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Simple Summary: Identification of pharmacological targets in cancer provides a major walkthrough
toward treatment strategies. The present research adopted a network pharmacology approach
utilizing a flavonoid glucoside prunetin-5-O-glucoside (PG) compound against gastric cancer. The
correlative targets were analyzed using Swiss target prediction and DiGeNET databases. Functional
enrichment and significant pathways enriched were predicted for the targets to associate its biological
mechanisms with cancer. Protein interaction network and cluster analysis was performed using
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Our analysis revealed three
core targets among the clustered modules that plays a crucial role in relation with cancer. With
this information, the core targets were examined for the binding affinity with PG using molecular
docking analysis and validations on the protein targets was performed using western blot analysis
and Human Protein Atlas. Our analysis through comprehensive network pharmacology resulted in
the prediction of three core targets of PG that can be significant biomarkers against gastric cancer.

Abstract: Gastric cancer (GC) is an aggressive malignancy with increased mortality rate and low
treatment options. Increasing evidence suggests that network pharmacology will be a novel method
for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The
current study aimed to use a network pharmacology approach to establish the predictive targets of
prunetin-5-O-glucoside (PG) against gastric cancer and elucidate its biological mechanisms. Primarily,
genes associated with the pathogenesis of GC was identified from the DiGeNET database and targets
of PG was obtained from the Swiss target prediction database. In total, 65 correlative hits were
identified as anti-gastric cancer targets of PG. Functional enrichment and pathway analysis revealed
significant biological mechanisms of the targets. Interaction of protein network and cluster analysis
using STRING resulted in three crucial interacting hub targets namely, HSP90AA1, CDK2, and
MMP1. Additionally, the in vitro cytotoxic potential of PG was assessed on three gastric cancer cells
(AGS, MKN-28, and SNU-484). Furthermore, the crucial targets were validated using molecular
docking, followed by their expressions being evaluated by western blot and Human Protein Atlas.
The findings indicate that the pharmacological action of PG against GC might be associated with the
regulation of three core targets: HSP90AA1, CDK2, and MMP1. Thus, the network pharmacology
undertaken in the current study established the core active targets of PG, which may be extensively
applied with further validations for treatment in GC.

Keywords: gastric cancer; network pharmacology; biomarkers; flavonoids; molecular binding;
pathway analysis
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1. Introduction

Gastric cancer (GC) is one among common malignant tumors affecting the stomach
and digestive system. It remains a prevalent disease globally with a very poor prognosis
rate and declining successful treatment options up until now [1]. The survival rate of
cancer prognosis is dismal, with less than 20% due to factors such as late diagnosis [2].
With the primary cause of incidence being Helicobacter pylori infection, other casual factors
may also contribute to the malignancy such as poor diet and obesity [3]. Though the exact
cause of GC remains unclear, the pathogenesis is similar to that of other malignant tumors
with a multi-step comprehensive disease [4]. The understanding of molecular pathways
and alterations in signaling mechanisms of the tumor cells through inhibitors may lead to
better improvement in the prognosis [5].

As a heterogeneous disease, significant treatment preferences for cancer require a
distinct understanding of its mechanism [6]. In the conditions of the cancerous growth
of cells from healthy cells, usually multiple genes and their products participate in the
transformation [7]. However, focusing multiple targets or multipathway treatment is
relatively difficult to pursue the exact mechanism of action of a drug in conventional
experiments [8]. The new generation of drugs focus on targeting specific proteins that
are expressed based on cancer type [9]. Understanding the targets and their mechanism
of action can be considered remarkably effective as it gives a clear insight for treatment.
Additionally, target specific therapy also minimizes the side effect of conventional cytotoxic
drugs [10]. The novel and innovative method of understanding the disease state and
its targets prior provides a roadmap that directs toward drug development by targeted
therapy [11].

Network pharmacology is a method of predicting targets against a particular disease
through the available biomedical data in system biology and poly-pharmacology [12]. It is
a multidisciplinary approach that integrates computational biology, network analysis, and
uses multitarget research strategies [13]. It employs a classical approach in bioinformatics
that aids in discovering the underlying mechanisms between the drug compounds and
their putative targets [14]. In targeted therapy, network pharmacology can describe the
complex relationships among the biological system through network component analysis
and determines the synergistic effects in cancer treatment [15].

Intriguingly, naturally sourced active ingredients have been found with original
pharmacological activities that can achieve potent efficacy as a medication in treating
disorders [16]. Introducing these bioactive components as a novel reliable therapeutic
element against different types of human cancer can be effective based on their selective
molecular targets [17]. Well-known derivatives of plant source that have been reported with
active therapeutic properties against many malignancies are the ‘flavonoids’ [18]. Most
of the flavonoids exist in the glycoside form as a dietary nutrient intake and undergoes
deglycosylation to aglycone upon consumption [19]. Epidemiological studies on the
biological activity of flavonoids has shown proven benefits of protection against cancer
development through various mechanisms [20]. Prunetin 5-O-glucoside (PG), also termed
as prunetionoside, is a glycosylated flavonoid that has been characterized to date in few
sources, namely Prunus ceruses and Betula schmidtii [21,22]. However, there has been no
extensive study on the individual biological mechanism of the compound to date.

