent training sessions (Ekkekakis, 2017).
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On the other hand, recent reports suggest that transient increases
of metabolic (by-)products, such as lactate and reactive oxygen
species, produced during physical exercise, may trigger positive
adaptations (Warburton et al., 2006; Gomez-Cabrera et al., 2008;
Brooks, 2009). Thus, the release of biochemical markers like
troponins and creatine kinases do not only indicate a loss
of cell integrity after acute (prolonged) exercise, but might
stimulate favorable adaptations to exercise as well (Scharhag
et al., 2006). Summarizing, the release of biomarkers such as
creatine kinase might link short-term exercise responses, indices
of fatigue and functional overreaching as well as beneficial
adaptive processes. However, their sampling and analysis is costly
and often impracticable, not only in non-professional sports.
Thus, there is still a need for valid and practicable means to
monitor and prescribe the amount and intensity of exercise,
especially in periods of increased training load (Halson and
Jeukendrup, 2004). Easy accessible indices of cardiac autonomic
function, such as morning heart rate variability (HRV), maximal
and submaximal heart rate (HR) or heart rate recovery have been
successfully used to prescribe daily training load in moderately
fit persons (Kiviniemi et al., 2007, 2010) and linked to states
of functional (FOR) or non-functional (NFOR) overreaching
(Buchheit, 2014). However, the relation between states of
(functional) overreaching and autonomic indices are equivocal,
e. g., due to different tools to quantify fatigue and training load,
individual profiles of autonomic responses and methodological
inconsistencies (Buchheit, 2014). A classification of FOR, even
in endurance athletes of lower level, often bases on statistical
calculations of intra-individual performance variability of world
class track and field sprinters (Hopkins et al., 1999) – and a rather
arbitrarily described duration of performance decrement (Ten
Haaf et al., 2017). Considering the methodological difficulties
inherently associated with this approach of FOR-definition in
lower class endurance athletes, it seems to be obvious, that states
of FOR may not be reflected in linear autonomic adjustments or
other physiological markers. While periods of intensified training
are considered an important aspect of performance development,
it is also controversial whether any form of FOR is in fact
beneficial for optimal performance improvements (Aubry et al.,
2015).

Interestingly, studies dealing with short-term effects of
intensified training on autonomic function, seromarker release,
and hematological properties are predominantly limited to elite
athletes. Furthermore, investigations often focused on single
aspects of the bodily response and particular competitions
(Siegel et al., 1981; O’Connor et al., 1991; Hedelin et al., 2000;
Uusitalo et al., 2000; Saunders et al., 2004; Shave et al., 2005;
Fortescue et al., 2007; Schumacher et al., 2008; Millet et al., 2011;
Williams et al., 2011; Bogdanis et al., 2013; Gore et al., 2013).
For example, a linear increase in plasma volume, with red cell
volume being unchanged, has been well described during short
endurance training periods (Convertino, 1991). Although cycling
is one of the most popular aerobic exercises in recreational sports,
less is known regarding the association of training load, creatine
kinase release, morning autonomic control and perceived effort
during a period of intensified cycling in recreational endurance
athletes. As such increases in training volume and/or intensity

typically occur in annual training camps, it is of greater interest to
analyze, whether there is a link between autonomic control and
other physiological indices of training load in this population.
A link between morning HR and HRV with serum creatine
kinase (S-CK) would provide a physiological rationale for the
use of morning HR-derived measures to monitor and prescribe
training in recreational endurance athletes. Thus, the aims of
this observational field study were to (i) assess autonomic,
haematocrit (Hct) and S-CK responses during a period of
intensified training in male cyclists; and (ii) to elucidate, whether
there is a correlation between autonomic responses and S-CK
release during a period of intensified training in this population.
It was hypothesized that an increase of training load leads to
significant elevations of S-CK as well as morning HR and to
decreases in Hct and parasympathetic HRV indices. We further
supposed the S-CK release during the observational period being
significantly correlated with indices of autonomic function at
morning rest, i. e., an increased S-CK-release is associated with
reduced parasympathetic HR control.

