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Co-inhibitory B7-CD28 family member proteins negatively regulate T cell responses and
are extensively involved in tumor immune evasion. Blockade of classical CTLA-4 (cytotoxic
T lymphocyte-associated antigen-4) and PD-1 (programmed cell death protein-1)
checkpoint pathways have become the cornerstone of anti-cancer immunotherapy.
New inhibitory checkpoint proteins such as B7-H3, B7-H4, and BTLA (B and T
lymphocyte attenuator) are being discovered and investigated for their potential in anti-
cancer immunotherapy. In addition, soluble forms of these molecules also exist in sera of
healthy individuals and elevated levels are found in chronic infections, autoimmune
diseases, and cancers. Soluble forms are generated by proteolytic shedding or
alternative splicing. Elevated circulating levels of these inhibitory soluble checkpoint
molecules in cancer have been correlated with advance stage, metastatic status, and
prognosis which underscore their broader involvement in immune regulation. In addition to
their potential as biomarker, understanding their mechanism of production, biological
activity, and pathological interactions may also pave the way for their clinical use as a
therapeutic target. Here we review these aspects of soluble checkpoint molecules and
elucidate on their potential for anti-cancer immunotherapy.

Keywords: soluble immune checkpoints (SIC), alternative splice variants (ASV), immunotherapy (IT), immune
checkpoint blockade (ICB), gene therapy, cancer vaccination (CVax)
Abbreviations: B7, B7 proteins; CD28, cluster of differentiation 28; CTLA-4, cytotoxic T-lymphocyte-associated protein 4;
PD-1, programmed cell death protein 1; B7-H3, B7 homolog 3, B7-H4, B7 homolog 4; BTLA, B- and T-lymphocyte attenuator
protein; APCs, antigen presenting cells; MHC, major histocompatibility complex; TCR, T cell receptor; ICOS, inducible T cell
co-stimulator; B7-H1, B7 homolog 7; PD-L1, programmed cell death 1 ligand 1; B7-DC/PD-L2, Programmed cell death 1
ligand 2; HVEM, herpes virus entry mediator; NK, natural killer cells; IL-2, interleukin 2; IFN- g, interferon gamma; TACE,
trans-arterial chemoembolization; MPM, malignant pleural mesothelioma; HCC, hepatocellular carcinoma; RT, radiation
therapy; CRT, chemoradiotherapy; MLRs, mixed lymphocyte reaction; CLL, chronic lymphocytic leukemia; MCL, mantle cell
lymphoma; EGR, epidermal growth factor receptor; NF-kB, nuclear factor kappa B; MAPK, mitogen-activated protein kinase;
ccRCC, clear cell renal cell carcinoma; AML, acute myeloid leukemia; TM, transmembrane; MDS, myelodysplastic syndrome;
CR, complete remission; NSCLC, non-small cell lung carcinoma; NPC, nasopharyngeal carcinoma; DLBCL, diffuse large B-
cell lymphoma; HBV, human hepatitis B virus; TKIs, tyrosine kinase inhibitors; PFS, progression free survival; OS, overall
survival; IMRT, intensity modulated radiotherapy; HLA-I, human leukocyte antigen class I; PMBCs, peripheral blood
mononuclear cells; TNF-a, tumor necrosis factor alpha; CTLs, cytotoxic T lymphocytes; iNOS, inducible nitric oxide synthase;
mAb, monoclonal antibody; MMP, matrix metalloproteinase; DCs, dendritic cells; OSCC, oral squamous cell carcinoma; MM,
multiple myeloma; NKTTL, nasal NK/T cell lymphoma; EOC, epithelial ovarian cancer; DFS, disease free survival; SBRT,
stereotactic body radiotherapy; BTC, biliary tract cancer; MDDCs, monocytes-derived dendritic cells; AFP, alpha feto protein.
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INTRODUCTION

Adaptive immune system is equipped with T and B lymphocytes
that are essential in maintaining self-tolerance and eliminating or
destroying foreign harmful invaders (1). Antigens are presented
to T cells by major histocompatibility complex class I or II
molecules (MHC-I/II) expressed on normal cells or antigen
presenting cells (APCs) resulting in T cell activation via
peptide-MHC and T cell receptor (TCR) interaction (2, 3). A
secondary signal is further required to induce T cell activation
which is provided by costimulatory molecules such as CD28 and
inducible T-cell co-stimulator (ICOS) which are termed as
positive regulators of T cell functions (2–6). A third and final
signal is provided in the form of various cytokines to direct and
amplify T cell differentiation and expansion. Negative regulators
such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),
programmed cell death protein-1 (PD-1), and B and T
lymphocyte attenuator (BTLA) are upregulated after T cell
activation in order to avoid overactivation and hyperactivity
(6–11). These receptors constitute the CD28 receptor family
which mainly recognizes B7 family proteins expressed on variety
of cells including tumor cells and APCs as their ligands (12–14).
CD28 recognize B7-1 (CD80) and B7-2 (CD86) as its ligands.
CTLA-4 competes for the same ligands and cause T cell
inhibition (4). The CTLA-4/CD28/B7-1/B7-2 group mainly
affects the early phase of T cell activation (15). Similarly, PD-1
expressed on T cells recognizes B7-H1 (PD-L1) and B7-DC
Frontiers in Immunology | www.frontiersin.org 2
(PD-L2) as its ligands and results in inhibition of T cell effector
functions and induces T cell apoptotic death (7–10). The PD-1/
PD-L1/PD-L2 regulate the effector phase of T cell activation (15).
Cancer cells manipulate these coinhibitory receptors in order to
avoid destruction by immune system and blockade of such
interactions through monoclonal antibodies have become the
cornerstone of anti-cancer immunotherapy (16–21). Other
newer costimulatory and coinhibitory molecules belonging to
CD28-B7 family receptors are being discovered and investigated
for their role in cancer immune evasion such as BTLA, B7-H3,
B7-H4, and B7-H5, etcetera (11, 14, 22) (Figure 1). Of these, BTLA
(also known as CD272) has shown some similarities with CTLA-4
and PD-1 in their regulatory effects on T cell activation and is the
subject of intense investigations in recent times (11, 22–37). BTLA
recognizes HVEM (herpes virus entry mediator, TNFRSF14,
CD270) as its ligand and their interactions have shown to inhibit
T cell activation and proliferation (22–28). BTLA is expressed on
naïve as well as activated T cells which suggests it may regulate all
phases of T cell activation as opposed to CTLA-4 (early naïve phase
of T cell activation) and PD-1 (late effector phase) (22, 27, 28).
Several cancers have shown up-regulation of BTLA and its blockade
has displayed an enhanced immune response (29–37). Other newly
discovered B7 ligands such as B7-H3, B7-H4 and B7-H5 have also
shown to play inhibitory roles in T cell activation, and have
demonstrated up-regulation in various cancers (12–14, 38, 39).

Soluble forms of these molecules can be detected in plasma of
healthy individuals that are either produced by shedding of the
FIGURE 1 | B7-CD28 Family Coinhibitory Checkpoint Molecules.
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membrane form or through alternative splicing (29–32, 40–44)
(Figure 2). Elevated plasma levels are reported in disease
progression, autoimmune diseases and cancers (29–32, 39, 42).
In recent times, investigation into the soluble forms of these
molecules have been exaggerated. Although, the bulk of the
reports are aimed at assessing their predictive and prognostic
value, studies have also reported that they are biologically active
and could hold potential for anti-cancer therapy (29–32, 40–45).
We will review these soluble inhibitory checkpoints in detail with
a focus on their potential for anti-cancer immunotherapy.

CTLA-4 INHIBITORY CHECKPOINT
MOLECULES AXIS

Cytotoxic T lymphocyte-associated antigen- 4 (CTLA-4), also
known as CD152, is a type 1 transmembrane glycoprotein of the
immunoglobin superfamily andmember of CD28 family receptors
(46). CTLA-4 molecule is comprised of 223 amino acids in length,
with a 35 aa signal peptide, and found as a covalent homodimer of
41–43 kDa (46–49). CTLA-4 is expressed upon T cell activation
following TCR engagement (48–50). In addition to activated and
memory T cells, several other immune cells also express CTLA-4
such as regulatory T cells (Tregs; which constitutively express
CTLA-4) and tumor-infiltrating NK cells, and is induced on
mouse NK cells upon IL-2 stimulation (50–52). CTLA-4
competes with CD28 costimulatory molecule for binding to the
same ligands – B7-1 (CD80) and B7-2 (CD86) (12, 53–56). Its
ligation results in inhibition of T cells, production of IL-2,
proliferation and survival (55–58). CTLA-4 has been well-
established as a negative regulator of peripheral T cell tolerance
and autoreactivity, and is involved cancer immune evasion (12, 55–
59). Successful blockadeofCTLA-4withmonoclonal antibody such
as ipilimumab has shown improved outcome for cancer patients
(60, 61). However, recently additional mechanisms have been
Frontiers in Immunology | www.frontiersin.org 3
proposed to explain the immunotherapeutic effect of anti-CTLA-
4 mAbs including Fc receptor-dependent depletion of regulatory T
(Treg) cells in tumor microenvironment, and blocking of trans-
endocytosis of B7 on dendritic cells (DC) (62–66). Nonetheless,
more studies are needed to confirm these findings. Recent studies
have demonstrated increased levels of soluble counterparts of
CTLA-4, B7-1, and B7-2 in the plasma of cancer patients (30, 31).
Moreover, fold changes in the serum levels of these molecules
revealed a positive correlation after treatment induction suggesting
a regulatory interplay among the soluble forms in cohesion with
membrane-bound counterparts (29, 30). Therefore, it seems that
the CTLA-4/B7-1/B7-2 checkpoint pathway proteins in soluble
forms may also play critical role in T cell regulation.