Therefore, the current study aimed to use a network pharmacology approach to estab-
lish the pharmacological active targets of prunetin 5-O-glucoside against gastric cancer. In
the investigation, a comprehensive network pharmacology strategy and molecular docking
approach was used in combination with preliminary in vitro validations to examine the
molecular mechanisms. The study is framed as a three-phase workflow stated below:
(i) Identification of the potential targets of PG based on its association with GC through
retrieval from databases; (ii) Investigation of the key role of the identified targets through
functional enrichment and pathway analysis by Gene Ontology (GO) terms; (iii) Estab-
lishment of the core targets based on the interaction relationships by network analysis;
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and (iv) Validation of the potential targets by molecular docking verification and in vitro
assessment. A schematic diagram of the integrated process is displayed in Figure 1.
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Figure 1. Schematic flowchart designed for the current study to investigate the bio targets and molecular
mechanism of prunetin-5-O-glucoside to treat gastric cancer through a network pharmacology approach.

2. Materials and Methods
2.1. Data Collection and Preparation

The screening of targets against gastric cancer (GC) hits and the relative candidate
targets of prunetin-5-O-glucoside (PG) were identified based on databases. The current
study used target prediction database Swiss Target Prediction (www.swisstargetprediction.
ch, accessed on 30 September 2020) to predict the putative targets of PG. Following this, the
target hits associated with GC were derived from the DisGeNET database (http://www.
disgenet.org/, accessed on 2 October 2020) using the keyword search “gastric cancer”. The
overlapped GC hits with that of the PG targets were considered as anti-gastric cancer PG
targets and considered for further analysis.

2.2. Gene Ontology (GO) Analysis and Pathway Enrichment on the Identifiable Targets

Gene Ontology and functional pathway enrichment of the obtained targets were
performed by FunRich software v.3.1.4 (http://www.funrich.org, accessed on 6 October
2020) using the Reactome database for annotations. GO terms and pathways with false
discovery rate (FDR) < 0.01 were picked and defined as the enriched terms and pathways.
Each enriched GO term was plotted as a graph in groups of three categories: cellular

www.swisstargetprediction.ch
www.swisstargetprediction.ch
http://www.disgenet.org/
http://www.disgenet.org/
http://www.funrich.org
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component, biological process, and molecular function. The top ten significant pathways
enriched were chosen based on a Reactome pathway analysis and a doughnut chart was
constructed using the FunRich software.

2.3. Establishment of STRING Network and Module Construction of Gastric Cancer Targets

Protein-protein interaction (PPI) data of the obtained 65 targets were extracted from
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-
db.org/, accessed on 12 October 2020). The STRING database provides the interaction of
different protein to protein co-relation and its interactive level based on confidence scoring.
The identified 65 anti-gastric cancer targets were all inputted into the STRING interaction
database with the selection of Homo sapiens category for visualization of an interactive
network. The confidence score for the construction of an interactive network was set up
with a medium score of 0.4 to 0.7, respectively. Furthermore, the PPI network was subjected
to a K-means algorithm and the distinct clustered networks were identified. The clustered
networks were input into FunRich software for module construction.

2.4. Molecular Docking Analysis

For the evaluation of the putative targets predicted from the network analysis, molecu-
lar docking analysis was performed using Glide of Schrodinger-Maestro v.8.5. Primarily, the
three-dimensional (3D) structure of PG was obtained from PubChem (pubchem.ncbi.nlm.
nih.gov, accessed on 10 November 2020) and minimized. Additionally, the 3D structure
of the potential targets was downloaded from the PDB database (www.rcsb.org, accessed
on 10 November 2020). All protein structures were processed with receptor grids in order
to get various binding poses for the ligand on its active sites. The best ligand fit pose was
obtained based on the least Glide score and binding energy was calculated by Schrodinger
Prime using molecular mechanics generalized born surface area (MM-GBSA). Furthermore,
the amino acid interaction within the protein targets and the ligand were visualized in
LigPlot using Schrodinger-Maestro v.8.5, New York, NY, USA.