MATERIALS AND METHODS

Participants
Based on the assumption of a strong effect (f = 0.40) of
intensified training on morning HR, an α-error probability of
0.05 and a power of 0.80, an a-priori sample size calculation
(G∗Power 3.1, Germany) indicated a total of N = 10 persons to
be required. Considering a drop-out rate of 20%, 12 recreational
male endurance athletes (age: 43.8 ± 7.9 years; body weight:
75.6 ± 11.4 kg; body height: 181.4 ± 7.0 cm) were personally
invited and gave their written informed consent to take part
in this study. The study was approved by the local ethics
committee at the University of Rostock and was conducted in
accordance with the Declaration of Helsinki. All subjects gave
written informed consent. Weekly training load in the six weeks
before the training camp was heterogeneous – as typically in
such a sample – and achieved on average 96.5 ± 56.9 km
of cycling and 14.9 ± 11.2 km of running. The number of
training sessions per week ranged from one to a maximum
of six. All participants were non-smokers. Participants with
current or a history of cardiovascular or orthopedic diseases
and current pharmacological treatment were excluded from
this study. Further, only participants stating their ability and
willingness to complete the proposed training schedule were
included.

Protocol
In this observational field study autonomic response, Hct and
S-CK were assessed on four consecutive days during a period
of intensified training. During the training period, participants
followed their usual individual night sleep schedule. A minimum
of 15 h was scheduled between consecutive training sessions to
ensure sufficient periods of passive rest and night sleep. After
awakening and emptying the urinary bladder subjects recorded
their beat-to-beat intervals for 5 min in supine rest using a ECG-
based breast belt system providing a sampling rate of 1 kHz (t6,
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Suunto R© Inc., Finland) (Weippert et al., 2010; Buchheit, 2014).
HR measurements were followed by capillary blood drawings
from the left earlobe to determine Hct and S-CK. Daily HR
measurements and blood sampling were carried out at the same
time of the morning after an overnight fast in an upright sitting
position.

Measurements in the morning before the first training session
served as the individual baseline (PRE). Post-measurements
were carried out in the mornings following the training days
(POST 1–3). Daily cycling distance, altitude difference, maximum
temperature of the day and relative humidity differed between
the training sessions and were: 20.6 ± 17.5 km, 20◦C and 68% at
PRE; 105 km, 1800 m, 26◦C, and 42% for training day 1; 122 km,
1700 m, 20◦C, and 50% for training day 2; and 80 km, 1900 m,
20◦C, and 54% for training day 3, respectively. After each training
session participants were asked to rate the global perceived effort
(RPE) of the training using an adapted German version of a
Borg-scale. Daily training load was estimated in arbitrary units
(a.u.) using the product of training session time (in hours) and
training intensity assessed by RPE (Foster, 1998). Following an
ecological valid approach, participants followed their normal
nutrition schedule and drank ad libitum during and after the
training sessions. While participants refrained from caffeinated
beverages≥12 hrs prior the HR-measurements, their use was not
restricted during the training sessions across the training days.
No additional ergogenic substances were used by the athletes
during the study period.

Data Analyses
HRV analyses were carried out using the software Kubios HRV
2.0. (University of Kuopio, Finland). Average HR was calculated
for 5 min. HRV spectral indices (model: autoregressive) and
the natural-log of the root mean square of the sum of the
squared differences of adjacent heartbeat intervals (lnRMSSD)
were calculated from the detrended (method: Smoothn priors)
5-min beat-to-beat measurements. The natural log-transformed
spectral power in the high frequency band (lnHF) from 0.15 to
0.4 Hz and the normalized power in the low frequency range (LF
n.u.) from 0.04 to 0.15 Hz were analyzed. While the power in the
HF-band reflects vagal efferent activity – similar to lnRMMSD –
, the normalized LF power (LF n.u.) is considered to mirror
the portion of sympathetic HR modulation (Task Force of the
European Society of Cardiology, and the North American Society
of Pacing, and Electrophysiology, 1996). Because beat-to-beat
interval data of one participant could not be recorded with
sufficient quality (artifact rate > 5%), HR and HRV data, as well
as correlation analysis between HR-derived indices and S-CK are
reported for 11 subjects only.