Soluble CTLA-4
CTLA-4 gene, located on chromosome 2 in humans, consists of
4 exons that constitute the full length CTLA-4 molecule
(flCTLA-4) (47, 67). Alternative splicing results in deletion of
certain exons giving rise to four different splice variants; flCTLA-
4, soluble CTLA-4 (lacking exon 3), transcripts coding for exons
1 and 4, and ligand-independent CTLA-4 (liCTLA-4 isoform
lacking exon 2, thus unable to bind to its receptor, and is only
found in mice) (40, 47, 67–70). Only one splice variant that lacks
exon 3, which encodes for the transmembrane domain, is
translated into soluble CTLA-4 form (sCTLA-4) (5, 40, 68).
Unlike full length that is homodimer molecule, soluble CTLA-4
is produced as monomer (5, 40, 68). Soluble CTLA-4 can be
detected in serum of healthy individuals (40, 68). In addition,
hematolymphoid organs such as lymph nodes, spleen and blood,
both in humans and rats, have shown sCTLA-4 expression (40).
Peripheral blood lymphocytes such as regulatory T cells, non-
activated T cells (both CD4+ and CD8+ T cells) as well as B
lymphocytes have been reported to express the CTLA-4delTM
(splice variant of CTLA-4) (5, 40, 68). Tregs were identified as
A
B

FIGURE 2 | Production of soluble forms of CD28-B7 family coinhibitory immune checkpoint molecules. Soluble checkpoint proteins are produced by two
mechanisms; (A) alternative splicing, and (B) proteolytic shedding of extracellular region.
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the prominent source of sCTLA-4 (71). In vitro analysis of
human T cells has shown that sCTLA-4 secretion can be
increased during responses contradicting the previous reports
of sCTLA-4 secretion in resting T cells (40, 68, 71–74).
Melanoma cancer cell lines were also reported to produce
sCTLA-4 (75). Genotype CT60 (A/G) was correlated with
soluble CTLA-4 production as homozygous AA individuals
express higher levels of mRNA at basal conditions as well as
upon T cell stimulation (72). Thus, the expression profile of
soluble CTLA-4 reflects its apparent role in adaptive immune
responses and involvement in immune evasion of cancer cells.

Secretion of soluble CTLA-4 is increased upon T cell activation
in response to antigen but comparatively lower in proportion to fl-
CTLA-4 and with distinct peak timings (71–74). sCTLA-4, similar
to fl-CTLA-4, is discovered to play inhibitory role by binding to B7
ligands on APCs (40, 71). In vitro blockade of sCTLA-4 in humans
with isoform-specific antibodies was demonstrated to reverse T cell
inhibition, and increase both Ag-driven proliferation of T cells
(CD4+ & CD8+ T cells) and cytokine production (IFN-g & IL-17)
(40, 71). In vitromurineT cells were also shown toproduce sCTLA-
4 in response to antigen and were inhibited by them (71).
Furthermore, in vivo blockade of sCTLA-4 was able to protect
against metastatic melanoma inmice (71). These outcomes suggest
Frontiers in Immunology | www.frontiersin.org 4
that immune system, in addition to flCTLA-4, may also utilize its
soluble form in regulation of T cells, and that it may partially be
responsible for the inhibitory effects observed with membrane-
bound CTLA-4 (mCTLA-4) molecules (5, 73). It is also in
coherence with mechanism of T cell inhibition by mCTLA-4
which is not only dependent on direct intracellular signaling but
also through competitive antagonism of CD28 (76). Therefore,
soluble CTLA-4 molecules may exert their inhibitory function
mainly through competition against CD28 molecules
(Figure 3A). As such, its blockade with anti-sCTLA-4 mAb may
hold potential for anti-cancer therapy.

Soluble CTLA-4 can be detected in the sera of healthy
individuals (40, 68). Increased serum levels are detected in
several autoimmune diseases and cancer (29–32, 77–86).
Higher serum levels of sCTLA-4 was shown to reflect a state of
active disease and progression (77–81). Significant elevation in
the soluble form of CTLA-4 was detected in 70% of B-cell acute
lymphoblastic leukemia (B-ALL) pediatric patients (82).
Moreover, elevated serum levels were positively correlated with
percentage of leukemic B lymphocytes and sCTLA-4 transcript
expression in B cells (82). In patients with prostate cancer,
sCTLA-4 levels were significantly associated with biochemical
recurrence and progression risks (31). Studies have also shown an
A

B

D

C

FIGURE 3 | Clinical significance of soluble forms of CTLA-4 and PD-1 checkpoint molecules and their potential for anti-cancer immunotherapy. (A) sCTLA-4 exert
its inhibitory effects via CD28 antagonism. Blockade with anti-CTLA-4 monoclonal antibody or B7-1 upregulation/gene delivery of sB7-1 may enhance T cell immune
responses. (B) Gene delivery of soluble B7 increase T cell activity not only through increased CD28 co-stimulation but also simultaneous inhibition of PD-1 and PD-
L1 interactions. (C) Parallel secretion of sPD-1 and sPD-L1 by tumor-specific T cells and tumor/peritumor tissue, respectively, maintain an inhibitory homeostatic
microenvironment in tumor local milieu and peripheral circulation. (D) sPD-1 delivery in local milieu through gene therapy may enhance anti-cancer immunity by
preventing mPD-1 from interactions with sPD-L1 and mPD-L1/2 present on tumor cells or APCs, and also blocking PD-L1 and B7-1 interactions. Abbreviations:
CTLA-4; PD-1; sCTLA-4, PD-L1, APCs.
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increase in sCTLA-4 levels after treatment which may or may not
have an impact on prognosis (77–80). sCTLA-4 level was
significantly increased 2.64-fold after 2 weeks of sorafenib
treatment in HCC patients (29). Similar increase was also shown
atweek1 afterTACE(trans-arterial chemoembolization) induction
(30).Though, effectof this increaseonprognosiswasnotevaluated in
both studies (29, 30). In a studyof 141 advanced cancer patients (lung
cancer, esophageal cancer, liver cancer, ovarian cancer & cervical
cancer), higher sCTLA-4 serum levels after treatment inductionwere
significant for longer progression free survival and overall survival in
all treatment groups that included radiotherapy (RT) group,
chemotherapy group, chemoradiotherapy (CRT) and overall
patient groups (83). A negative correlation was observed for
sCTLA-4 levels after treatment induction with tumor node
metastasis and lymph node metastasis (83). In this case, elevated
sCTLA-4 levels after treatment may reflect re-activation of tumor-
specific T lymphocytes through increased antigen presentation
resulting in improved outcome. On the other hand, elevated levels
of sCTLA-4 in serum and pleural effusion before therapy was
associated with 20% and 60% decrease in death rates in patients
with malignant pleural mesothelioma (MPM) (84). Furthermore,
ipilimumab treated melanoma patients with higher serum CTLA-4
levels at baseline were associated with best overall responses and
improvedoverall survival advantage (85,86).Thesepatientswerealso
at higher risk for immune-related adverse events (86). As such,
sCTLA-4 may serve as a prognostic biomarker for anti-CTLA-4
blockade immunotherapy. Moreover, addition of anti-sCTLA-4
specific antibodies may show synergism in inducing anti-cancer
responses. In summary, elevated baseline sCTLA-4 levels reflect an
immunosuppressive environment which may undergo dynamic
changes depending on the treatment induction with predictive and
prognostic implications. sCTLA-4 is largely unexplored in cancers
and its further evaluation may bolster some of these points.

