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Abstract 

Background:  Cognitive function declines with age and has been shown to be associated with atrophy in some 
brain regions, including the prefrontal cortex. However, the details of the relationship between aging and cognitive 
dysfunction are not well understood.

Methods:  Across a wide range of ages (24- to 85-years-old), this research measured the gray matter volume of struc-
tural magnetic resonance imaging data in 39 participants, while some brain regions were set as mediator variables to 
assess the cascade process between aging and cognitive dysfunction in a path analysis.

Results:  Path analysis showed that age affected the left hippocampus, thereby directly affecting the left superior 
frontal gyrus. Furthermore, the gyrus directly affected higher order flexibility and maintenance abilities calculated as in 
the Wisconsin card sorting test, and the two abilities affected the assessment of general cognitive function.

Conclusion:  Our finding suggests that a cascade process mediated by the left hippocampus and left superior frontal 
gyrus is involved in the relationship between aging and cognitive dysfunction.
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Introduction
Higher brain functions related to thinking, judgment, and 
behavior are highly human-specific characteristics. In 
particular, executive functioning to tune out stimuli that 
are irrelevant to the task/process (cognitive inhibition) or 
to adapt strategies to situations (cognitive flexibility), as 
assessed by the Wisconsin card sorting test (WCST) [1] 

and Montreal Cognitive Assessment (MoCA) [2], which 
measures overall cognitive function, plays an important 
role in daily life [3–5]. Although the executive function-
ing declines with age [6], it is also affected by years of 
education and illness [7–9], making individual differ-
ences to be quite pronounced [10].

Executive functioning is associated with the hippocam-
pal-frontal network [11–13], and some studies suggest 
that the volume and thickness of the frontal lobe and hip-
pocampus are involved in performance in the WCST [14, 
15]. In addition, positron emission tomography and elec-
troencephalography patterns during the WCST are also 
affected by aging [16, 17]. It is thought that the atrophy of 
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specific regions is an intervening variable in the relation-
ship between aging and the decline in executive function-
ing; however, the details of the cascade process among 
relevant variables have not been elucidated to date.

The current study measured the gray matter volume 
from structural magnetic resonance imaging (MRI) data, 
and the frontal lobe and hippocampus were set as regions 
of interest (ROIs) (12 locations on the left and right sides 
of the ROIs: the opercular part of the inferior frontal 
gyrus, orbital part of the inferior frontal gyrus, triangu-
lar part of inferior frontal gyrus, middle frontal gyrus, 
superior frontal gyrus, and hippocampus) because they 
were related to WCST in previous studies mentioned 
above [11–17]. First, we assessed the decline in executive 
functioning (WCST and MoCA) and region atrophy due 
to aging by comparing younger and older groups. Next, 
we assessed the relationship between age, years of edu-
cation, region atrophy, WCST performance, and MoCA 
by a path analysis to verify the cascade process leading to 
cognitive dysfunction.

As a rough preliminary model, we assumed that indi-
vidual profile characteristics would affect the volume 
of specific brain regions within the frontal lobe-related 
and hippocampal regions, and then some regions would 
affect cognitive function. Therefore, three phases were 
established in the path analysis (Additional file  1: Fig. 
S1). Phase 1 was set for individual profile characteristics 
(age and years of education), phase 2 for brain region vol-
ume (12 regions), and phase 3 for assessments of cogni-
tive function (three indices calculated by WCST and a 
MoCA).

Methods and materials
Participants
This research was approved by the Ethics Committee of 
Showa University Hospital and was conducted in accord-
ance with the principles of the Declaration of Helsinki 
(Clinical trial identifier number: 2561). This study was 
registered for the University hospital Medical Infor-
mation Network (UMIN)-CTR (ID: UMIN000033776, 
20/08/2018). The participants included in this study com-
prised a subset of subjects from a previous study [18], for 
whom both cognitive task and structural MRI data were 
available. The exclusion criteria were history of stroke, 
encephalitis, multiple sclerosis, history of alcohol or 
other drug intoxication, presence of tumors, overt sen-
sory deficits, upper motor neuron signs, significant ball 
symptoms, and diffuse muscle weakness. Furthermore, 
patients were excluded if they had received any experi-
mental drugs within 30  days prior to the experiment, 
or if they had any restrictions on MRI examinations 
(e.g., pacemaker, continuous infusion pump implanta-
tion, pregnant or lactating women). We also excluded 