Serum creatine kinase and Hct were measured spectro-
photometrically (Vario II Photometer, Diaglobal, Germany)
using commercially available detecting kits (CK 321, HCT 142,
diaglobal, Germany). Hct was determined by a turbidimetric
method. The S-CK assay bases on an enzymatic method, where
S-CK is equivalent to the rate of NADPH formation that absorbs
at 340 nm. All S-CK measurements were corrected for the
individual Hct value. The catalytic concentration of S-CK is
provided in U/L at 37◦C (Schumann et al., 2002).

Statistics
An analysis of variance for repeated measures (RM-ANOVA)
and Bonferroni adjusted post hoc pair wise comparisons were
conducted to test for significant training effects on the specific
physiological responses. Since S-CK data violated the assumption
of normal distribution, z-transformed values were used for the
ANOVA. Standardized differences were used to evaluate the
magnitudes of the PRE-POST differences of morning HR and
HRV (Hopkins et al., 2009). Therefore, the alterations of HR
and HRV were related to the smallest worthwhile change (SWC).
An effect can be rated trivial if an individual change is within
the SWC. SWC was calculated by 0.2 times of the between-
athlete variation at PRE (Hopkins, 2004). Pearson’s correlation
coefficient was used to assess the association between individually
z-transformed morning HR and HRV with z-transformed S-CK.
Thresholds of 0.1, 0.3, and 0.5 for small, moderate and large
correlations were used according to Cohen (1988). Fisher’s
exact significance was used to test for differences in training
commitment in athletes with or without above normal S-CK.
Data were analyzed using the SPSS statistical package 22.0 (SPSS
Inc., Chicago, IL, United States) and statistical significance was
accepted at p ≤ 0.05.

RESULTS

Perceived effort was rated 16.4 ± 1.5, 15.3 ± 1.1, and 17.1 ± 1.0
for training days 1, 2, and 3, respectively. Training day had a
significant effect (F(18,2) = 6.041, p = 0.010, ηp

2 = 0.402) with
effort rated lowest for training day 2 (day 1 vs. day 2: p = 0.075,
day 2 vs. day 3: p = 0.001). Calculated daily training load showed
a different profile: 61.6 ± 5.2 a.u. for day 1, 69.1 ± 4.9 a.u. for
day 2, and 62.4 ± 3.9 a.u. for day 3 (F(18,2) = 9.532, p = 0.002,
ηp

2 = 0.514). Training load calculated for day 2 was significantly
higher than for day 1 (p = 0.007) and day 3 (p = 0.001). No
differences were found between day 1 and day 3.

Further, RM-ANOVA revealed a significant effect of time
on Hct, with the highest value at PRE and the lowest value
at the end of the training camp (POST 3) (Table 1). Post
hoc analysis showed that Hct progressively decreased and
differed significantly between all time points, except POST 1
and POST 2. The intensified training also significantly increased
S-CK. Furthermore, at POST 1 S-CK values of three participants
were markedly increased above the clinical cut-off of 200 U/L.
Two of them reported stronger perceptions of fatigue and
interrupted training on the second training. Fishers’s exact
test revealed that the association between S-CK and training
maintenance yielded statistical significance (p = 0.045).

The effect of measurement time was also significant for
HR and the vagally related HRV-indices lnRMSSD and lnHFP,
while LF n.u. remained statistically unchanged (Table 1). The
alterations of lnRMSSD and lnHFP from PRE to POST exceeded
the SWC in all but one athlete.

There was a moderate relationship between S-CK and vagally
mediated HRV indices. Pearson’s r for z-transformed S-CK vs.
z-transformed HR was 0.453 (p = 0.002, n = 44, Figure 1), vs.
z-transformed RMSSD −0.494 (p = 0.001, n = 44, Figure 2),
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TABLE 1 | Mean ± standard deviation and repeated measures ANOVA statistics for morning haematocrit (Hct), serum creatine kinase (S-CK), heart rate (HR), natural
log-transformed root mean square of the sum of the squared differences between adjacent inter-beat intervals (lnRMSSD), high frequency power (lnHFP), and normalized
low frequency power (LF n.u.) of heart rate variability across the training period.