Soluble B7-1/B7-2
Both ligands,B7-1(CD80)andB7-2 (CD86), are recognizedbyCD28
resulting in T cell activation. CTLA-4 recognizes these ligands with
greater affinity and avidity than CD28 causing T cell inhibition (87,
88). Though considered rather similar ligands, they are distinct from
each other in their expression profiles and their response to CTLA-4
ligation (89–92).B7-1 expression is inducedafter activationwhileB7-
2 is constitutively expressed on APCs and is upregulated upon
activation (87–92, 95–260, 262, 263). Similarly, the binding ratio of
CTLA-4 to B7-1 (20 to1) and B7-2 (8 to 1) is greater than CD28 (93,
94). Consistent crystallographic data have shown a lattice like
structure formed as a result of CTLA-4 homodimers interaction
with alternating B7-1 homodimers (89). Moreover, at the
immunological synapse, B7-1 preferentially recruits CTLA-4 while
B7-2 stabilizesCD28 (95). Basedon suchdata, B7-1 is predominantly
considered a CTLA-4 ligand while B7-2 as a predominant CD28
ligand. These dynamics will be important to keep in mind while
assessing the role of soluble forms of these ligands.

Soluble B7-1
A soluble form of B7-1 can be detected in the sera of healthy
individuals and is expressed by unstimulated B cells and
Frontiers in Immunology | www.frontiersin.org 5
monocytes as well as activated T and B cells (96, 97). Soluble
B7-1 (sB7-1) is generated by alternative splicing of B7-1 mRNA
with the exclusion of exon encoding for the transmembrane
region (96, 97). Similar to mB7-1, sB7-1 structural analysis have
revealed that it may also exist as a homodimer (97–99). Soluble
B7-1 have shown the ability to bind to its receptors; CD28 and
CTLA-4 on T cells. Moreover, sB7-1 has also demonstrated
inhibition of mixed lymphocyte reaction (MLRs), T cell
proliferation and IL-2 production (96, 97). These outcomes
suggest a preferential CTLA-4 binding for soluble B7-1/
immunoglobulin G fusion protein (sB7-IgG) and inhibiting T
cells functions. Elevated sB7-1 levels detected in certain cancers
such as chronic lymphocytic leukemia (CLL), mantle cell
lymphoma (MCL), and hepatocellular carcinoma (HCC), and
its association with poor prognosis also emphasize its inhibitory
role (30, 98). However, increasing data in this direction suggests
sB7-1 may prompt stimulatory effect in T cells resulting in
improved anti-tumor immunity against tumor cells (100–105).
Preincubation of leukemic cell line (WEHI-3 cells overexpressing
CD32) with sB7-IgG could increase B7 molecules density on its
membrane which in the presence of first signal could enhance T
cell activation, cytotoxicity, and IL-2 secretion by activated
mouse T lymphocytes (100) (Figure 3B). In vivo complete
regression of established tumors in tumor bearing mice and
improved survival was achieved after being administered with
therapeutic administration of sB7-IgG (101). Soluble B7-IgG
mediated tumor rejection was CD8+ T cell dependent and
IFN-g independent. Furthermore, memory responses were also
generated (101). Soluble B7-IgG preferential binding to CD28 T
cells or binding to CTLA-4 thereby blocking negative signals and
indirectly improving the co-stimulation may explain these
outcomes. Besides, in vitro and in vivo studies have
demonstrated that soluble B7-1 may also interrupt PD-1/PD-
L1 interaction thereby inhibiting PD-1 mediated suppression
while concurrently activating T cells through CD28 (102–105).
Soluble form of B7-1 (B7-1-Fc) could bind PD-L1 on human and
mouse PD-L1+ tumor cells and block PD-1 interaction with
subsequent T cell activation (102). B7-1-Fc generated sustained
IFN-g production by PD-1+ activated T cells more effectively
than antibodies to either PD-1 or PD-L1 (104). In vivo murine
tumor survival extension by sB7-1-Fc was more effective than
PD-L1 antibodies (104). Blocking CD28 with antibodies on
human T cells or using T cells from PD1−/− and CD28−/−
mice showed that sB7-1-mediated anti-cancer immunity was not
only dependent on neutralizing PD-1/PD-L1-mediated immune
suppression but also a simultaneous B7-1-CD28 co-stimulation
(103–105). B7-1-Fc also delayed tumor growth and promoted
tumor infiltration of T cells with in vivo treatment of established
syngeneic PD-L1+ colon and melanoma tumor models (105).
Soluble B7-1 anti-tumor effects were mainly mediated by the
activation of downstream signaling components of the CD28 and
T cell receptor pathways including EGR1–4, NF-kB and MAPK
(105). Furthermore, B7-1-Fc binding to CTLA-4 on activated
human PBMC did not suppress the T cell activation as addition
of anti-CTLA-4 antibodies could not result in any increase of T
cell activation as measured by IFN-g. It was speculated by the
August 2021 | Volume 12 | Article 651634

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Khan et al. Soluble ICI for Cancer Immunotherapy
authors that CTLA4 acts as a decoy receptor for B7-1, rather
than functioning as a suppressive signaling receptor (105).
Nonetheless, recent developments of discovering cis and trans
interaction between PD-L1 and B7-1 may explain the efficacy
of sB7-1.

A third dimension to the interaction between these two
pathways has emerged in which B7-1 and PD-L1 binds in cis
on APCs and in trans between T cells and tumor cells (106–110).
Understanding these mechanistic intricacies may also explain the
aforementioned efficacy of soluble B7-1. For example, results of a
recent study indicate that blockade of PD-L1 interaction with
B7-1 in trans can augment tumor immunity via down-regulating
the effect of PD-L1 interaction with PD-1 that also required
CD28-dependent activation (107). This result resembles the ones
obtained with the use of soluble B7-1. Moreover, such a scenario
also resembles the PD-L1/B7-1 cis-interaction on APCs reported
in recent studies (108–110). In the tumor microenvironment,
PD-L1/B7-1 cis-interaction increases or decreases T cell
activation depending on the respective abundance of PD-L1
versus B7-1. Abundant B7-1 compared to PD-L1 reduces PD-
L1/B7-1 cis-interaction and increases free B7-1 which
consequently leads to improved T cell activation. In such a
case, both the free B7-1 and the PD-L1/B7-1 cis-heterodimer
bind to CD28 to induce a co-stimulatory signal while decreasing
the PD-1/PD-L1 binding (108–110). Cis-interaction between
PD-L1 and B7-1 has prompted new reconsiderations into
already established immune checkpoint blockade immunotherapies
(111). Thus, it can be concluded that effects of sB7-1 may vary
according to the context. In lymphoid tissues where priming of T cells
occurs, increased levels of sB7-1 may actually interact with CTLA-4
to promote T cell inhibition. It may also constitute the predominant
source of circulating sB7-1 levels observed in cancers such as
melanoma. On the other hand, in the tumor microenvironment
where B7-1 and B7-2 are predominantly expressed on APCs may
interact in cis and trans with PD-L1 expressed on tumor cells, the
effects of sB7-1 are observed as stimulatory on T cell function.

Soluble B7-IgG as an adjuvant have also shown to enhance the
anti-tumor effects of other cancer therapies. Mixing of B7-IgG as
a vaccine adjuvant with irradiated tumor cells yielded a stronger
in vitro anti-tumor activity as compared to alone (101).
Intramuscular gene transfer of B7-IgG fusion gene also had
induced potent anti-tumor immunity as an adjuvant for DNA
vaccination (112). In situ expression of soluble B7-1 in the context
of oncolytic herpes simplex virus also induced effective anti-
cancer immunity (113). Oncolytic herpes simplex virus vectors
armed with soluble B7-1, IL-12, and IL-12 resulted in highest
efficacy as compared to each alone or the combination of two
(114, 115). Moreover, intravenous injection of fusion protein
combined with regulatory T cell depletion had caused complete
regression of solid tumors with generation of immunologic
memory (116). In fact, in murine leukemia and lymphoma
models, intravenous administration of fusion protein combined
with conventional chemotherapy could induce curative T cell
dependent antitumor responses and immunologic memory (117).

Association of elevation sB7-1 levels with prognosis and its
dynamics during the treatment has not been well investigated.
Frontiers in Immunology | www.frontiersin.org 6
Elevated levels were observed in CLL, MCL, clear cell renal cell
carcinoma (ccRCC), prostate cancer and HCC patients (29–32,
98). Increased levels in CLL were associated with poor prognosis
(98). Significant correlation was revealed for sB7-1 levels with
biochemical recurrence and progression risk in prostate cancer
patients (32). In HCC patients, sB7-1 serum levels were observed
to decrease significantly at week 1 after sorafenib treatment;
however, an increase in sB7-1 levels at week 2 and 4 was
discovered (29). An increase in serum levels at week 1 was also
observed for HCC patients after receiving TACE (trans-arterial
chemoembolization) (30). No association for sB7-1 levels with
prognosis was demonstrated in these studies (29–32). Therefore,
sB7-1 levels as predictive and prognostic biomarker and the
significance of its dynamics upon treatment induction is not well
established and would need further exploration in this context.

