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A novel adaptive beamformer named filtered-delay multiply and sum (F-DMAS) has recently been proposed. Compared to the
delay and sum (DAS) beamforming algorithm, F-DMAS can efficiently improve the resolution and contrast. However, the DAS
can still be seen in the expansion of DMAS. Therefore, we rearrange the pair-wised signals in terms of lag in DMAS and then
synthesize a lot of new signals. Thanks to the relationship between the spatial coherence and lag, these new signals can be
thought of as sorted by the spatial coherence. Thus, we apply two phase-related factors, the polarity-based factor (PF) and the
sign coherence factor (SCF), which are evaluated based on new signals, to weight the output of DMAS. The two approaches are
consequently referred to as LAG-DMAS-PF and LAG-DMAS-SCF, respectively. The results show that, compared to F-DMAS
and DAS, our proposed methods can improve the resolution and contrast to some extent without increasing too much
computational complexity. In the comparison between LAG-DMAS-PF and LAG-DMAS-SCF, the latter has better
performance, but the former can better protect image details.

1. Introduction

Ultrasound imaging technology has been widely used for
decades. The beamformer, as an important component in
ultrasound imaging system, has made great progress and
evolved from analog technology to digital technology [1, 2].
The delay and sum (DAS) beamformer, which is robust and
simple to implement, is a popular technology. However, its
performance, in terms of resolution and contrast, is not good
[3]. Therefore, many researchers have proposed a lot of new
methods, such as the minimum variance (MV) [3–5], the
short-lag spatial coherence (SLSC) [6–9], the pixel-based
beamforming [10, 11], and neural networks for beamform-
ing [12, 13].

In addition to the methods we mentioned previously, a
novel filtered-delay multiply and sum (F-DMAS) beamfor-
mer has been proposed for ultrasound B-mode medical
imaging [14]. This method can enlarge the difference

between coherent signals and incoherent signals through
the multiplication of pair-wised signals. It shows that the res-
olution and contrast can be significantly improved in com-
parison with DAS [14]. Since then, a lot of researches on
this algorithm have emerged. Park et al. [15] applied it to
photoacoustic microscopy and introduced a method to sim-
plify the computation. Matrone et al. [16] combined the F-
DMAS with multiline transmission (MLT) to suppress the
crosstalk artifact. Prieur et al. [17] analyzed the F-DMAS
beamforming algorithm from statistics point of view and
showed that the F-DMAS was more susceptible to signal
coherence in comparison with the DAS. Matrone et al. [18]
discussed the application of the F-DMAS beamforming
algorithm to plane-wave imaging (PWI).

The F-DMAS beamforming algorithm exploits the spatial
coherence to enhance the image quality. In fact, there are
many other ways to use the coherence besides the F-DMAS.
One of them is to use the sign coherence factor (SCF)
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proposed by Camacho et al. [19] to weight the output of the
DAS. It shows that this factor also can efficiently improve the
resolution and contrast. The SCF is an extreme case of the
phase coherence factor (PCF) [19]. The PCF can be consid-
ered as a weighting factor which is based on the phase consis-
tency between signals. The backscattered signals from the
focused point should have the same phase, and the consis-
tency between out-of-focus signals is not good. Thus, we
can use the statistical characteristics (standard deviation, var-
iance, etc.) of the backscattered signals’ phases to evaluate the
quality of focusing. Based on the PCF, Hasegawa and Kanai
[20] combined subaperture beamforming with phase coher-
ence imaging, where the PCF is calculated in terms of the
RF signals from the subapeture. In addition, there are several
enhanced versions of PCF, such as exponential PCF, har-
monic PCF, and Gaussian PCF [21].