PRE POST 1 POST 2 POST 3 F Sig. Partial η2

Hct [%] 49.9 ± 4.0 46.5 ± 5.1∗ 45.5 ± 3.8∗ 43.2 ± 3.4∗∗††§ 11.909 0.000 0.520

S-CK [U/L] 90.0 ± 32.1 334.7 ± 487.6 260.1 ± 303.4∗∗ 225.1 ± 258.8∗ 3.996 0.017 0.285

HR [bpm] 52.2 ± 6.7 58.8 ± 7.0∗∗ 58.5 ± 8.1∗∗ 57.9 ± 7.2∗∗ 11.182 0.000 0.554

lnRMSSD [ms] 3.8 ± 0.6 3.4 ± 0.4∗∗ 3.4 ± 0.5∗∗ 3.4 ± 0.4(∗) 11.588 0.000 0.563

lnHFP [ms2] 6.4 ± 0.9 5.6 ± 1.0∗∗ 5.7 ± 1.1∗∗ 5.7 ± 0.9∗∗ 12.761 0.000 0.586

LF n.u. 0.60 ± 0.23 0.74 ± 0.13 0.69 ± 0.20 0.68 ± 0.21 2.287 0.101 0.203

(∗)∗/∗∗ = different from PRE at a p-level of 0.071/ < 0.05/ < 0.01; †/†† = different from POST 1 at a p-level < 0.05/ < 0.01; § = different from POST 2 at a p-level < 0.05.

FIGURE 1 | Correlation between heart rate and creatine kinase (S-CK).

and vs. z-transformed HF-Power −0.490 (p = 0.001, n = 44,
Figure 3), respectively; while HRV sympathetic modulation index
LF n.u. did not show any significant association with S-CK
(r = −0.050 p = 0.750, n = 44). Pearson’s r for z-transformed
HR with z-transformed RMSSD and HFP was−0.788 and−0.808
(p = 0.000, n = 44), respectively, while no association was found
between HR and z-transformed LF n.u. (Pearsons’ r = −0.077,
p = 0.624, n = 44).

DISCUSSION

In this observational field study training load, perceived effort,
autonomic response (HRV indices), Hct and S-CK were assessed
in recreational cyclists during a period of intensified training. The
aim was to analyze alterations of and associations between these
specific markers.

Training Load and Perceived Effort
Calculated training load and session effort ratings showed a
slightly different profile across the period of intensified training,
with training load being highest and perceived effort lowest for
training day 2.

FIGURE 2 | Correlation between HRV root mean square of the sum of the
squared differences of adjacent heartbeat intervals (RMSSD) and creatine
kinase (S-CK).

Biomarkers
In accordance with the training load profile, a significant
increase of S-CK was first detected after the second day of the
intensified training period – the day that significantly exhibited
the highest calculated training load. This finding supports
the use of S-CK as an objective marker for training load in
recreational active athletes, since it seems to be associated to
both, intensity and duration of exercise (Evans et al., 1998;
Banfi et al., 2012). Generally, increases in S-CK may speak
for detrimental effects of unaccustomed bouts of prolonged
exercise on cellular integrity possibly due to increased oxidative
stress (Ohta et al., 2009; Brancaccio et al., 2010; Banfi et al.,
2012). Further, a loss in myocyte integrity may have increased
muscle fatigue (Fitts, 1994) and might have led to adjustments
in effort (Pageaux, 2014). This assumption would fit well to
the finding of reduced perceived effort on training day 2.
However, conclusions have to be drawn cautiously since the
molecular mechanisms that result in CK release from muscle
after mild exercise are still incompletely understood (Baird et al.,
2012). Further, many other factors such as motivation or mental
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FIGURE 3 | Correlation between HRV high frequency (0.15 – 0.4 Hz) power
(HF-Power) and creatine kinase (S-CK).

fatigue may impact on perceived effort and the adherence to
exercise and training (Pageaux, 2014; Enoka and Duchateau,
2016; Ekkekakis, 2017; Van Cutsem et al., 2017; Schmit and
Brisswalter, 2018).