2.5. Pharmacological Study by In Vitro Cytotoxicity Assessment

The human gastric cancer cell lines AGS, MKN-28, SNU-484, and human keratinocyte
HaCaT cells were obtained from the Korea cell line bank (Seoul, Korea). After arrival, the
gastric cancer cells were cultured in Roswell Park Memorial Institute (RPMI)1640 medium
and HaCaT cells in Dulbecco’s Modified Eagle Medium (DMEM) medium supplemented
with 10% heat inactivated fetal bovine serum (FBS); 100 U/mL penicillin and 100 µg/mL
streptomycin was used as antibiotics. The cells were maintained at 37 ◦C in a humidified
atmosphere of 95% air and 5% CO2. The compound prunetinoside with ≥95% purity was
purchased from EnsolBio sciences (Daejeon, Korea). AGS, MKN-28, and HaCaT Cells were
grown on a 96-well plate seeded at a density of 1 × 104, whereas SNU-484 were seeded at
2 × 104. The grown cells were treated with different doses 0, 10, 25, 50, 75, 150, and 300 µM
of PG and incubated at two different time intervals of 24 h and 48 h. Subsequently, the
cell viability was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay upon incubation for 3 h in the dark. The formation of formazan
crystals was measured after solubilization in DMSO at 540 nm by spectrophotometry.
The amount of the viable cell percentage was calculated in comparison with that of the
untreated cells.

2.6. Observation of Morphological Changes and DAPI Fluorescent Staining

AGS cells were seeded at a density of 4 × 105 cells per well in a 6-well culture plates
and allowed to grow up to 70% confluency. Following this, cells were treated with distinct
concentrations of PG (0, 50, 75, and 150 µM) and incubated for 48 h. After 48 h of incubation,
the treated cells were subjected to 1X PBS washing, and then followed by fixing using 37%
formaldehyde for at least 15 min in room temperature. The fixed cells were further washed
with PBS and stained by 4′, 6-diamidino-2-phenylindole (DAPI; Vectashield H-1500; Vector

https://string-db.org/
https://string-db.org/
pubchem.ncbi.nlm.nih.gov
pubchem.ncbi.nlm.nih.gov
www.rcsb.org
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Laboratories, Burlingame, CA, USA). The nuclear morphology of the stained cells were
viewed at 780–800 nm under an Olympus FV1000 MPE microscope (Tokyo, Japan). The
images were visualized using the software Olympus Fluoview viewer (ver.4.2b, Olympus
Global, Tokyo, Japan).

2.7. Validation of the Target Gene Expression Levels in Gastric Cancer Using GEPIA

The expression levels of the identified target genes were analyzed through the GEPIA
website (gene expression profiling interactive analysis, http://gepia.cancerpku.cn/index.
html, accessed on 25 March 2021). GEPIA is a web-based platform with tremendous
thousands of expression profiles that allows for interactive expression analysis, patient
survival analysis, and gene detection, which aids in disease prognosis and therapeutic
discovery process [23]. The mRNA expression levels of the three targets (CDK2, MMP1, and
HSP90AA1) were searched under the dataset selection STAD (stomach adenocarcinoma).
The total number of sample comparison obtained for the expression levels were 408 STAD
samples and 211 non-tumor normal stomach samples. The criteria for obtaining the
expression of the mRNA were subjected to Log2FC less than 2 and a p-value of 0.01 was
considered as the significant range. The expression level of the target genes between normal
and tumor samples were viewed by constructing a boxplot.

2.8. Validation of Target Protein Expression Using Western Blot Assay

To identify the in vitro protein expression of the crucial targets, western blot was
performed. AGS gastric cancer cells were seeded at a density of 5 × 105 per well on a
60 mm plate and treated with PG at indicated concentrations (0, 50, and 75) for 48 h at
37 ◦C. The cells were harvested and the total protein from each group was extracted using
radioimmuno-precipitation assay (RIPA) buffer (iNtRON Biotechnology, Seoul, Korea)
containing protease and phosphatase inhibitors. The concentration of protein present
in each group was determined using the Pierce™ BCA assay (Thermo Fisher Scientific,
Rockford, IL, USA). Protein samples were separated by 8–15% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) based on its molecular weight, followed
by transfer on to a polyvinylidene fluoride membrane (PVDF). The membrane was further
blocked in 5% bovine serum albumin (BSA) solution for about 1 h at room temperature.
Upon blocking, each protein of interest was incubated with their respective primary
antibodies: CDK2 (1:1000), MMP1 (1:1000), HSP90 (1:1000), and β-Actin (1:1000) at 4 ◦C
overnight. Incubated membranes were washed with TBS-T buffer for at least five times
repeatedly at an interval of 10 min. Washed membranes were further subjected to secondary
antibody treatment with horseradish peroxidase (HRP)-conjugated for 2 h incubation at
room temperature. The blots obtained were developed under an electrochemiluminescence
(ECL) detection system (Bio-Rad Laboratory, Hercules, CA, USA). The expression of the
proteins was analyzed using ImageJ 1.52a (U.S. National Institutes of Health, Bethesda,
MD, USA). The relative density of the protein bands was normalized against the expression
of β-actin, which was used as the control.

2.9. Statistical Analysis

The experimental results obtained in the study were analyzed statistically using
GraphPad Prism software (version 5.0 GraphPad, Inc, San Diego, CA, USA). The results
were expressed as the mean ± standard error of the mean (SEM) of triplicate samples.
The significant differences between the groups were calculated using one way factorial
analysis (ANOVA) followed by Bonferroni’s test. The p-value of <0.05 were considered
statistically significant.