In SCF, The received signals are divided into two polari-
ties, positive and negative, according to different phases. SCF
is calculated based on the statistical characteristic (standard
deviation) of polarities. Then, the SCF is applied to weight
the output of the DAS beamformer. However, because the
polarity reflects the phase of the signal, one can also use a
mean value of signals' polarities as a factor which we refer
to as polarity-based factor (PF). Based on the F-DMAS and
SCF, we proposed two new methods, the lag-based delay
multiply and sum weighted by SCF (LAG-DMAS-SCF) and
the lag-based delay multiply and sum weighted by PF
(LAG-DMAS-PF). First, we construct a series of new signals
based on the lag. The SCF and PF are then calculated from the
new generated signals. Finally, the two factors are separately
applied to weight the output of the DMAS beamformer.

The rest paper is organized as follows. Section 2 mainly
introduces the background. The detail of our proposed
method is introduced in Section 3. The simulation and exper-
imental results are exhibited in Section 4. After that, the dis-
cussion with respect to four beamformers is presented in
Section 5. A brief conclusion is finally drawn in Section 6.

2. Background

2.1. Filtered-Delay Multiply and Sum (F-DMAS). The algebra
of DMAS algorithm is written as

yDMAS = 〠
N−1

i=1
〠
N

j=i+1
sign sisj

� �
∙
ffiffiffiffiffiffiffiffiffi
sisj
�� ��q

, ð1Þ

where the si and sj are the delayed signals received by the ith

and jth element, respectively, and N is the total elements
which are active in receiving. Due to the pair-wise multiplica-
tion, more frequency components exist in the final result. In
order to retain the second harmonic component, the output
of DMAS is passed through a bandpass filter to cancel the
DC and higher frequency components. The sign, absolute,
and square root operations in Equation (1) can be calculated
previously using the following Equation (2) [15]:

�si = sign sið Þ
ffiffiffiffiffiffiffiffi
∣si ∣

p
, for 1 ≤ i ≤N , ð2Þ

Substituting Equation (2) into Equation (1), we can get

yDMAS = 〠
N−1

i=1
〠
N

j=i+1
�si�sj: ð3Þ

2.2. Sign Coherence Factor (SCF). The SCF is an extreme form
of PCF which utilizes the phases of received signals to evalu-
ate the signal coherence [19]. In the SCF, the phase ½−π, π � is
split into two intervals ð−π/2,  π/2� and ½−π,−π/2� ∪ ðπ/2, π�.
The aperture data have thus only two polarities, positive or
negative. Before evaluating the SCF, the polarity of each
received signal needs to be decided by

bi =
−1, si < 0,
+1, si ≥ 0,

(
ð4Þ

where si is the delayed signal received by the ith element. +1
means the positive polarity, and -1 means the negative polar-
ity. The SCF can then be calculated by

SCF = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

N
〠
N

i=1
bi

 !2
vuut , ð5Þ

3. Method

The DMAS algebra can be expanded to

yDMAS = �s1�s2 +�s2�s3+⋯+�sN−2�sN−1 +�sN−1�sN½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first item

+ �s1�s3 +�s2�s4+⋯+�sN−3�sN−1 +�sN−2�sN½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

second item

+⋯

+  �s1�sN−1 +�s2�sN½ �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N−2ð Þth item

+ �s1�sN½ �
|fflffl{zfflffl}

N−1ð Þth item

:

ð6Þ

Each item in Equation (6) is denoted by xl for the sake of
convenience:

xl = 〠
N−l

i=1
�si�si+l , for 1 ≤ l ≤N − 1: ð7Þ

The DMAS can then be re-written as

yDMAS = 〠
N−1

l=1
xl: ð8Þ

Here, xl can be thought of as a new signal. Thus, the new
signals (x1, x2 ⋯ xN−1) are sorted by the lag. Thanks to the
relationship between the lag and spatial coherence [17], the
new signals area also sorted by the spatial coherence. As with
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the expansion introduced in [22], the summation in Equa-
tion (8) is considered as a DAS operation. Therefore, a SCF
can be used to weight its output. The corresponding polarity
is then calculated by

bl =
−1, xl < 0,
1, xl ≥ 0,

(
for 1 ≤ l ≤N − 1: ð9Þ

Let the SCF of the xl be the SCFLAG−DMAS:

SCFLAG−DMAS = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

N − 1 〠
N−1

l=1
bl

 !2
vuut : ð10Þ

Multiplying the SCFLAG−DMAS with yDMAS get the final
result yLAG−DMAS−SCF:

yLAG−DMAS−SCF = SCFLAG−DMAS∙ 〠
N−1

l=1
xl: ð11Þ

Considering that the computational complex of SCF is
somewhat high, we proposed another polarity-based factor
(PF):

PFLAG−DMAS =
∣∑N−1

l=1 bl ∣
N − 1 : ð12Þ

This factor is actually an average value of all polarities. It
can also reflect the phase diversity to a certain extent. Multi-
plying this factor with DMAS, we can get the final result
yLAG−DMAS−PF:

yLAG−DMAS−PF = PFLAG−DMAS∙ 〠
N−1

l=1
xl, ð13Þ

4. Results

The performance of four beamformers, DAS, F-DMAS,
LAG-DMAS-PF, and LAG-DMAS-SCF, is compared. The
software Field II [23, 24] is used to simulate several phan-
toms. Moreover, we also take into account the experimental
and in vivo data.
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Figure 1: Images of simulated point targets reconstructed by (a) DAS, (b) F-DMAS, (c) LAG-DMAS-PF, and (d) LAG-DMAS-SCF. All
images are shown in a dynamic range of 60 dB.
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In the simulation tests, a linear array with 128 elements
and 38.4mm width is modeled. In addition, the element
width is 0.27mm, element height is 5mm, pitch size is
0.3mm, and kerf is 0.03mm. The elevation focus is at
30mm. Two cycles of Hanning weighted sinusoidal excita-
tion pulse is modeled, and the center frequency is 5MHz.
The sample frequency is 120MHz. A low-pass filter is
employed to remove the undesirable frequency components
in the beamformed signals [25]. The numbers of elements,
which are used to transmit and receive, are 32 and 64, respec-
tively, and the transmission focal depth is 30mm.

4.1. Simulated Point Targets. Twelve points are synthesized in
the depth range from 15mm to 40mm with a 5mm step, and
there are 2 points at each depth. The lateral coordinates of
two points at each depth are x = −1mm and x = 1mm,
respectively.

The reconstructed images by DAS, F-DMAS, LAG-
DMAS-PF, and LAG-DMAS-SCF are shown in Figure 1,
respectively. The tailing at each point in Figure 1(a) is very
severe. We cannot even distinguish between two points per
depth. It means that the side lobe obtained by DAS should
be very high. The smearing phenomenon can still be seen
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Figure 2: Lateral cross-sections in Figure 1 at the depth of (a) 20mm, (b) 30mm, and (c) 40mm.

Table 1: FWHM (mm) at different depths in Figure 1.

Depth (mm)
Beamformer

DAS F-DMAS LAG-DMAS-PF LAG-DMAS-SCF

15 0.48 0.32 0.22 0.15

20 0.55 0.36 0.31 0.24

25 0.50 0.35 0.31 0.28

30 0.67 0.41 0.36 0.30

35 0.80 0.53 0.38 0.32

40 0.91 0.67 0.49 0.36
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in Figure 1(b), but it is much better than Figure 1(a).
Although the two points are not completely separated, we
can, at least, see two points at each depth. In Figures 1(c)
and 1(d), each point can be clearly observed, and two points
at each depth are also completely separated. In addition, the
smearing phenomenon cannot be observed in the two
images. Compared to Figure 1(d), the points in Figure 1(c)
are relatively larger. It means that the main lobe obtained
by LAG-DMAS-PF is wider than LAG-DMAS-SCF.