those who appeared to have difficulties complying with 
the experiment due to mental abnormalities. All elderly 
participants, living independently and with self-reported 
absence of memory and mild cognitive deficits, partici-
pated in the study. Participants were aged 23 to 59 years 
in the younger group and 60 to 85  years in the elderly 
group. All participants provided written informed con-
sent. Twenty elderly participants (10 men and 10 women) 
and 20 younger adults (11 women and 9 men) partici-
pated in this study. The average age of all participants was 
56.95 (SD = 18.95). Nineteen elderly and 18 younger par-
ticipants were right-hand dominant, and all had normal 
visual acuity. The average age of the elderly group (mean 
age: 74.1) was higher than that in the younger group 
(mean age: 40.7; t37 = 11.970, p < 0.0001).

Wisconsin card sorting test
We used a modified and computerized version of the 
Keio Version WCST [19]. The WCST is a test that uses 
cards with printed figures comprising one to four trian-
gles, stars, crosses, and circles in red, green, yellow, and 
blue. Participants were required to place the response 
cards one by one under the four stimulus cards according 
to one of the three classification categories: color, shape, 
or number. The outcome measures were the number of 
categories achieved (CA), perseverative errors of Nelson 
(PEN), and difficulties in maintaining set (DMS). The CA 
is the number of categories for which six consecutive cor-
rect responses are achieved (eight is the maximum num-
ber of categories that can be achieved) and reflects the 
sum measure of the level of conceptual shifts. The index 
reflects the degree of concept formation and transforma-
tion. PEN reflects the number of incorrect responses in 
the same category as the immediately preceding incor-
rect response. The index indicates a tendency for false 
reactions to persist and a failure to suppress the previ-
ous reaction. DMS reflects the number of false responses 
after consecutive correct answers. The index refers to the 
degree to which the subject loses track of the classifica-
tion category to which the participant is conforming.

MRI acquisition
MRI data were obtained at Ebara Hospital (Tokyo, Japan) 
using a Siemens Avanto 3 T Magnetom TIM Trio scan-
ner. T1-weighted anatomical scan was performed based 
on the following parameters: repetition time, 2250  ms; 
echo time, 3.06 ms; flip angle, 9°; inversion time, 1000 ms; 
field of view, 256 × 256 mm; matrix size, 256 × 256; and 
voxel size, 1 × 1 × 1 mm. The acquisition of high-resolu-
tion anatomical images was optimized with magnetiza-
tion-prepared rapid gradient echo sequence.
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Image processing
Image processing was performed using FreeSurfer ver-
sion 6 [20, 21], including motion correction, removing 
non-brain tissue, normalization with non-uniform inten-
sity, affine registration to Montreal Neurological Institute 
(MNI) space, and Talairach transformation [22]. Volu-
metric segmentation [23], cortical surface reconstruction 
[24–26], and parcellation [27, 28] were automatically per-
formed using the recon-all script on FreeSurfer after the 
image processing. Detailed descriptions have been pro-
vided elsewhere [29]. The 70 gray matter volumes deter-
mined by Desikan-Killiany brain atlas [28] were used in 
this study. All gray matter boundaries were confirmed 
by visual inspections of two trained neurologists with a 
graphic tool of FreevVew after affine registration to MNI 
space. The two neurologists performed manual editing 
within the range of removing non-brain tissue included 
within the cortical boundary. Intracranial volume (ICV) 
was estimated using FreeSurfer version 6 [20, 21] and was 
used as a covariate in the statistical analysis.