3. Results
3.1. Identification of Candidate Targets against Gastric Cancer

The identification of anti-gastric cancer targets was performed after the search from
the Swiss target prediction and DisGeNET databases. In total, 4049 gastric cancer hits and

http://gepia.cancerpku.cn/index.html
http://gepia.cancerpku.cn/index.html
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104 putative PG targets were screened in the primary search. The co-relative targets were
identified by construction of a Venn diagram using FunRich software. This resulted in a
total of 65 common targets of PG against gastric cancer (Figure 2). The identified 65 targets
was considered as the anti-gastric cancer targets of PG presented in Table S1 and was
subjected to further analysis.
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Figure 2. Venn diagram of gastric cancer and prunetin-5-O-glucoside targets. The candidate bio targets of prunetin-5-O-
glucoside (PG) and gastric cancer were identified upon the Swiss target prediction and DisGeNET database. A protein-protein
interaction (PPI) network of PG in gastric cancer targets was constructed for visualization of interactive targets.

3.2. Functional Enrichment on the Identifiable Targets

The biological functions and the signaling pathways enriched of all the 65 anti-gastric
cancer targets of PG were analyzed using FunRich software. The Gene Ontology (GO)
enrichment analysis was obtained based on three categories: biological function, cellular
component, and molecular function. The top 10 significantly enriched GO terms among the
65 core targets were produced and depicted in Tables S2–S4. Figure 3a shows that a higher
number of cellular component enrichment was identified in the extracellular space and
cytoplasm. Figure 3b shows the enriched GO terms of biological process were associated
with signal transduction and cell communication. Figure 3c shows the significant GO terms
of molecular function were catalytic activity, protein serine/threonine kinase activity, and
metallopeptidase activity, respectively.
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Figure 3. Enriched Gene Ontology in terms of (a) cellular component, (b) biological process, and (c) molecular function
from predicted targets of PG against gastric cancer.

The pathway enrichment analysis of the 65 potential targets were identified using
the Reactome database. Upon screening, the top 10 significant pathways were found
to be activation of matrix metalloproteinases, degradation of the extracellular matrix,
VEGFR2 mediated cell proliferation, regulation of APC/C activators between G1/S and
early anaphase, MAP2K and MAPK activation, collagen degradation, TP53 regulates tran-
scription of genes involved in G2 cell cycle arrest, G2/M DNA replication checkpoint,
p53-Dependent G1 DNA Damage Response, and VEGFA-VEGFR2 Pathway (Figure 4a).
The targets among the pathway enrichment were grouped based on the interaction network
constructed by the STRING database. The targets were grouped into the five most signifi-
cant clusters that include the activation of matric metalloproteins, regulation of cell cycle
and DNA damage checkpoints, p53 mediated pathway, MAPK activation and regulation,
and VEGFR2 mediated cell proliferation, respectively (Figure 4b).
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3.3. Network Interaction and Clustering Analysis of the Gastric Cancer Targets

The identifiable 65 targets of PG associated with GC was introduced into the STRING
database to obtain the functional protein-association network. The protein–protein inter-
action (PPI) network of these anti-gastric cancer targets was constructed with 65 nodes
and 357 edges obtained with a medium confidence score of 0.400 and enriched p-value of
<1.0 × 10−16. The constructed network of interaction was subjected to clustering analy-
sis using the K-means algorithm, which resulted in three distinct numbers of interactive
networks as represented in Figure 5a. Furthermore, module construction of the three
distinct networks was performed in FunRich software to identify the central interacting
node of each network. Therefore, screening of each module was performed by analyzing
the core target with the maximum degree of interaction among the majority of proteins.
Correspondingly, the resultant showed three core target proteins among each module,
namely, HSP90A1, CDK2, and MMP1, as shown in Figure 5b.
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3.4. In Silico Validation of the Targets Using Molecular Docking

The PG associated core targets were validated using molecular docking analysis. The
three-dimensional structure of the MMP1 (PDB ID: 1CGL), CDK2 (PDB ID: 1AQ1), and
HSP90 (PDB ID: 2VCJ) were downloaded from the RCSB Protein Data Bank. The target
proteins were subjected to Glide docking based on the Standard Precision (SP) and Extra
Precision (XP) scoring functions. The results showed that PG had good SP docking score
with all three core targets ranging from −6.6. to −8.5 kcal/mol. The XP docking score of
the best poses of PG with CDK2, MMP1 and HSP90 was −10.59 kcal/mol, −9.85 kcal/mol,
and −9.43 kcal/mol, respectively. The ligand interaction diagram of PG with three targets
are shown in Figure 6. The scoring values pertaining to SP, XP, and number of hydrogen
bonds (HB), along with the interacting amino acid residues, are given in Table 1.
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Figure 6. Molecular docking verification of the crucial targets of PG against gastric cancer. The three-dimensional structure
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Table 1. Molecular docking studies of selected target protein complexed with prunetinoside and
their binding energies.