Figure 2 depicts the lateral cross sections at three depths
of 20mm, 30mm, and 40mm, respectively. It can be seen

from the figure that the main lobes and side lobes acquired
by LAG-DMAS-PF and LAG-DMAS-SCF are respectively
narrower and lower in comparison with DAS and F-DMAS.
For example, at the depth of 40mm, the side lobes obtained
by DAS, F-DMAS, LAG-DMAS-PF, and LAG-DMAS-SCF
are about -17 dB, -25 dB, -49 dB, and -69 dB, respectively.
We can quantitatively compare the main lobe by FWHMs
which are obtained by four algorithms at different depths.
It can be seen from the Table 1, where the corresponding
FWHMs are shown, that the values of LAG-DMAS-SCF are
the best, followed by LAG-DMAS-PF, followed by F-DMAS,
and the worst is DAS. This is also consistent with the results
observed in Figures 1 and 2.

In the point target simulation, we can observe that apply-
ing a phase-related factor to weight the DMAS can get a bet-
ter result. In the comparison between LAG-DMAS-PF and
LAG-DMAS-SCF, the performance of LAG-DMAS-SCF is
better.

4.2. Simulated Anechoic Cyst. A simulated anechoic cyst
phantom is synthesized to evaluate the contrast of the
images reconstructed by four algorithms. In a 20 × 20 × 1
mm3 volume, there are 200000 randomly distributed
points which amplitudes follow the Gaussian distribu-
tion. An anechoic cyst with a radius of 4mm is centered
at ðx,  y,  zÞ = ð0,  0,  30Þmm.

Figures 3(a)–3(d) show the reconstructed images by
DAS, F-DMAS, LAG-DMAS-PF, and LAG-DMAS-SCF,
respectively. The cysts in Figures 3(c) and 3(d) are much
clearer than those in Figures 3(a) and 3(b). In Figure 3(a),
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Figure 3: Images of simulated cyst reconstructed by (a) DAS, (b) F-DMAS, (c) LAG-DMAS-PF, and (d) LAG-DMAS-SCF. All images are
shown in a dynamic range of 70 dB.
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Figure 4: Lateral cross-section in Figure 3 at the depth of 30mm.
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the cyst is almost entirely blurred, with no edge visible. Com-
pared to Figure 3(a), the situation in Figure 3(b) is slightly
better; however, the cyst is still not clear. In Figure 3(c), the
cyst is clear, and the edge can also be distinguished, but some
smearing can be observed. Lastly, the cyst in Figure 3(d) is
the clearest and the edge is also best defined. It is worth not-
ing that there are some dark holes in the background in
Figure 3(d). This may be a drawback of this method. More-
over, the lateral cross-section at the depth of 30mm is shown
in Figure 4 where we can see that the amplitude in the cyst
obtained by LAG-DMAS-PF and LAG-DMAS-SCF is much
lower than that of DAS and F-DMAS.

The contrast ratio (CR) which is normally used to quan-
titatively estimate the contrast is calculated by [6]:

CR = 20 log10
μcyst
μbck

� �
, ð14Þ

where the μcyst and μbck are the mean intensities (before log-
compression) of cyst (white box in Figure 3(a)) and back-
ground (black box in Figure 3(a)), respectively. The values
of CR, obtained by DAS, F-DMAS, LAG-DMAS-PF, and
LAG-DMAS-SCF, are -23.48 dB, -33.96 dB, -44.05 dB, and

-60.51 dB, respectively. This also confirms the previous con-
clusion from the quantitative perspective.

4.3. Noise Influence Study. Noise is a very important factor
affecting the quality of ultrasound images. Therefore, we try
to evaluate the effects of the noise on the four algorithms.
White Gaussian noise with SNR 10dB is then added into
the previous simulated point targets. The reconstructed
images are shown in Figure 5.