The regional brain volumes were normalized using 
the ratio and residual methods [30]. The ratio-corrected 
volumes were calculated as the ratio of the regional 
brain volume to the ICV. For the residual method, we 
expressed the ICV-corrected measurements as

where CV (Corrected Volume) is the ICV-corrected 
regional brain volume, V is the original uncorrected 
volume, S is the slope of the linear regression of V on 
ICV, ICV is the intracranial volume for a particular par-
ticipant, and ICV  is the mean ICV of all participants. 
ANCOVA was used to compare the region volumes (CV) 
between groups, with years of education and MoCA 
scores as covariates.

Statistical analysis
An unpaired t-test was used to compare the age, years of 
education, and MoCA scores between the two groups. 
A one-way repeated measure analysis of covariance 
(RM-ANCOVA) was used to assess the age effect in the 
younger and elderly groups, with years of education and 
MoCA scores as covariates. We used repeated-measure 
ANCOVA because each participant repeated the task, 
and we needed to consider years of education and MoCA 
as covariates. Twelve regions were selected as the ROIs. 
Post-hoc t-tests with Bonferroni correction were per-
formed for multiple comparisons for both the ANCOVA 
and RM-ANCOVA analyses. All tests were two-tailed. 
Results are presented as mean ± standard error of 
the mean. SPSS  version 26 was used for all statistical 

CV = V − S
(

ICV − ICV
)

analyses. Relationships among age, years of education, 12 
ROIs (CV), 3 indices in WCST, and MoCA scores were 
determined using path analysis. The goodness of fit of 
index (GFI), root mean square error of approximation 
(RMSEA), comparative fit index (CFI), and Bollen-Stine 
bootstrap were calculated to check the model fitting. 
Bootstrapping is a method of randomly multiple resam-
pling from the obtained samples and obtaining estimates 
from the resamples. When testing for effects in a small 
sample, estimation of standard errors by the bootstrap 
method is considered effective [31]. AMOS 27.0, was 
used for path analysis. Statistical significance was defined 
as an adjusted p-value of < 0.05.

Results
One man in the elderly group was diagnosed with cer-
ebral infarction, and his data were excluded from the 
analysis.

Group comparison in the participant’s profile
The average number of years of education in the elderly 
group (average = 13.4, SD = 2.6, range = 9–17) was 
lower than that in the younger group (average = 17.1, 
SD = 2.4, range = 14–22) (t37 = 4.610, p < 0.0001). The 
average MoCA score in the elderly group (average = 25.8, 
SD = 2.2, range = 23–29) was lower than that in the 
younger group (average = 27.9, SD = 2.1, range = 25–30) 
(t37 = 3.012, p = 0.005).

Group comparison in the Wisconsin card sorting test
For the WCST, a one-way RM-ANCOVA with years 
of education and MoCA as covariates showed that the 
CA score of the elderly group was lower than that of 
the younger group (Fig.  1A: F1,35 = 5.058, p = 0.031), 
while there were no group differences in the PEN 
(Fig. 1B: F1,35 = 3.375, p = 0.075) or DMS scores (Fig. 1C: 
F1,35 = 0.887, p = 0.353).

Group comparisons in region volumes
For the ROIs, the ANCOVA with years of educa-
tion and MoCA as covariates showed that eight of the 
12 regions differed significantly between the two age 
groups (Table  1). The elderly group had smaller vol-
umes in the left triangular part of the inferior frontal 
gyrus (p = 0.020), left middle frontal gyrus (p = 0.003), 
left superior frontal gyrus (p = 0.005), left hippocampus 
(p < 0.0001), right opercular part of inferior frontal gyrus 
(p = 0.040), right middle frontal gyrus (p = 0.003), right 
superior frontal gyrus (p < 0.0001), and right hippocam-
pus (p < 0.0001) than the younger group.
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Path analysis
We conducted a path analysis to assess the cascade pro-
cess from age to overall cognitive function. Age, years of 
education, 12 region volumes corrected by ICV, 3 WCST 
scores, and MoCA scores were set as the observed vari-
ables. The most suitable model was the path in which 
age affected the left hippocampus (standardized path 
coefficient: −  0.712), left hippocampus affected the 
left superior frontal gyrus (0.811), left superior fron-
tal gyrus affected PEN (−  0.464) and DMS (−  0.321), 
and PEN (−  0.526) and DMS (−  0.254) affected the 
MoCA (Fig.  2: chi- square (9) = 16.473, p = 0.058; 

GFI = 0.892; RMSEA = 0.148; CFI = 0.927; Bollen-Stine 
bootstrap = 0.174).