Soluble B7-2
There are not many studies reporting prognosis and clinical
significance of soluble B7-2 in cancer patients. Soluble form is
generated through B7-2△TM mRNA translation, expressed by
resting monocytes, dendritic cells and certain cancer cells (acute
lymphocytic leukemia; AML and B-cell chronic lymphocytic
leukemia; B-CLL), and can be detected in the sera of healthy
individuals (41, 118). Autoimmune disease and cancer have
reported elevated levels of sB7-2 (118–122). Recombinant B7-
2△TM binds to CD28 and CTLA-4 and induce the T cells
activation after stimulation with anti-CD3 mAb (41). While
stimulation with Flu M1 peptide could generate IFN-g production
by virus-specific CD8+ memory human T cells (41). In vivo
therapeutic efficacy of B7.2-IgG was also demonstrated in several
tumor models with complete regression of established tumor and
increased survival of tumor-bearing mice (101). The anti-tumor
responses shown by B7.2-IgG were CD8 dependent and similar to
that of B7.1-IgG in all tumor models (101). However, an inhibitory
role of sB7-2 was suggested via binding to CTLA-4 and transferring
negative signal to T lymphocytes as co-delivery of sB7-2 had
downregulated the immune response to a DNA vaccine (123). It
appears that soluble B7-2 also assumes a stimulatory role as it has
been termed stabilizer of CD28 due to its comparative preference for
CD28. Moreover, unlike B7-1, B7-2 does not interact with PD-L1 in
cis on APCs. Therefore, both ligands improve anti-cancer immunity
with distinct underlying mechanisms when introduced into tumor
microenvironment in soluble forms. Its inhibitory role; however,
would need further exploration.

Elevated levels of sB7-2 could be found in a proportion of
leukemia (AML, B-CLL) and HCC patients (29, 30, 118).
Significantly elevated levels in 10/24 AML patients were
detected at presentation or relapse but patients in remission
(n=6) contained only low levels of sB7-2 (118). Similarly, a
quarter of AML and myelodysplastic syndrome (MDS) patients
had elevated levels of sB7-2 compared to normal healthy
individuals but only AML patients with higher sB7-2 levels
were associated with lower complete remission (CR) rates and
poorer survival in comparison to AML patients with normal sB7-
2 levels (121). These outcomes suggest sB7-2 play an inhibitory
role in modulating mB7-2 signalling during the malignant
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process, and represents an independent prognostic marker.
Myeloma patients also had significantly elevated levels of
sB7-2 but univariate analysis revealed an association of elevated
sB7-2 levels with significantly shorter (P < 0.001) survival
(median = 22 vs. 51 months) and event-free survival (median =
14 vs. 31 months) only in the treatment arm receiving ABCM + P
(adriamycin, armustine, cyclophosphamide, and melphalan with
prednisolone) and not ABCM patients (122). HCC patients had
also observed a significant increase in sB7-2 levels at week 4 of the
sorafenib treatment but no association was sought (29). More
studies would be required to establish its role as a predictive and
prognostic biomarker in cancer.
PD-1 INHIBITORY CHECKPOINT
MOLECULES AXIS

The PD-1/PD-L1/PD-L2 checkpoint pathway plays a critical role
in regulation of T lymphocytes in cancer and its disruption has
been manifested in the improved clinical outcome for cancer
patients (7–10, 15–21). Several studies have shown elevated levels
of soluble forms of these checkpoint protein molecules in the sera
of cancer patients which has excellently correlated with poor
prognosis, particularly the sPD-L1 (29, 30, 124–143). Moreover,
a positive correlation has been reported in several cancers
between the plasma levels of sPD-1 and sPD-L1 (29, 30, 124,
125, 137). Such positive correlation may suggest a common
provenience, simultaneous secretion, and regulatory interplay
in the same manner as their membrane-bound counterparts (29,
30, 124, 125, 137). As such, secretion of soluble forms may
represent an attempt for tumor invasion and spread as elevated
sPD-L1 levels have been correlated with advanced disease and
metastatic status in various cancers (129, 135, 136, 138–141). As
a homeostatic peripheral tumor immune evasive environment
may prevail favoring tumor growth (Figure 3C). Much is the
same way; disruption of this balance may also have implications
for cancer immunotherapy. In fact, post-therapeutic increase in
sPD-1 and reduction in sPD-L1 have been associated with
improved outcome (128, 141–147). We will further elucidate
these implications in the context of each soluble molecule alone –
sPD-1 and sPD-L1.

Soluble PD-1
Programmed cell Death-1 (PD-1) protein is a type I
transmembrane glycoprotein and is expressed on T cells after
its activation (21, 148). In addition, other immune cells also
exhibit PD-1 expression including B cells, NK cells, NKT cells,
APCs, innate lymphoid cells (ILC2) and other myeloid cells (50,
55, 148–151). PD-1 ligation to its ligands, PD-L1 and PD-L2
expressed on tumor cells or APCs, results in T cell inhibition and
immune escape, and its blockade with monoclonal antibodies
have yielded excellent clinical outcome (21, 50, 55, 148). A
soluble form of PD-1 can be detected in the plasma of healthy
individuals and elevated levels are found in autoimmune
diseases, chronic infections and various cancers (124–126, 137,
141–144, 152–156). Several solid and hematologic cancers that
Frontiers in Immunology | www.frontiersin.org 7
have shown elevated sPD-1 levels include non-small cell lung
carcinoma (NSCLC), HCC, nasopharyngeal carcinoma (NPC),
pancreatic adenocarcinoma, advanced rectal cancer, metastatic
melanoma, diffuse large B- cell lymphoma (DLBCL), and CLL
(124–126, 137, 141–144, 152–156). Soluble form is produced
through alternative slicing of full-length PD-1 transcript which is
composed of five exons (152). The resulting four splice variants
lacks single or combination of the middle exons 2, 3, and 4. Only
one splice variant that lacks exon 3 (PD-1△x3) but retains other
exons (1, 2, 4, 5) may encode for soluble form of PD-1 (152).
In vitro activation of T cells has shown to produce soluble PD-1
(152). Tumor site and tumor-specific T cells may constitute the
primary source of circulating sPD-1 as reduction of HCC was
shown to cause a decrease in circulating sPD-1 levels (126). In a
separate study, circulating tumor-specific T cells were identified
to be the prime source of sPD-1 as absent tumor-infiltrating
lymphocytes (TILs) in melanoma patients was associated with
high sPD-1 levels in plasma as opposed to brisk (TILs present
across the entire base of the tumor) or non-brisk (TILs
distributed only focally) TILs (153).

Dynamics of soluble PD-1 has demonstrated variation in
clinical significance before and after induction of treatment.
Pretherapeutic elevated plasma levels of sPD-1 correlates with
disease status, disease activity (severity and progression) and in
some cases with prognosis (124–126, 137, 141–144, 152–156). It
has been associated with systemic inflammation markers (CRP)
in advanced pancreatic cancer (124, 137), viral load, viral activity
and HCC risk in HBV patients (126, 155), and worst prognostic
indicators in DLBCL patients (156). However, it has not been
well correlated with prognosis in these cases. Only two studies
have shown its correlation with worst prognosis that involved
pancreatic adenocarcinoma and HBV-related HCC patients
(124, 126). On the other hand, any increase in sPD-1 levels
after therapy has been correlated with improved outcome in
several studies (125, 141–143). Improved progression free
survival and overall survival was associated with increased
sPD-1 levels after EGFR TKIs treatment in NSCLC patients
(143). Increase in sPD-1 after receiving two cycles of nivolumab
was also correlated with improved outcome for NSCLC patients
in terms of PFS and OS (143). In NPC patients, delivery of IMRT
had led to an increase in sPD-1 which was associated with
decreased plasma EBV-DNA level and improved survival
(142). These outcomes imply that pretherapeutic elevated
sPD-1 may signifies disease severity and immune tolerance as
it is observed in the case of mPD-1. While its increase after
treatment induction; however, may indicate re-activation of
immune responses against tumor antigens. For example,
radiation therapy is believed to induce tumor-specific immune
responses because of surge in antigen presentation by APCs
(157, 158). EGFR TKIs, as well, has been revealed to up-regulate
HLA-I which is associated with tumor-specific CD8+ T
lymphocytes mediated immunity (159, 160). These tumor-
specific T cells may actually constitute the source of observed
increase in sPD-1 after such treatments. In broad, sPD-1 levels
poorly correlate with prognosis probably due to the dynamic
changes incurred in sPD-1 levels after treatment induction.
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Hence, changes in sPD-1 levels after treatment may serve a better
predictor and prognostic indicator than baseline levels.