In Figures 5(a) and 5(b), we can clearly see the effect
of noise. In comparison, Figure 5(b) is slightly better than
Figure 5(a) and shows a certain suppression of noise.
However, in Figures 5(c) and 5(d), especially in
Figure 5(d), the noise is effectively suppressed. Their cor-
responding lateral cross-sections at the depth of 20mm,
30mm, and 40mm are shown in Figure 6. The FWHMs
obtained by DAS, F-DMAS, LAG-DMAS-PF, and LAG-
DMAS-SCF in a noisy environment at different depths
are shown in Table 2 where the best values are highlighted
in italics. There is no big difference from Table 1. In other
words, the performance of LAG-DMAS-PF and LAG-
DMAS-SCF is not affected even in an environment with
relatively low SNR.
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Figure 5: Images of simulated point targets with white Gaussian noise (SNR = 10 dB) reconstructed by (a) DAS, (b) F-DMAS, (c) LAG-
DMAS-PF, and (d) LAG-DMAS-SCF. All images are shown in a dynamic range of 60 dB.
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4.4. Experiment. In some cases, the contrast of target with
respect to background may be not very high. The target is
hard to detect accordingly. To evaluate the performance of
four algorithms in these cases, we used a medical ultrasound
machine iNSIGHT 37C (Saset, Chengdu, China) to get RF
data by scanning a Multipurpose Multitissue ultrasound
phantom (Model 040GSE. CIRS INC. 900 Asbury Ave Nor-
folk, Virginia 23513 USA). The center frequency and sam-
pling frequency are 10MHz and 60MHz, respectively. The
number of scan lines is 302. According to the phantom spec-

ification, the diameters of two gray scale targets, whose con-
trasts with respect to background are -9 dB and -6 dB,
respectively, are both 8mm.

The reconstructed images by the four beamformers are
illustrated in Figure 7. The two targets are more detectable
in Figures 7(c) and 7(d) than those in Figures 7(a) and 7(b).
The two targets are blurred, and the edges are not distin-
guished in Figures 7(a) and 7(b). However, in Figure 7(d),
the two targets, especially the right one, are clear and the
edges are also well defined. Relatively speaking, the -6 dB

–5 –4 –3 –2 –1 0
Lateral distance (mm)

1 2 3 4 5

0
–10
–20
–30
–40
–50
–60
–70

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

–80
–90
–100

DAS
F-DMAS

LAG-DMAS-PF
LAG-DMAS-SCF

(a)

–5 –4 –3 –2 –1 0
Lateral distance (mm)

1 2 3 4 5

0
–10
–20
–30
–40
–50
–60
–70

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

–80
–90
–100

(b)

–5 –4 –3 –2 –1 0
Lateral distance (mm)

1 2 3 4 5

0
–10
–20
–30
–40
–50
–60
–70

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

–80
–90
–100

(c)

Figure 6: Lateral cross-sections in Figure 5 at the depth of (a) 20mm, (b) 30mm, and (c) 40mm.

Table 2: FWHM (mm) at different depths in Figure 5.

Depth(mm)
Beamformer

DAS F-DMAS LAG-DMAS-PF LAG-DMAS-SCF

15 0.47 0.32 0.23 0.17

20 0.55 0.36 0.32 0.28

25 0.52 0.35 0.32 0.28

30 0.66 0.40 0.36 0.30

35 0.79 0.52 0.38 0.29

40 0.90 0.63 0.51 0.34
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target in Figure 7(c) is somewhat blurred, but the edges in
Figures 7(c) can be clearly seen. The drawback in
Figures 7(c) and 7(d) is that the dark holes can be observed,
especially in Figure 7(d).

The corresponding values of CR evaluated using Equa-
tion (14) are depicted in Table 3. It shows that the LAG-
DMAS-SCF gets the best contrast from quantity point of
view. An interesting phenomenon is that the CRs obtained
by F-DMAS and DAS are very close, and DAS is even better.
This may be caused by some experimental parameters [26]. It
means that the performance of F-DMAS may be vulnerable
to these factors. But even in this case, LAG-DMAS-PF and
LAG-DMAS-SCF still achieved significantly better results.