Protein Target SP
(kcal/mol)

XP
(kcal/mol)

HB (n)
(kcal/mol)

Residues Involved in Hydrogen
Bonds

CDK2 −7.21 −10.593 3 Asp-86, Gln-131, H2O
MMP1 −8.852 −9.848 3 Pro-238, Tyr-240, Gln-219
HSP90 −6.73 −9.429 2 Asp-54

HB (n)—number of hydrogen bonds.

Analysis through molecular docking has become an important tool in the drug dis-
covery process; however, it has certain limitations like poor scoring function and tackling
the protein flexibility problem. For these reasons, the docking results should be improved
by means of post-docking processing strategies [16]. Therefore, molecular docking was
measured using the Prime/Molecular Mechanics-Generalized Born Surface Area (MM-
GBSA) tool to calculate binding energy. Among the three targets, the free binding energy
of PG with MMP1 was the lowest (−84.79 kcal/mol), followed by CDK2 (−76.97 kcal/mol)
and HSP90 (−51.86 kcal/mol), which is shown in Table 2. The Coulomb energy, lipophilic
energy, and van der Waals energy of all three complexes had negative values and showed fa-
vorable condition to the total free energy. However, solvation energy of all three complexes
had positive values and contributed unfavorably toward total free energy.

Table 2. Post docking analysis using Prime/Molecular Mechanics-Generalized Born Surface (MM-
GBSA) for docked complexes.

Protein-Ligand Complex ∆GBind ∆GCoul ∆GLipo ∆Gvdw ∆GSolvGB

CDK2 −76.97 −19.5621 −42.65 −47.80 36.53
MMP1 −84.79 −32.00 −39.49 −55.89 41.29
HSP90 −51.86 −1.89 −33.89 −55.14 37.89

All energies are expressed in kcal/mol. ∆GBind—MM-GBSA free binding energy; ∆GCoul—Coulomb energy of
the complex; ∆GLipo—lipophilic energy of the complex; ∆Gvdw—van der Waals energy of the complex; ∆GSolvGB—
solvation energy of the complex.

3.5. Pharmacological Effect of PG by In Vitro Cell Culture Assessment and Morphological Examinations

To further validate the bioinformatic findings, cell culture assessment was conducted
to screen the cytotoxic effect of PG. Human gastric cancer cell lines—AGS, MKN-28,
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SNU-484 and normal human keratinocyte HaCaT cells—were used to evaluate the pharma-
cological activities of PG. The chemical structure of PG is shown in Figure 7a. HaCaT cells
and gastric cancer cells treated with different concentrations of PG at two different time
intervals of 24 h and 48 h were evaluated by the MTT assay. The results shown in Figure 7b
indicate that at a maximum concentration of up to 300 µM of PG at both 24 h and 48 h does
not affect the viability of HaCaT cells, whereas treatment with PG at the 48 h time interval
showed a significant inhibition rate on the assessed gastric cancer cells (Figure 7c). These
results indicate that the cytotoxic effect of PG is specific to cancer cells and does not affect
the non-tumor cells.
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Figure 7. Cell viability assessment of PG treated gastric cancer cells and normal HaCaT cells. (a) Chem-
ical structure of prunetinoside. (b) Cytotoxicity assessment by the MTT assay upon treatment with
various concentrations (0, 10, 25, 50, 75, 150, and 300 µM) of PG at two different time intervals of 24 h
and 48 h on normal human keratinocyte HaCaT cells. (c) Cytotoxicity assessment by the MTT assay
upon treatment with various concentrations (0, 10, 25, 50, 75, 150, and 300 µM) of PG at two different
time intervals of 24 h and 48 h on human gastric cancer cells AGS, MKN-28, and SNU-484 cells.

The IC50 values of PG on the three gastric cancer cells at 24 h were found to be 82.2 µM
in AGS cells, 76.5 µM in MKN-28, and 142.7 µM in SNU-484 cells. At 48 h, the IC50 values
of PG were much stronger even at low concentrations, say 35.3 µM in AGS cells, 40.2 µM
in MKN-28 cells, and 38.4 µM in SNU-484 cells, respectively (Table 3). In addition, it was
observed that PG induced a stronger cytotoxic effect on AGS cells at comparably low
concentration than the MKN-28 and SNU-484 cells. Based on this result, AGS cells more
sensitive to PG were chosen for further in vitro experimentation.

Table 3. IC50 values of PG on three gastric cancer cell lines treated at two time intervals of 24 h and
48 h.

Gastric Cancer Cell Lines AGS MKN-28 SNU-484

Time intervals 24 h 48 h 24 h 48 h 24 h 48 h
PG IC50 (µM) 82.2 35.3 76.5 40.2 142.7 38.4

All values are expressed in the micro molar scale (µM). The IC50 values were derived from smooth curve analysis
in GraphPad Prism and were averaged from at least three independent experiments.