Activation of human PMBCs with anti-CD3 plus CD28 mAbs
has demonstrated a parallel increase in flPD-1 and PD-1△x3
transcripts suggesting an important interplay between membrane
bound and soluble forms in preventing autoimmunity and
peripheral self-tolerance (152). Soluble PD-1 is shown to be
biologically active and capable of inhibiting mPD-1/PD- L1 and
mPD-1/PD-L2 interactions (161–163) (Figure 3D). In addition,
PD-L1 has also been revealed to cause T cell inhibition in an
indirect manner by binding to B7-1 (CD80) thereby disrupting
B7-1 and CD28 interactions (106) (Figure 3D). Therefore, sPD-1
may serve as an anti-PD-L1 antibody with triple targets: mPD-1/
PD- L1; mPD-1/PD-L2; and PD-L1/B7-1. As such, in vitro and
in vivo blockade of PD-L1 and PD-L2 by sPD-1 delivered via gene
therapy was shown to enhance tumor-specific T cell responses
resulting in suppression of tumor growth (161–164). Soluble PD-
1 transferred via eukaryotic expression plasmid was shown to
increase T cell activation, cytotoxicity and tumor reduction via
blocking of PD-L1 and PD-L2 expressed on tumor cells and/or
DCs (161–163). Increased mRNA expression of IFN-g, TNF-a, 4-
1BB and B7-1 with downregulation of OX40 and IL-10 was
noticed in the splenocytes (161). Moreover, inhibitory effect of
sPD-1 on tumor was similar to that of mice injected with anti-
PD-L1 mAb (161). Anti-tumor immunity induced by soluble PD-
1 has also been demonstrated in animal studies using
reconstructed adeno-associated virus plasmid encoding sPD-1
(164). Tumor regression with tumor-specific T cell infiltration
and improved survival was achieved with sPD-1 local delivery
(164). Nonetheless, reverse signaling through sPD-1 has also been
suggested resulting in inefficient DC maturation (165). Therefore,
sPD-1 delivery via gene therapy into the local tumor
microenvironment holds great potential as therapeutic strategy.

Local gene delivery of sPD-1 can enhances the anti-tumor
effects of other local gene therapeutic agents probably via
reducing the inhibitory effects of PD-1/PD-L1 interaction
upregulated after tumor-specific T cells activation (163, 166–
174). Soluble PD-1 delivery has successfully improved the
cytotoxicity of tumor-specific CTLs induced by the local gene
delivery of secondary lymphoid chemokine (CCL21) using
eukaryotic expression plasmids (pSLC) (163). Likewise, sPD-1
has also enhanced the anti-cancer immunity induced by CH50
that is a recombinant polypeptide with 2 functional domains
(CellI, and HeparinII) for targeting fibronectin which is
aberrantly expressed matrix glycoprotein in cancer associated
with facilitating tumor growth, invasiveness, metastasis, and
resistance to therapy (166, 167). Anti-cancer effects of sPD-1-
CH50 included intensification of macrophages and cytotoxic T
lymphocytes’ (CTLs) cytotoxic activity through inducible nitric
oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-a),
IFN-a with demonstration of in vivo restriction of hepatoma
growth and invasiveness (166). In vitro and in vivo anti-cancer
effects of thymidine kinase expression through adenovirus
harboring herpes simplex virus thymidine kinase gene (HSVtk)
delivery were further exaggerated by sPD-1 (168). As a vaccine
adjuvant, sPD-1 has also demonstrated improvement of vaccine
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efficacy including heat shock protein 70 (HSP70) vaccine and
human papilloma virus-16 E7 DNA vaccines (169–171).
Combined gene expression of 4-1BB ligand and sPD-1 could
enhance CD8+ T cells infiltration, greater tumor growth
inhibition and improvement in survival of tumor bearing mice
(172). Furthermore, it had also been able to enhance the T cell
and NK cell immunity induced by IL-21 through blocking the
PD-1/PD-L1 interaction pathway (173). Ultrasound-mediated
co-delivery of sPD-1 and miR-34a which is implicated in PD-L1
upregulation had induced tumor apoptosis with increased IFN-g
secretion and percentage of CTL (174). In this sense, PD-L1
regulators could be targeted with combination of sPD-1 to
overcome resistance and improve tumor-specific immunity
(175). Furthermore, conventional anti-cancer therapies such as
radiotherapy and chemotherapy have also been associated with
induction of anti-cancer immunity and consequent PD-L1
upregulation which could be countered by sPD-1 (176–181).
Association of circulating soluble PD-L1 with patients receiving
chemotherapy and radiotherapy also indicates their candidacy
for sPD-1 delivery in order to reduce the inhibitory effects of
sPD-L1 (182–184). sPD-L1 levels have also shown resistance to
anti-PD-L1 monoclonal antibody immunotherapy which was
overcome by anti-PD-1 mAb therapy (185–189) (Figure 4).
Likewise, addition of sPD-1 may also overcome resistance to
anti-PD-L1 mAb as anti-PD-1 mAb shares the same targets with
sPD-1 and both have shown similar in vitro anti-cancer
immunity (161, 185). As such, sPD-1 may be used as
alternative to anti-PD-1 mAb or its addition may further
enhance the activity of anti-PD-1 mAb and reduce the dosage
needed for optimum efficacy which may further reduce the risk
of adverse events associated with mAb-based immunotherapy
(185). Hence, sPD-1 represents an excellent candidate for
exploitation as therapeutic strategy in cancer patients as single
agent, to complement immunotherapy and other traditional
cancer treatments, and as an adjuvant with gene therapies
and vaccines.

Soluble PD-L1
In comparison to sPD-1, soluble form of its ligand - sPD-L1, has
been extensively investigated for its clinical significance. It can be
detected in the plasma of normal individuals but elevated levels
are reported in autoimmune diseases and cancer (126–128, 190–
194). Soluble form can be produced by proteolytic cleavage as
sPD-L1 was only detectable in supernatants of mPD-L1+ cell
lines which was suppressed by MMP inhibitors implicating
matrix metalloproteinase activity (195). Cytokines such as IL-21
and IL-6 may also mediate its release as its secretion was increased
in the culture media of Waldenstrom macroglobulinemia (WM)
cell lines with these cytokines (193). In addition, recent studies
have also described two distinct types of splicing events affecting
or removing exon encoding for transmembrane domain (185,
189, 196–199). Tumor cells and mature DCs were identified as the
main sources of sPD-L1 (127, 194, 200). Nonetheless, other cells
in the tumor stroma may also be responsible for circulating
elevated sPD-L1 levels as discrepancies have been observed
between tumor expression of mPD-L1 and circulating sPD-L1
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(125, 128, 137, 201). In addition, recent studies have also
identified cell-free PD-L1 in exosomes (exPD-L1) which is
membrane-bound and may confound the detection of
membrane-free sPD-L1 (202–204).

Soluble PD-L1 in plasma is believed to retain its binding
capacity and inhibitory properties (45, 127). In vitro studies have
suggested an inhibitory role for sPD-L1 demonstrating its ability
to suppress T cell activation, reduce secretion of IFN-g and
induction of T cell apoptosis (127, 189, 193, 196, 197, 200).
Tumor cells as well as DC-released sPD-L1 has demonstrated the
ability to induce in vitro T cell apoptosis (127). Soluble PD-L1
and PD-L2 secreted by WM cells could reduce T cell
proliferation which was associated with a decrease in the cell
cycle protein cyclin A, phosphorylated Akt (p-Akt) and p-ERK
protein levels. T cell metabolic rate was also altered via reducing
mitochondrial adenosine triphosphate production and maximal
respiratory capacity (193). Nonetheless, studies have also
attributed these immune inhibitory properties of cell-free PD-
L1 to exPD-L1 in melanoma, glioblastoma, and mouse models
(202–204). Moreover, in vitro and patient studies have also
reported sPD-L1 completely lacking such inhibitory properties
(185, 202). Ng, et al. revealed sPD-L1 rather functions as a
receptor antagonist blocking the inhibitory function of
membrane-bound PD-L1 expressed on cellular or exosomal
membranes (199). Hence, further evaluation of sPD-L1 in
terms of its primary source and its course of action would
further be needed to establish its role as an inhibitory
soluble receptor.
Frontiers in Immunology | www.frontiersin.org 9
Discovery of PD-L1 on exosomes has been regarded as the
alternative mechanism for immunosuppression activity of this
checkpoint. Systemically introduced exosomal PD-L1 or secreted
by tumor cells have shown the capability to bind to PD-1, induce
T cell inhibition, and promote tumor growth (202–204).
Exosomal PD-L1 was also able to induce suppression of T cell
activation in draining lymph nodes, and its genetic blockade was
shown to inhibit tumor growth, and promote T cell activity in the
draining lymph node to induce systemic anti-tumor immunity
and memory (203). Exosomal PD-L1 level was upregulated by
IFN-g which suppressed the CD8+ T cells and facilitated the
tumor growth (202, 204). Circulating levels of exPD-L1 and IFN-
g were positively correlated in metastatic melanoma patients
(202). In glioblastoma patients, PD-L1 DNA was found in
circulating extracellular vesicles (EVs) which was correlated
with tumor volumes of up to 60 cm3 (204). Exosomal PD-L1
appears to be resistant to anti-PD-L1 but not anti-PD-1 antibody
blockade (202–204). In fact, blockade of exPD-L1 was shown to
work additively with anti-PD-L1 antibodies to suppress tumor
growth (203). Furthermore, removal of exPD-L1 was shown to
inhibit tumor growth, even in models resistant to anti-PD-L1
antibodies (203). On the other hand, anti-PD-1 blockade could
successfully reverse the exPD-L1-mediated T cell inhibition in
melanoma and glioblastoma (202, 204). In metastatic melanoma
patients, changes had occurred in circulating exPD-L1 levels
during the course of anti-PD-1 therapy (202). Stratification of
clinical responders and non-responders could be achieved based
on the magnitude of early on-treatment increase in circulating
A