4.5. In Vivo. We also used the same ultrasound machine to
scan the carotid artery. The number of scan lines is also
302. The reconstructed images are shown in Figure 8. In
Figure 8(a), the carotid artery is hard to detect, and the lumen
is totally blurred. It seems that the lumen in Figure 8(b) is
more visible than that in Figure 8(a). Compared to
Figures 8(a) and 8(b), the carotid arteries in Figures 8(c)
and 8(d) are more detectable. The lumens in the two figures,
especially in Figure 8(d), are clearer than those in Figures 8(a)
and 8(b). In comparison with Figure 8(c), the carotid artery is
more detectable in Figure 8(d). The shortage of Figure 8(d) is
that the texture detail is weakened or even disappeared.

Although this phenomenon can also be seen in Figure 8(c),
it is not as severe as in Figure 8(d).

5. Discussion

In the DMAS beamforming algorithm, the signals are multi-
plied in pairs and then summed. If there are N signals, ðN2

−NÞ/2 pair-wised signals are generated. These pair-wised
signals can be rearranged in terms of lag. Summing the
pair-wised signals with the same lag generates a new signal;
then, we can get N − 1 new signals. Thereafter, the new syn-
thesized signals are summed together to get the final result of
DMAS. However, the process of summing new signals can be
thought of as a DAS operation. As mentioned earlier, the
DAS algorithm has certain limitations. Consequently, some
coherence-based factors have been proposed to weight the
output of DAS to get better image quality. It is very conve-
nient to use a factor to weight the output of DAS, and calcu-
lating the factor is also simple. Considering that the final
result of DMAS is the summation of new signals, we can also
exploit a factor to weight its output. It should be noted here
that the calculation of the factor in DMAS is based on new
synthesized signals instead of those signals acquired by each
element.

In our proposed methods, two factors, SCF and PF, are
selected. As introduced earlier, the SCF and PF are both
based on the polarity (or phase) of each signal; in our case,
it is the polarity of each new synthesized signal. The spatial
coherence is proportional to the autocorrelation of aperture
function [27]. Compared to the signals from the elements
that are far apart, signals from adjacent elements have higher
coherence [17]. The spatial coherence has a close relationship
with lag accordingly. From this point of view, the new gener-
ated signals are actually sorted by the coherence. Thus, the
new signals can reflect the spatial coherence, and the coher-
ence factor can be more appropriately evaluated.
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Figure 7: Images of a tissue phantom reconstructed by (a) DAS, (b) F-DMAS, (c) LAG-DMAS-PF, and (d) LAG-DMAS-SCF. All images are
shown in a dynamic range of 60 dB.

Table 3: CRs (dB) of two gray scale targets in Figure 7.

Gray scale
target

Beamformer

DAS
F-

DMAS
LAG-DMAS-

PF
LAG-DMAS-

SCF

Left -8.72 -7.94 -13.75 -18.53

Right -12.36 -11.30 -21.02 -29.64
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The results show that the LAG-DMAS-PF and LAG-
DMAS-SCF, in terms of resolution and contrast, outperform
the DAS and F-DMAS. For a comparison between LAG-
DMAS-PF and LAG-DMAS-SCF, the latter is better. How-
ever, compared to LAG-DMAS-PF, the dark hole phenome-
non is more severe in LAG-DMAS-SCF. This may lead to the
weakness of tissue structure. Therefore, if one wants to main-
tain the tissue structure as much as possible and hopes that
the target can be better detected, the LAG-DMAS-PF is a
good choice.

Compared to the original DMAS algorithm, there is only
one more step to calculate the PF and SCF in LAG-DMAS-PF
and LAG-DMAS-SCF, respectively. The computational com-
plexity of SCF may be slightly high; however, the calculation
of PF is really simple. Therefore, this point can also be used as
a basis for choosing LAG-DMAS-PF or LAG-DMAS-SCF.

6. Conclusion

In this paper, we have presented two methods to improve
the performance of the F-DMAS beamformer. The F-
DMAS algorithm exploits the spatial coherence to enlarge
the difference between the correlated signals and uncorre-
lated signals. Thus, we apply two phase coherence-related
factors, which can also effectively reflect the spatial coher-
ence, to enhance this feature. The results show that our
proposed algorithms can improve the resolution and con-
trast to a certain extent.
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