Furthermore, the in silico pharmacokinetic properties of PG were predicted by its struc-
ture using SwissADME (Swiss Institute of Bioinformatics, Switzerland) and are provided in
Table S6. The results showed that PG did not violate the Lipinski’s rule of 5, but showed a
poor GI absorption property, which may be due to the presence of glucose moiety.
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3.6. Induction of Cell Death by PG in AGS Cells through Western Blot and Morphological
Examinations

Microscopical observations on PG treated AGS cells was performed using DAPI
staining to investigate the cell death morphology. The results shown in Figure 8a represent
the morphological changes on AGS cells treated with PG (50, 75, and 150 µM) for 48 h
with an increase in floating cells, cell shrinkage, and cell ruptures, respectively. To further
observe the cell nuclei damage in brief, PG treated AGS cells stained with DAPI were
observed under confocal fluorescence microscopy. The results in Figure 8b show that there
was an increased fluorescence, indicating fragmented nuclei on the PG treated group of
cells representing the induction of cell death.
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Figure 8. Cell death analysis by PG using morphological observations and western blot on PG
treated AGS gastric cancer cells. (a) Morphological changes as observed under a light microscope
showing cell death at indicated concentrations (0, 50, 75, and 150 µM) PG on AGS cells. (b) AGS cells
treated with PG for 48 h and stained with DAPI followed by observation under confocal microscopy.
(c) Protein expression of cell death hallmark proteins PARP, caspase 3, and its cleaved form on PRU
treated AGS cells for 48 h. The expression levels of the target proteins were normalized against the
control β-actin expression. The data are represented graphically based on its densitometry. Values are
given as the mean ± standard error of the mean (SEM) of three independent experiments. * p < 0.05
vs. control and ** p < 0.01 vs. control.

In addition, the induction of cell death caused by PG was studied by evaluating the
protein expressions of important proteins PARP, cleaved PARP, caspase 3, and cleaved
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caspase 3. The event of apoptosis is coordinated by the activation of caspases that play a
vital role as effectors or executioners in performing cell death. The activated form of caspase
3 tends to cleave several DNA-dependent protein kinases and poly ADP ribose polymerase
(PARP) [24]. The cleaved form of the protein PARP is recognized as an important apoptotic
marker that aids in bringing cellular damage through DNA cleavage and induces apoptotic
cell death [25]. Results obtained from western blot revealed that the apoptotic marker
proteins cleaved PARP and cleaved caspase 3 showed significant increased expression in
AGS cells upon treatment with PG, as shown in Figure 8c. These data confirm that PG
induces apoptotic cell death in AGS cells.

3.7. Evaluation of the Targets of by Its Protein and mRNA Expression Levels in Gastric Cancer

Based on the system pharmacology results, the mRNA expression levels of the ob-
tained hub bio targets were explored using the GEPIA database. The analysis includes
comparison of the three targets (CDK2, MMP1, and HSP90) between 408 stomach adenocar-
cinoma (STAD) samples and non-tumor stomach tissues. As demonstrated in Figure 9, the
mRNA expression levels of CDK2 (Figure 9a), MMP1 (Figure 9b), and HSP90 (Figure 9c)
were markedly upregulated in STAD tissue compared to the normal non-cancerous tissues.
The results from the GEPIA database revealed that the mRNA expression levels of all three
targets were significantly higher (p < 0.01) in STAD tissues than those in normal tissues.
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Figure 9. Validation of the crucial targets of PG against gastric cancer. Validation of the mRNA expression levels of (a) CDK2,
(b) MMP1, and (c) HSP90 in STAD tissues and normal gastric tissues using GEPIA. These three box plots were based on 408
STAD samples (marked in red) and 211 normal samples (marked in gray). * p < 0.01 was considered statistically significant.
STAD: stomach adenocarcinoma. (d) Protein expression of the targets CDK2, MMP1, and HSP90 on PRU treated AGS cells
for 48 h. (e) The expression levels of the target proteins were normalized against the control β-actin expression. The data are
represented graphically based on its densitometry. Values are given as the mean ± standard error of the mean (SEM) of
three independent experiments. * p < 0.05 vs. control and ** p < 0.01 vs. control.

After examining the mRNA expression levels, the three targets were validated by their
protein expressions through western blot analysis on PG treated AGS cells. The results
shown in Figure 9a show the decreased expression levels of the target proteins CDK2,
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MMP1, and HSP90 upon treatment with 50 µM and 75 µM concentrations of PG in AGS
cells. Additionally, the relative expression graph of PG treatment and the target proteins
was charted based on the results of the expression of the target proteins. The expression
of the candidate target proteins was normalized with β-actin expression as the loading
control and the appropriate significance level was calculated. As shown in Figure 9b, the
relative expression of the target proteins showed a significant decrease in a dose-dependent
manner compared to the control untreated group. These findings were consistent with
the obtained mRNA data, which showed increased expression in gastric cancer tissues.
Collectively, these results indicate that the identified hub targets are highly expressed in
gastric cancer and are suppressed upon PG.