B

D

C

FIGURE 4 | Soluble PD-L1 and Anti-PD-1/PD-L1 mAb immunotherapy conundrum. (A) Elevated circulating sPD-L1 in various cancers correlates with prognosis and
exerts its inhibitory effects on tumor-specific T cells by interacting with PD-1 receptor. (B) sPD-L1 impedes efficacy of anti-PD-L1 antibodies. (C) Anti-PD-1 may
overcome resistance to anti-PD-L1 antibodies by reducing interaction between sPD-L1 and PD-1 (D) sPD-1 may overcome sPD-L1-mediated resistance to anti-PD-
L1 antibody by directly interaction with sPD-L1 and mPD-L1. Anti-PD-1 antibody addition may result in a stronger response.
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exPD-L1 which indicated adaptive response of tumor cells to re-
invigorated T cells (202). Understanding the mechanistic details
of exPD-L1 provides a rationale for its application as a prognostic
biomarker and predictor of response to anti-PD-1 therapy.

Various cancers including NSCLC (129, 138, 205), RCC (127),
DLBCL (128, 130), oral squamous cell carcinoma (OSCC) (139),
multiple myeloma (MM) (131), nasal NK/T cell lymphoma
(NKTTL) (132), papillary thyroid cancer (PTC) (133), epithelial
ovarian cancer (EOC) (134), gastric cancer (135, 140, 206), HCC
(136), and WM (193) have demonstrated significantly higher
circulating levels of sPD-L1 in comparison to healthy individuals.
In several of these studies, sPD-L1 level was significantly
associated with certain cancer attributes such as: clinical stage,
tumor cell differentiation, and lymph node status in OSCC (139)
and gastric cancer (135, 140); abdominal organ metastases, cancer
histopathology (adenocarcinoma) in NSCLC (129, 138); tumor
size, stage and grade, and tumors with necrosis in RCC (127);
stage of cirrhosis and stage of HCC in HCC (136); residual tumor
burden in EOC (134); and extrathyroidal extension in PTC (133).
Moreover, cancer patients with higher sPD-L1 level had revealed
significant shorter OS, PFS and higher mortality rates (127–136).
Such outcomes suggest an inhibitory role for sPD-L1, as well as,
reveal a consistent outlook for sPD-L1 association with advance
disease and worst prognostic factors which indicate its role as a
strong predictive and prognostic biomarker.

Presence of elevated plasma level of PD-L1 has been shown to
determine the response of various anti-cancer treatments
including surgical reduction, chemotherapy, radiotherapy, anti-
EGFR treatment, and anti-PD-1 immunotherapy (131, 207).
MM patients with low sPD-L1 had reported a better response
to treatment that consisted of a mixture of treatment regimens
including novel drugs such as bortezomib and lenalidomide
(131). Similarly, sPD-L1 levels in the bone marrow plasma of
MM patients also predicted the progression of autologous
transplantation (207). The clinical benefit by inhibition of PD-
1 therapy was significantly associated with baseline serum PD-L1
levels in NSCLC and metastatic melanoma (186, 187). Pre-
chemotherapy levels were associated with overall survival in
advanced lung cancer, advanced gastric cancer, biliary tract
cancer, and DLBCL (128, 130, 145, 184, 208, 209). In epithelial
ovarian cancer patients, soluble PD-L1 did not only predict
prognosis but was also correlated with platinum response
(134). Response to concurrent chemoradiotherapy or
radiotherapy alone was also associated with sPD-L1 circulating
levels in NSCLC, HCC, and NNKTL patients (132, 182, 183).
Prognosis was predicted based on high levels of sPD-L1 in HCC
patients receiving surgical reduction, local ablation, sorafenib
and liver transplantation (125, 136). Gastric cancer patients
receiving surgical reduction with high sPD-L1 levels had better
prognosis and lower recurrence (135). As such, identification of
baseline sPD-L1 levels may serve as a great predictive of response
to various treatments, and as a prognostic marker as well.

Soluble PD-L1 levels increase or decrease after undertaking
various anti-cancer treatments may hold predictive and
prognostic significance. NSCLC patients receiving TRT showed
a significant decrease in sPD-L1 at week 2 and week 4 compared
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to baseline levels; however, sPD-L1 levels returned to baseline
levels post-TRT (182). Nonetheless, this decrease in sPD-L1 was
not evaluated for prognostic significance. A contrast result was
observed in patients with locally advanced rectal cancer treated
with neoadjuvant chemoradiotherapy (144). Soluble PD-L1
levels were significantly increased after CRT (p < 0.0001) and
high sPD-L1 level after CRT tended to be associated with worse
DFS (p = 0.0752). Likewise, hepatocellular carcinoma patients
receiving concurrent chemoradiotherapy displayed increased
sPD-L1 levels post-RT which decreased back to baseline levels
at 1 month while SBRT receiving patients exhibited a continued
increase until 1 month (183). The pattern of sPD-L1 change over
time was significantly different between the two groups but their
prognostic significance was not sought. Radiation therapy is
known to re-invigorate tumor-specific T cells which may cause
an early decrease in sPD-L1; however, tumor cells upregulation
of PD-L1 in response to re-invigorated T cell may suggest the
afterward increase in sPD-L1 levels. Further exploration of such
dynamics and their significance with prognosis must be sought
in order to fully appreciate sPD-L1 potential as a biomarker.

Dynamics of sPD-L1 in cancer patients receiving
chemotherapy have rather presented a persistent outlook.
Baseline sPD-L1 level was well correlated with prognosis in
cancer patients receiving chemotherapy (128, 145, 146, 184).
At disease progression, sPD-L1 levels were significantly increased
in comparison to baseline levels (145, 184). A trend of inverse
relationship between sPD-L1 and tumor burden in response
group was identified in biliary tract cancer (BTC) patients (184).
Park, et al. further revealed that patients whose sPDL1 increased
after 1st cycle of chemotherapy showed the tendency of worse
PFS and OS (145). DLBCL patients had also shown a significant
decrease in sPD-L1 levels at complete remission or at the end of
the treatment as compared to sPD-L1 levels at diagnosis (128,
146). Patients with complete response had achieved normal
levels of sPD-L1 as were observed in controls (146). Therefore,
baseline sPD-L1 levels may predict response to chemotherapy
and its increase after chemotherapy indicate prognostic outcome.
As such, sPD-L1 levels can be applied as a good predictor and
prognostic biomarker in these patients.

NSCLC patients with EGFR mutation had higher sPD-L1
levels compared to wild type and a post-therapeutic significant
reduction in sPD-L1 level was only observed in EGFR mutated
patients (210). In a separate study, NSCLC patients receiving
anti-EGFR treatment showed a median 19.19% change in the
pre-treatment and on-treatment sPD-L1 level; though, there was
no differences in the treatment response or progression free
survival between patients with or without a reduction of sPD-L1
levels (211). Further exploration would be required to identify
the cause of reduction in sPD-L1 levels after EGFR treatment and
to establish its association with cancer prognosis. Immune
checkpoint inhibitors had induced a significant increase in
sPD-L1 concentrations at first restaging after 7 to 8 weeks; yet,
no prognostic significance was sought (212). In a separate study
involving the use of nivolumab (anti-PD-1 mAb) only revealed a
similar increase in sPD-L1 levels at first tumor evaluation which
was associated with poor response (ORR 17% versus 68%,
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p=0.005), clinical benefit (10% versus 47%, p=0.049), shorter
median PFS (1.8 months vs. 6.5 months, p = 0.008), and shorter
median OS (5.4 months vs. NR, p = 0.028) (147). In fact,
magnitudes of early on-treatment increase in circulating exPD-
L1 after anti-PD-1 therapy in melanoma patients was also shown
to stratify clinical responders from non-responders (202). Hence,
increase in circulating PD-L1 levels after anti-PD-1 therapy
indicates adaptive response of tumor cells to re-invigorated T
cells and could be used as a predictor for anti-PD-1 therapy.
SOLUBLE B7-H3