The measured fall in Hct across the days might be due to the
well-known exercise-induced hypervolemia (Convertino, 1991,
2007). Further, ambient temperatures during the study period
were much warmer (around + 10 – 15◦C) if compared to the
weeks prior the camp. Thus, these temperatures – despite not
being exceptionally high – might have further amplified the
exercise-induced heat production in our “unacclimatized” study
participants and contributed to the plasma volume expansion
(Convertino et al., 1980; Convertino, 1991, 2007; Lorenzo
et al., 2010; Buchheit et al., 2011). In this respect, assessment
of sweating rate might have helped to further elucidate the
underlying contributions; however, unconfounded assessment of
body mass and fluid intake monitoring were not implementable
in this setting.

Autonomic Control Measures
The increase of the morning HR at all POST-days compared to
the PRE-measurements implies that a resting period of ≥ 15 h,
including night sleep, is insufficient to permit complete recovery
from an unaccustomed bout of cycling exercise. The increase
in HR was about 10% and thus exceeded the SWC in this
sample (Buchheit, 2014). Additionally, it has to be considered
that an increase in plasma volume across the training period
might have reduced the increase in morning HR and decrease in
morning HRV, respectively (Buchheit et al., 2011). The alteration
of lnHFP (about 12% reduction from PRE to POST) reflects a
reduction of vagal HR modulation on all POST days. The effect
of intensified training on morning HR, lnRMSSD and lnHFP

is not only statistically significant but most likely substantial,
using the SWC criteria given by Hopkins (2006). Furthermore,
a substantial effect on LF n.u. was very likely at POST 1,
likely at POST 2, and possible at POST 3. Results might also
speak for a distinct autonomic recovery pattern in response
to intensified training, with the vagal rebound taking longer
compared to the sympathetic withdrawal. However, it has to
be considered that (i) the change in LF n.u., was statistically
insignificant and (ii) LF-HRV may rather reflect baroreflex
mediated autonomic outflow than sympathetic tone (Goldstein
et al., 2011). Further, considering the strong correlation between
HR and lnRMSSD and lnHFP, respectively, the parasympathetic
branch of the autonomic nervous system might not be the
exclusive, but the main contributor to the increase of morning
HR during this period of intensified training. Despite equivocal
results regarding the potential of HR and HRV in detecting states
of FOR or NFOR and training load in elite athletes (Bosquet
et al., 2008; Buchheit, 2014; Plews et al., 2014; Coates et al.,
2018), our data support the view that morning HR and HRV
can reflect larger alterations in training load in recreational
athletes.

Associations Between S-CK, HR, and
HRV
Correlation analysis for S-CK and HRV showed that individual
changes of morning-HR and -HRV can explain up to 25%
of the change in S-CK, pointing to the potential of these
measures to complementary objectify and monitor training
status. Furthermore, a traditional seromarker of myocyte injury
and training load was associated with alterations of HR-
derived indices of autonomic control, a finding that has been
previously reported by only a few investigators (Buchheit et al.,
2011).

Limitations
Because we did not assess the physiological alterations following
the training camp after resuming to the “normal” routine, this
study is limited to relative short-term responses to training
volume increases. Further, no “classical” index of (functional)
overreaching, such as transient performance decrements, has
been assessed. In this respect it is of note that it is
currently debated, whether any form of overreaching is,
in fact, beneficial for adaptations and performance (Aubry
et al., 2014). Further, only training volume but not intensity
were assessed for the 6 weeks prior to the study period.
However, none of the athletes reported subjective signs of
FOR or NFOR and also S-CK as well as HR were in a
normal range at the beginning of the intensified training
period.

CONCLUSION

From these analyses, we cautiously conclude that morning HR
and HRV may serve as practical, complementary measures to
monitor functional status in recreational endurance athletes
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during periods of intensified training. Since the profile of
morning HR and HRV was associated with increases in training
load and the levels of a seromarker of muscle strain, a decrease in
HRV/ increase in HR may be indicative of non-sufficient recovery
from unaccustomed bouts of endurance exercise in these athletes.
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