Discussion
The WCST performance revealed a difference in CA, 
while no difference was observed in PEN and DMS 
between the aged groups. This may have reflected the 
large variance in the PEN and DMS data, suggesting that 
the age group comparison had no direct impact on the 
PEN and DMS. The CA is meant to be an overall assess-
ment of the WCST, while the PEN reflects a response 
inhibition and DMS reflects attention maintenance [32]. 

Fig. 1  Results of Wisconsin card sorting test. A Scores of the categories achieved (CA) in the elderly group (EG) was lower than that in the 
younger group (YG). B Scores of the perseverative errors of Nelson (PEN) revealed no difference between the groups. C Scores of the difficulties 
of maintaining set (DMS) revealed no difference between the groups. Asterisks indicate significant differences (p < 0.05). Error bars indicate the 
standard error of mean

Table 1  Results of region volume

MoCA Montreal Cognitive Assessment, Years of Education Years of education since entering elementary school

The standard deviations are shown in parentheses

The unit of region volume corrected by ICV is mm3

Unpaired t test was used to group comparison

Younger group Elderly group

Average S.D Average S.D p value

Left opercular part of inferior frontal gyrus 3072 437 2946 281 0.291

Left orbital part of inferior frontal gyrus 1065 152 1028 176 0.486

Left triangular part of inferior frontal gyrus 2426 481 2217 297 0.020

Left middle frontal gyrus 9904 1076 8706 1153 0.002

Left superior frontal gyrus 17,101 1289 15,377 1401  < 0.0001

Left hippocampus 4061 287 3555 306  < 0.0001

Right opercular part of inferior frontal gyrus 3268 438 2939 442 0.025

Right orbital part of inferior frontal gyrus 986 171 912 208 0.176

Right triangular part of inferior frontal gyrus 2114 394 1980 423 0.314

Right middle frontal gyrus 8758 1026 7818 802 0.003

Right superior frontal gyrus 16,116 1431 14,202 1399  < 0.0001

Right hippocampus 4276 344 3727 325  < 0.0001
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In our results, these response inhibition and attention 
maintenance functions are likely to be independent of 
age.

In the age group comparison of ROIs, most regions 
were smaller in the elderly than in the younger group. 
However, in the path analysis, the left superior frontal 

gyrus (Fig. 3) was found to be the key intervening varia-
ble affecting WCST performance, while many ROIs were 
not used as the influencing variable. Furthermore, the left 
hippocampus, which influences the left superior frontal 
gyrus, was more strongly affected by age. This path analy-
sis, which deals with the volume of brain regions, is lim-
ited in its ability to shed light on the relationship between 
regions. However, the hippocampus is known to be the 
first region associated with cognitive decline and is asso-
ciated with early symptoms of Alzheimer’s disease [33]. 
As such, the model whereby age has the strongest and 
most direct effect on the hippocampus seems to be sup-
ported by previous findings. Furthermore, the model of 
the hippocampus influencing the WCST via the superior 
frontal gyrus was more suitable than the model of the 
hippocampus directly influencing the WCST. A reduc-
tion in the superior frontal gyrus has been associated 
with WCST performance in patients with schizophrenia 
and psychopathy patients [34–36], and these findings 
may support the current model.

Executive functioning is associated with the hippocam-
pal-frontal network [11–13] and may require the func-
tioning of both the hippocampus and prefrontal cortex. 
The results of the path analysis suggest that the left supe-
rior frontal gyrus is directly responsible for the response 
inhibition and attention maintenance functions shown by 
PEN and DMS. The left superior frontal gyrus is associ-
ated with cognitive inhibition [37–39]. Since the WCST 
requires inhibition of an action (button pressing) when 
it is judged to be an error, it is likely that this inhibitory 
function was associated with the left superior frontal 
gyrus. Furthermore, the left hippocampus is associated 
with cognitive flexibility [40, 41] and working memory 
for attention maintenance [42]. Because the WCST also 
requires these cognitive functions, it is likely that the left 
hippocampus was involved. It is possible that the hemi-
spheric features related to executive functioning are 
reflected in the current model.