B7-H3 (B7 homolog 3 protein), a B7 ligand molecule for which
the receptor is yet unknown, belong to B7-CD28 family and
exhibits co-stimulatory and co-inhibitory properties (39, 213–
215). Receptor for B7-H3 could be present on NK and T cells as it
appears to inhibit both type of cells (39, 213). T cell stimulation is
achieved by binding to TLT-2 receptor while binding to
unknown receptor results in T, NK and osteoblastic cells
inhibition (213). B7-H3 expression in normal tissues is limited
but aberrant expression is reported in a variety of cancers which
is also associated with poor outcome (216–218). Overexpressing
cancers include renal cell carcinoma, breast cancer, lung cancer,
osteosarcoma, neuroblastoma, prostate cancer, esophageal
squamous cancer, gastric cancer, pancreatic cancer, gallbladder
cancer, colorectal cancer, ovarian cancer, cervical cancer, and
endometrial cancer (217, 218). Its blockade has been considered
for anti-cancer immunotherapy in preclinical as well as clinical
trials involving various types of cancers (219, 220). Hence, like
other B7 molecules, B7-H3 is also being recognized as an
important checkpoint molecule which needs further exploration.

In addition to membrane B7-H3, a soluble isoform of B7-H3
also exists which is produced through alternate splicing of B7-H3
from the 4th intron encoding for a 248 amino acid length of
protein termed as spliced sB7-H3 (221). It can be detected in the
PMBCs of healthy donors (44). Spliced sB7-H3 gene was
predominantly found in hepatoma and peritumor tissues as
compared to PMBCs from healthy donors and HCC patients
(221). In addition, release of sB7-H3 from T cells, monocytes,
and MDDCs (monocytes-derived dendritic cells) have also been
demonstrated upon stimulation (44). Several cancer cells lines
positive for membrane B7-H3 have shown to release soluble
isoform (44, 222). Soluble B7-H3 release was decreased while
surface expression of mB7-H3 was increased in A549 and B7-
H3/L929 cells with addition of matrix metalloproteinase
inhibitor (MMPI) indicating sB7-H3 release is mediated by
MPP (44). Correlation of MMP-9 levels with levels of sB7-H3
in medulloblastoma cells (D283 and D425) treated with B7-H3
over-expressive plasmids also implicate MMP activity (223).
Conditioned media from miR-29-, and JQ1-treated cells (MYC
inhibitor) demonstrated that overexpression of miR-29 and
inhibition of MYC can stifle secretion of sB7-H3 (223). In
conclusion, release of sB7-H3 may be promoted by both
mechanisms including proteolytic shedding as well as
alternative splicing.
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Soluble B7-H3 is functionally active and retain inhibitory
properties (44, 221). sB7-H3 was able to disrupt B7-H3/B7-H3R
interactions by binding to B7-H3 receptor present on activated
T cells (44) (Figure 5). sB7-H3 presence was enough to inhibit
T cell proliferation and cause reduction of IL-2 and IFN-g in the
supernatants indicating negative regulation of T cells by sB7-H3
(221). In addition, release of soluble 4IgB7H3 has also shown
in vitro and in vivo suppression of natural killer cell–mediated
tumor cell lysis (222). Moreover, sB7-H3 could switch macrophage
phenotype from M1 (proinflammatory type; classically activated
macrophage) to M2 (anti-inflammatory phenotype; alternatively
activatedmacrophage) through increased expression of macrophage
mannose receptor (MMR) and IL-10 and decreased expression of
HLA-DR and IL-1b (224). Similar to its surface counterpart,
sB7-H3 has also exhibited to promote migration, invasion,
metastases and angiogenesis (222, 223, 225). Conditioned media
from B7-H3 OE treated cells showed an increase expression of
proangiogenic molecules using a human angiogenesis antibody
array (222). Higher sB7-H3 levels were evident in B7-H3 OE
treated D283 and D425 cells in comparison to control (222).
Moreover, levels of sB7-H3 correlated with MMP9 in conditioned
media suggesting a possible role for sB7-H3 in angiogenesis through
MMP9 modulation (222). In MB cell lines, miR-29-treated cells
showed decreased levels of proangiogenic molecules as well as low
levels of sB7-H3 (222). MYC inhibitor (JQ1)-treated cells were also
associated with low levels of sB7-H3. These outcomes suggest that
MYC upregulates sB7-H3, and is inhibited by miR-29
overexpression. Soluble B7-H3 was also shown to increase
invasion and metastases of pancreatic carcinoma cells (225).
Soluble B7-H3 significantly increased NF-kB activity by
upregulating TLR4 expression which promoted IL-8 and VEGF
expression, and in vivo TLR4-knock-down tumor cells were
associated with decreased metastatic ability after being induced by
sB7-H3 (225). Interestingly, IL-8 levels along with sB7-H3 were
significantly increased in HCC patients which may imply a similar
interplay (226).

Soluble B7-H3 can be detected in the sera of healthy
individuals (44). Elevated serum levels of soluble B7-H3 in
various cancers have been reported and correlated with
aggressiveness and prognosis. In NSCLC patients, B7-H3
circulating levels were significantly higher in comparison to
patients with obstructive pulmonary diseases and healthy
controls (p<0.001) (227). Higher sB7-H3 levels in serum and
malignant pleural effusions were correlated with tumor size,
stage and metastases (nodal & distant) (228). High grade
glioma patients had higher CSF and serum levels of sB7-H3
and sPD-L1 compared to low grade glioma; however, their serum
levels in glioma patients did not significantly differ from healthy
controls (229). Glioma patients had higher CSF levels of sB7-H3
and B7-H1 as compared to patients with moderate traumatic
brain injury (229). Patients with primary HCC revealed to have
significantly elevated levels of sB7-H3 in their serum compared
to healthy individuals (226). Cirrhotic patients with early-stage
HCC (ESHCC) demonstrated significantly higher serum levels
than cirrhotic patients (P < 0.001) (230). Moreover, sB7-H3 in
cirrhotic patients with ESHCC correlated with tumor size, tumor
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stage, vascular invasion, and tumor differentiation (230). Bile
levels of sB7-H3 in malignant biliary strictures (BS) were
reported to be significantly higher than that of benign BS
(p<0.001) (231). Tumor stage, vascular invasion, and lymph
node and distant metastasis were correlated with sB7-H3
levels. Patients with higher sB7-H3 bile levels reported shorter
survival (p=0.014) (231). Osteosarcoma patients also reported
significantly higher sB7-H3 levels that correlated with stage,
differentiation and metastasis status (p<0.05) (232). Higher
levels were also observed in Renal cell carcinoma patients that
showed correlation with clinical stage of the cancer (233). In
conclusion, sB7-H3 can correlate with advance cancer status and
predict poor outcome in various cancer patients. Moreover, as it
has shown to promote cancer invasion and metastasis, it can also
be exploited for anti-metastatic activity to target cancer spread.
SOLUBLE B7-H4

B7-H4 is a type I B7 family member and is also known as B7x,
B7-S1, or VTCN1. B7-H4 is a novel B7 ligand that can negatively
regulate T cell-mediated immune responses (234–236). It can
inhibit T cell proliferation, cell-cycle progression, and IL-2
production upon its ligation to yet unknown receptors (234–
236). In addition to activated T cells, MDSCs are also reported to
express its putative receptor (237). B7-H4 expression is lacking
Frontiers in Immunology | www.frontiersin.org 12
in normal tissues and immune cells. On the other hand, aberrant
expression is reported in various cancers which has correlated
with poor outcome (14, 39, 238, 239). As such, this checkpoint
has shown also potential for immune checkpoint inhibition
based immunotherapy (238, 239).