4. Discussion

Gastric cancer is the third leading cause of cancer cell death globally with a mortal
rate in the advanced stages. The initial diagnosis, progression, and treatment of the disease
condition is largely dismal [26]. Although chemotherapy and immunotherapy has very
limited efficacy against the disease state, current emerging trends have turned toward the
use of natural therapeutics in the developing research [27]. The advent of the big data era
with the accumulation of evidence on the mechanisms of biological molecules as a progress
of bioinformatic approaches provides a strong support in developing drugs through for
network pharmacology [28]. The core concept of network pharmacology provides an
extensive way to predict potential targets by analyzing their biological mechanisms from
the perspective of network, which leads to the discovery of new active drugs from medicinal
compounds [29].

In the current study, a bioinformatic investigation from web-based databases was
utilized to explore the therapeutic mechanism of the flavonoid compound prunetin-5-
O-glucoside (PG) as a treatment for gastric cancer through a network pharmacological
approach. To the best of our knowledge, this is the first study integrating network pharma-
cology and molecular docking simulations to reveal the pharmacological mechanisms of
PG against gastric cancer.

Primarily, identification of the therapeutic targets of PG in association with gastric
cancer was performed through database screening. As a result, a total of 65 potential
targets related to PG against gastric cancer were identified. The identified targets were
studied for their functional enrichment through analysis by Gene Ontology (GO) terms.
The majority of the enriched categories of targets were found to be related to signal
transduction, cell communication process, and the molecular function of metallopeptidase
activity. Furthermore, the pathway enrichment identified the top ten significantly enriched
pathways. However, network clusters among the targets showed that major proteins were
significantly executed in the regulation of cell cycle, MAPK activation and regulation, and
activation of matrix metalloproteins.

Regulation of cell cycle is a frequently overactive pathway in cell growth that is
associated with cell cycle proteins like cyclins and CHKs for regulating the uncontrolled
proliferation in cancer [30]. Mitogen activated protein kinase (MAPK) pathways are a
group of cascades that leads to activation of adequate signals in modulating cell growth.
Due the upstream activating roles, MAPK plays key modulatory roles in the response of
cancer cells [31]. The control of remodeling of the extracellular matrix (ECM) is merely
important for cell invasion, growth, and metastatic growth of tumors. The activation of
matrix metalloprotein (MMP) pathways is strongly associated with reconstruction of these
ECM in terms of wound healing and repair. Thus, targeting MMP associated mechanisms
by inhibitors are promising tool in treating cancer progression [32]. Therefore, it denotes
that the anti-gastric cancer mechanism of PG may be benefited through regulating any of
the above identified pathways.

The network construction on the targets and interaction among them revealed three
interconnected subnetworks. Each cluster of subnetworks upon further analyses showed
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distinct modules with a key interacting network of hub genes. Among the three modules of
hub interactions, the core targets were identified as HSP90, MMP1, and CDK2, respectively.

Matrix metalloproteinases family (MMPs) is an endopeptidase that degrades com-
ponents present in the extracellular matrix. MMPs are also called as matrixins, which
consists of 26 members ranging from MMP-1 to MMP-28 involved in the process such as
wound healing, inflammatory response, and angiogenesis. Among these, MMP1 plays
a major role in tumor invasion, neoangiogenesis, metastasis, and the proinflammatory
process. Specifically, the extensive role of MMP1 in metastasis of gastric cancer has been
reported [33]. Evidence on flavonoids like curcumin and its derivatives reports the sup-
pression of migratory activity in cancer cells by inhibition of MMP1 [34]. Ginsenoside
Rh1 (Rh1) inhibited colorectal cancer cell migration and invasion by partial inhibition of
MMP1 and MMP3 [35]. Skullcapflavone II, a flavonoid derived from the root of Scutellaria
baicalensis, has been reported to possess anticancer activity in human skin fibroblasts by
suppressing MMP1 transcription [36].

Cyclin-dependent kinase (CDK) are one type of serine/threonine kinase protein
systems involved in the cell cycle mechanism through activation at different phases of cell
cycle events [37]. CDKs play a major role in the control of cell cycle progression during the
complete cell division process. Deregulation of the cell cycle process is one of the major
steps in the transformation of normal cells into cancerous cells. The CDK family protein
has gained a crucial anticancer target for this reason [38]. Scutellarin is a natural flavone
glycoside exerting anticancer activity by inhibiting the expression of proteins including
cyclin D1, CDK2, Bcl2, MMP-2, and MMP-9 [39]. Shi et al. identified fluspirilene to be one
of the candidate drugs in human cancer with an inhibitory mechanism of action against
the CDK2 protein [40].