Brain asymmetry has long been discussed, with the left 
hemisphere being associated with linguistic functions 
(ex. Wernicke’s and Brocker’s language areas) [43, 44] 
and the right hemisphere with non-linguistic functions 
(ex. Flor Henry’s association of temporal epilepsy with 
schizophrenic psychosis or affective psychosis) [45, 46]. 
Although WSCT is a non-linguistic function, it requires 
cognitive inhibition and flexibility, which are associ-
ated with the left hemisphere [37–41]. Therefore, it may 
be difficult to completely separate verbal and nonverbal 
functions in the right and left hemispheres.

The current results, although limited, suggest that 
when assuming a cascade process relationship between 
aging and cognitive decline, aging directly affected the 
left hemisphere (left hippocampus and superior frontal 

Fig. 2  Path diagram. The age, years of education, 12 regions, 3 WCST 
scores, and MoCA were set as the observed variables (Additional 
file 1: Fig. S1). Finally, the path diagram reflected the relationship 
among the six variables. The solid lines indicate a significant direct 
effect. Numbers indicate the standardized path coefficients

Fig. 3  Location of left superior frontal gyrus (red) and left 
hippocampus (blue) in coronal view
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gyrus), which affected part of WSCT. These findings are 
consistent with those of previous studies that examined 
the relationship between cognitive function and brain 
regions [37–41]. In addition, the finding that the left 
hemisphere did not directly affect MoCA may be because 
MOCA encompasses all cognitive functions, making it 
less relevant to the left hemisphere. Since MoCA is an 
indicator of overall cognitive function, it was perhaps 
not surprising that PEN and DMS had a direct effect 
on MoCA. However, since CA did not lead to MoCA, it 
could be due to small variations in CA; as such, the varia-
tion may not be suitable for variations in MoCA. In fact, 
in the path analysis, the model fit index increased when 
the CA was removed.

However, the current research has some limitations. 
First, amyloid-β or Lewy bodies were not measured. 
Therefore, it is impossible to determine whether cogni-
tive decline in the elderly was due to degenerative or 
vascular reasons. Future research should investigate the 
causes of cognitive decline and examine the relationship 
between cognitive function and age. Second, participants 
had a large difference in the number of years of educa-
tion depending on age. In Japan, the college-going rate 
20 years ago was twice as much that of 50 years ago, and 
this inter-age factor may have caused the inter-group dif-
ference in years of education. Since several studies have 
already shown that years of education affect cognitive 
function [47, 48], further investigations are needed to 
determine how age and years of education affect cogni-
tive decline in elderly people. Finally, the study used a 
small sample. Although further research using a large 
sample is warranted to verify the findings of the present 
study, the finding that a specific brain region mediates 
the relationship between aging and cognitive function is 
a valuable insight for understanding the effects of aging.

This study found that a specific brain region mediates 
the relationship between age and cognitive dysfunction, 
which offers valuable insights into the individual differ-
ences in aging. Some people maintain their executive 
functioning even when they age, while others have low 
executive functioning even when they are young. In light 
of these individual differences, in the path of the relation-
ship between age and cognitive dysfunction, we provide 
one explanation for the cascade process, whereby the lack 
of any signs of atrophy of specific brain regions may help 
maintain cognitive function.
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Additional file 1: Figure S1. The process of variable-setting in the path 
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Left triangular part of inferior frontal gyrus, Left middle frontal gyrus, Left 
superior frontal gyrus, Left hippocampus, Right opercular part of inferior 
frontal gyrus, Right orbital part of inferior frontal gyrus, Right triangular 
part of inferior frontal gyrus, Right middle frontal gyrus, Right superior 
frontal gyrus, and Right hippocampus), and Phase 3 for cognitive function 
assessment (CA, PEN, and DMS calculated by WCST and MoCA).
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