A soluble form of B7-H4 also exist that is generated by
proteolytic cleavage mediated by the metalloproteinase activity
(240, 241). Just like membrane B7-H4, soluble B7-H4 has also
been expressed in a variety of cancers (242–254). Significantly
higher serum expression of B7-H4 in gastric cancer (242, 243),
NSCLC (244, 245), HCC (246, 247), RCC (248–250), bladder
urothelial carcinoma (251), ovarian cancer (252, 253), and
osteosarcoma (254) has been reported in comparison to
normal healthy individuals or control groups. Soluble B7-H4
levels significantly correlated with tumor size, lymph node
metastasis, depth of tumor invasion and TNM classification in
gastric cancer, HCC, and RCC (242, 243, 246–248, 250).
Additionally, sB7-H4 was also correlated with serum AFP
levels in HCC, distant metastasis at nephrectomy in RCC,
distant metastasis in osteosarcoma, and histology type in
ovarian cancer (247, 248, 250, 252, 254). Soluble B7-H4 levels
in malignant pleural effusion were higher in lung cancer and
predicted a worst prognosis (255). Elevated preoperative levels
had predicted a worse response to anti-VEGF therapy in RCC
(250). Furthermore, elevated circulating B7-H4 levels were
significantly associated with worst prognosis in gastric cancer,
FIGURE 5 | Soluble B7-H3 biological activity and mechanism of action. (A) Soluble B7-H3 could disrupt B7-H3:B7-H3R interactions and inhibit T lymphocytes.
(B) sB7-H3 supress NK cell-mediated tumor cell lysis and also switch macrophage phenotype from M1 (classically activated macrophage) to M2 (alternatively
activated macrophage) via increasing expression of macrophage mannose receptor (MMR) and IL-10 and decreasing expression of HLA-DR and IL-1b. (C) MYC and
micR-29 may regulate the secretion of sB7-H3 via matrix metalloproteinases 9 (MMP9) as inhibtion of MYC or overexpression of micR-29 could increase the sB7-H3
and MMP9 expression. (D) Soluble B7-H3 may also induce cancer invasion and metastases through increased NF-kB activity via upregulating toll-like receptor 4
(TLR4) expression with consequent promotion of IL-8 and vascular endothelial growth factor (VEGF) expression.
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NSCLC, HCC, RCC, and osteosarcoma (242–247, 250, 254, 255).
Hence, soluble B7-H4 can be a valuable biomarker for assessing
cancer prediction and prognosis in a broad range of cancers.

Function of soluble B7-H4 has not been fully investigated. Its
evaluation in mouse models of autoimmune diseases such as
rheumatoid arthritis, type I diabetes, and contact hypersensitivity
suggested that soluble B7-H4 might block the inhibitory
functions of membrane B7-H4 and enhance T-cell-mediated
autoimmune responses (240, 256, 257). In contrast, T cell
inhibition was demonstrated with B7-H4 wild-type and NLS
mutant transfected HEK293 cells that could also produce soluble
B7-H4 (241). NLS mutant transfectants which had produced
more soluble B7-H4 showed stronger inhibitory effect on T cell
proliferation and IL-2 production (241). Furthermore, anti-B7-
H4 mAb efficiently blocked the T cell inhibition of supernatants
from NLSmutant transfectants (241). Zang, et al. also observed T
cell inhibition in the presence B7x-Ig (236). Furthermore,
significant elevated serum levels of B7-H4 in cancer patients
and its association with invasiveness, progression and worst
prognosis also suggests an inhibitory role (242–255). The
discrepancy may arise from the its binding to distinct receptors
under diverse circumstances as is the case with other B7 family
members. Regardless, in case of its inhibitory effects on T cells, its
blockade with selective antibodies may serve as an immune
checkpoint for anti-cancer immunotherapy exploitation.
Nonetheless, further studies are validated to look into the
various aspects of soluble B7-H4 regulatory mechanisms and
inhibitory effects in cancer.
BTLA INHIBITORY CHECKPOINT
MOLECULES AXIS

B and T lymphocyte attenuator (BTLA, CD272), a novel
checkpoint co-inhibitory receptor also belonging to the CD28
superfamily, is constitutively expressed by naïve CD4+ and CD8+
T cells and is upregulated after T cell activation (27, 28, 258, 259).
In addition, other immune cells have also shown expression of
BTLA such as NK cells, NKT cells, B cells, DCs, and myeloid cells
(22, 28, 259). It recognizes HVEM as its ligand which is also
expressed on a variety of cells including T cells, B cells, NK cells,
DCs, myeloid cells, and is inducible in somatic tissues (22, 259).
BTLA ligation to HVEM after T cell activation have shown to
inhibit T cell proliferation and effector functions (22–28). Its
upregulation in various cancers and association with prognosis
suggests that cancers may exploit this pathway for immune
evasion as in the case of other T cell co-inhibitory molecules
such as CTLA-4 and PD-1 (34, 35). In fact, its blockade has shown
enhanced immune responses; as such, BTLA/HVEM has been
considered as an emerging new target to enhance anti-tumor
immunity (36, 37, 261).

A soluble form of BTLA and HVEM can be detected in the
sera of healthy individuals and cancer patients (29–32, 124).
Cancers with elevated circulating levels of soluble form of BTLA
include HCC, pancreatic adenocarcinoma, clear cell renal cell
Frontiers in Immunology | www.frontiersin.org 13
carcinoma and prostate cancer (29–32, 124). sBTLA levels was
significantly associated with aggressiveness and progression
in prostate cancer (32). Association with worst prognosis was
observed in HCC patients receiving sorafenib, pancreatic
adenocarcinoma, and clear cell RCC (29, 31, 124). Interestingly,
these studies had investigated a large panel of co-stimulatory and
co-inhibitory immune checkpoint molecules in which only sBTLA
level was significantly correlated with cancer prognosis (29, 31,
124). These outcomes indicate a broader regulatory role for BTLA
in cancer as compared to PD-1 and CTLA-4 checkpoint axis.

Soluble form is produced as a result of alternative splicing and
its transcripts could be detected in B, CD4+ and CD8+ T cells
which may constitute the source of sBTLA (23, 24, 260). Two
splice variants for BTLA have been reported in mice and
humans. One isoform lacking Ig domain and the other one
lacking transmembrane domain have been identified (23, 24,
260). Circulating soluble BTLA may possess biological activity
and clinical significance (260). But its significance in this regard
has not been elucidated in cancer studies (262, 263). However, in
a similar manner to sPD-1 experiments, blockade of BTLA-
HVEMwith sBTLA have shown enhanced anti-cancer immunity
in in vitro and in vivo studies (262). A eukaryotic expression
plasmid (psBTLA), which expressed the extracellular domain of
murine BTLA with capability to bind HVEM and disrupt BTLA-
HVEM interactions, was constructed and its injection resulted in
down-regulation of IL-10 and TGF-b and promotion of dendritic
cell function via increased expression of B7-1 and IL-12.
Furthermore, its combination with HSP70 vaccine induced a
potent anti-tumor immunity by increasing the expression of Th1
cytokines, IL-2, and IFN-g and decreasing transcription levels of
IL-10, TGF-b, and Foxp3 in the tumor microenvironment (262).
Similar results were obtained when a recombinant adeno-
associated virus (AAV) vector was used for sBTLA expression
in a melanoma pulmonary metastasis model (263). Nonetheless,
the research into this checkpoint is at preliminary stages and
further exploration would be needed to establish its role as
predictive and prognostic marker, as well as, its potential for
anti-cancer immunotherapy.
CONCLUSIONS

Immune checkpoint blockade, in particular blocking the CTLA-4
and PD-1 checkpoint pathways, represents a revolutionized form
of cancer immunotherapy. Generation of soluble forms of B7:
CD28 family coinhibitory checkpoint molecules represents a
broader involvement of these pathways in regulation of anti-
cancer immunity and further adds to the complexity of
pathological interactions exist among these pathways. Soluble
forms of these receptors and ligands show their significance in
the form of biomarkers for prognosis and prediction of response
to therapy but also open new opportunities for anti-cancer
immunotherapy. In vitro and in vivo evidence suggest great
potential for soluble forms of PD-1 and B7-1 as therapeutic
agents. However, these results have not been validated in clinical
studies. Soluble PD-L1 levels ascertains itself as a predictive and
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prognostic biomarker in cancer progression and remission but
also in determination of response to therapy. It becomes
imperative to investigate whether reducing sPD-L1
therapeutically could yield in diminution of its inhibitory effects
and induction of anti-cancer immune responses. Moreover, their
clinical significance may depend on the primary functions of their
membrane-bound counterparts and regulatory mechanism and
effects of the whole checkpoint pathway. For example, sCTLA-4
elevated levels increase the T cell inhibition and its blockade
results in vice versa due to the competitive mechanism of the
checkpoint CD28/CTLA-4/B7-1/B7-2 pathway operates. But this
is not case for sPD-1 as increasing sPD-1 disrupt the PD-1/PD-L1
pathway and yields in better anti-cancer immunity. The opposite
is accurate for their corresponding ligands, increasing sB7-1
results in improved immunity while increasing sPD-L1 is related
to worst prognosis. Hence, deep understanding of the regulatory
mechanism of primary membrane bound checkpoint pathways
Frontiers in Immunology | www.frontiersin.org 14
can help us understand the mechanism of action and biological
effects of soluble checkpoint receptor and ligands. Nonetheless,
additional mechanism may also exist as in the case of B7-1. Newer
pathways, in particular the BTLA-HVEM, may have broader
significance as it appears to regulate all phases of T cell
activation. Therefore, in addition to their predictive and
prognostic value, understanding the underlying biological
mechanism of its production and function of these soluble
forms may pave the way for innovative checkpoint-based
cancer immunotherapy.
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