Heat-shock protein 90 (Hsp90) is a vital molecular chaperone ATPase-dependent
protein that is involved in maturation, activation, and stabilization of various transcription
factors [41]. The client proteins found in the Hsp90 family play fundamental roles in
signal transduction, proliferation, cell cycle progression as well as in metastasis and tumor
invasions [42]. Therefore, designing inhibitors for Hsp90 could induce the proteasomal
degradation of Hsp90 client proteins, bringing about cell death in malignancies. Liu
et al. reported that the derivative of quercetin (TL-2-8) induces cell death and immature
mitophagy by inhibiting the function of AHA1/Hsp90 complex [43]. Higher levels of Hsp
proteins (Hsp90 and Hsp70) elevated in breast cancer cells have been shown to be inhibited
by the action of the flavonoid quercetin, causing apoptotic cell death [44]. Based on this
literature, it can be inferred that all three core predicted targets play major roles in cancer
progression and might be therapeutic targets for treating gastric cancer with PG.

Upon review of the literature, interestingly, it was found that the targets had a close
association with the significantly enriched pathways: activation of matric metalloproteins,
regulation of cell cycle and DNA damage checkpoints, p53 mediated pathway, MAPK
activation and regulation, and VEGFR2 mediated cell proliferation. The target CDK2 is
a vital protein kinase involved in cell cycle regulation induces arrest in G2 phase that
has been effectively used as inhibitors to suppress cancer [45]. Similarly, CDK proteins
are found to be activated in parallel with the p53 mediated signaling pathway, which
tends to converge at the induction of apoptosis [46]. VEGF and VEGF receptor 2 (VEGFR-
2) mediated cell proliferation pathways mediate major angiogenic function to maintain
tissue homeostasis [47]. The target Hsp90, being a molecular chaperone protein, has been
importantly involved in the maintenance of angiogenesis through these growth factor
pathways. Thus, suppression of Hsp90 activity tends to inhibit the VEGFR-2 signals in
cell proliferation [48]. The overexpression of the target MMP-1 is strongly associated with
the activation of the MAPK pathway in a variety of cancer types [49]. A reported study
has suggested that the overexpression of MMP-1 expression depends on the induction
of MAPK through the activation of AP-1 transcriptional factors [50]. Thus, inhibition of
MMP-1 through suppressing any of the MAPK pathway regulators—JNK/ERK—induces
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cell death in cancer cells. This indicates that PG could mediate these enriched pathway
responses of the identified targets to bring cell death in gastric cancer.

Furthermore, cell culture assessment of PG treatment on human gastric cancer cells
showed inhibition of cell growth and increased the cell death rate by dose-dependent regu-
lations. Additionally, the non-cytotoxic effect of PG on normal HaCaT cells clearly denotes
the cancer specific action of PG and is non-toxic to normal cells. Morphological evidence in
the study showed visible cell death proportion through microscopic examinations. The
upregulated protein expression on the cleavage of cell death marker proteins like PARP and
caspase 3 on PG treated gastric cancer cell confirms the induction of apoptotic cell death.

As a validative perspective, the effect of PG on the core targets (HSP90, MMP1, and
CDK2) were analyzed by in silico and in vitro approaches. The molecular interaction of the
targets showed effective binding with PG in docking analysis. In addition, the evaluation
of the hub targets analyzed for its mRNA expression through the GEPIA database showed
high expressions in stomach cancer samples compared to the normal samples. In vitro
validation of protein expression through western blot indicated significant downregulation
of the targets in PG treated gastric cancer cells. In combination, these results indicate that
the transcriptional expression levels of the predicted targets overexpressed in patients with
GC and their translational expression prove its suppression upon treatment with PG.

5. Conclusions

In conclusion, the study identified the core targets and its biological functions, path-
ways, and the effect of PG on gastric cancer. The constructed network pharmacology
revealed the significant interaction among the predicted targets that led to the identifica-
tion of three core proteins (CDK2, MMP1, and HSP90) as the active bio targets of PG in
gastric cancer. Molecular docking simulation showed the active binding potential between
the targets and PG. Preliminary invitro studies prove the anticancer effect of PG and its
potential to reduce the expression of the targets. Our study provides a theoretical foun-
dation that PG might have specific therapeutic effects in gastric cancer and its identified
pharmacological targets were experimentally verified, which might be potential hallmarks
for treating gastric cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13081918/s1, Table S1: List of 65 potential anti-gastric cancer targets of PG, Table
S2: Top 10 significantly enriched GO terms of cellular component associated with the identified anti-
gastric cancer targets of PG, Table S3: Top 10 significantly enriched GO terms of molecular function
associated with the identified anti-gastric cancer targets of PG, Table S4: Top 10 significantly enriched
GO terms of biological process associated with the identified anti-gastric cancer targets of PG, Table
S5: Top 10 significantly enriched pathways identified by the Reactome database and its associated
anti-gastric cancer targets of PG, Table S6: Prediction of absorption, distribution, metabolism and
excretion (ADME) profile of PG ADME profile of PG.
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