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ABSTRACT
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical
disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP),
which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the
stage between mosquito bite and liver infection.

Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was
required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies,
associations between protection and various types of CMI (CSP-specific CD4C T cells and INF-g ELISPOTs)
have been identified, but not consistently. It is plausible that certain CD4C T cells support antibody
responses or co-operate with other immune-cell types to potentially elicit protection. However, the
identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain
elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can
be informed by the results of controlled human malaria infection studies.
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Introduction

History of RTS,S development

The estimated 45.7% efficacy of the candidate subunit vaccine,
RTS,S, against all episodes of malaria over the first eighteen-
month period in the phase-III study of African children aged 5
to 17 months,1 has followed on from comparable efficacy esti-
mates in smaller phase-II studies of both children and adults in
the field, i.e., in malaria-endemic regions of Africa,2-8 and of
malaria-naive adults after experimental challenge.9-12

Plasmodium is the mosquito-borne parasite that causes
malaria, and RTS,S targets the pre-erythrocyte stage of the
Plasmodium falciparum’s life cycle; the stage at which sporo-
zoites pass from the mosquito bite via the blood to the liver.
About 50–100 sporozoites are estimated to be injected in the
skin during a blood meal by an infected female Anopheles
mosquito (reviewed in Graewe et al. 201213). Over a couple
of hours, about a third of inoculated sporozoites pass
through the dermis, enter the blood stream and reach the
liver.14,15 At the liver, the sporozoites traverse Kupffer cells,16

cross the liver sinusoidal endothelial cells barrier, and
migrate through several hepatocytes before entering one in
which they establish infection resulting in the production of
thousands of merozoites which are packaged into mem-
brane-bound structures termed merosomes.17-21 Within a
period of one to two weeks, the erythrocyte stage begins with
merosomes released into the blood stream.22 The merozoites
then escape from the merosome and rapidly invade

erythrocytes giving rise to parasitemia and the first clinical
symptoms.23 In malaria-endemic areas, naturally-acquired
immunity mainly against the blood stage of the parasite only
develops after several years and after repeated rounds
of infection; with these infections continuing into early
adulthood.23,24 Although antibodies against parasite-encoded
antigens on erythrocytes can restrict clinical symptoms,25 the
mechanisms that support (non-sterile) acquired-immunity
remain complex, and no clear correlates of protection have
been identified for antibody-mediated or cell-mediated
immunity (CMI).23,24,26

The antigen in RTS,S is a recombinant protein derived from
circumsporozoite protein (CSP) from Plasmodium falciparum
and the hepatitis B surface antigen (HBsAg; see Fig. 1).27,28 CSP
is highly expressed on the surface of sporozoites and mediates
sporozoite entry into hepatocytes.18-20,29-32 The selection of
CSP was also informed by the results of vaccination with inacti-
vated sporozoites,28,33-36 in which sterile immunity could be
achieved; i.e. the absence of parasitemia after sporozoite chal-
lenge. This sterile immunity was dependent on CSP-specific
antibodies and CMI.4,35-39 CSP-based vaccines could also elicit
CSP-specific antibodies able to block sporozoite entry into hep-
atocytes in vitro.40-42 However, CSP-specific antibodies alone
were insufficient to achieve sterile immunity.35,43 Hence RTS,S
was designed to include CSP T-cell epitopes in addition to the
prominent B-cell epitope made up of the asparagine-alanine-
asparagine-proline (NANP) amino acid repeat sequence
(Fig. 1).27,28,44
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Since the first demonstration that RTS,S-mediated protec-
tion against experimental sporozoite challenge was achievable
in humans,45 the history of the development of the RTS,S vac-
cine has been coupled with an investigation into the potential
contributive roles of antigen-specific antibodies and CMI to
protection.27,44,46 Part of this development has included the
selection of appropriate CMI endpoints and assays and the
testing and selection of different vaccine adjuvant formula-
tions that would strengthen CMI. This development has also
included theoretical considerations into how the CMI
endpoints may relate to the mechanism of vaccine-mediated
protection, and therefore help better define the nature of
potential correlates of protection. However, and as with natu-
ral infection, the identification of causal relationships between
CMI endpoints and efficacy endpoints has presented more of
challenge than with antibody concentrations. Nevertheless,
the evaluation of CMI endpoints has shaped the design of
subsequent clinical trials including those related to formula-
tion selection.9,10,47

A clear association between CMI and protection was first
identified in the proof-of-concept phase II clinical study of
RTS,S formulated with three different Adjuvant Systems AS02,
AS03 or AS04 (Table 1).9,48,49 Of these, the RTS,S/AS02 vaccine
was the only RTS,S formulation that demonstrated substantial
protection against experimental Plasmodium falciparum
malaria challenge in malaria-naive adults. The CSP-specific
antibody titers alone were not predictive of protection because
both RTS,S/AS02 and RTS,S/AS03 elicited similarly high levels
of CSP-specific antibodies.9,48 However, in addition to antibody
levels, and potentially antibody quality 48, the degree of CSP-
specific CMI could account for the difference between protec-
tion and non-protection for RTS,S/AS02 and RTS,S/AS03
(measured by a short-duration IFN-g ELISPOT assay)
(Table 1).49

After the initial demonstration of efficacy against infection,
the RTS,S/AS02 vaccine was evaluated in field trials.7,50-52 Sev-
eral years later, RTS,S formulated with the Adjuvant System
AS01 was also evaluated and subsequently replaced RTS,S/
AS02 based primarily on efficacy evidence, but also on immu-
nogenicity and safety evidence.10,53-55 Both Adjuvant Systems
contain the immunostimulants MPL and QS-21. AS01 differs
from AS02 in that AS01 is liposome-based and AS02 is oil-in-
water-based.53

Differences between CMI assays and interpretation

The premise for CMI assays is that antigen recognition by a spe-
cific T-cell receptor results in changes in T-cell behavior, such as
proliferation, the production and/or secretion of cytokines or
other activation markers, and/or the capacity to mediate cytotox-
icity. The selection and implementation of different analytical
techniques was also shaped by the techniques which were avail-
able at the time of the studies.27 Different methods may
detect different antigen-specific cell subsets.51,56 Short duration
(»24 hours; ex vivo) of antigen (peptide) re-stimulation and the
absence of stimulatory cytokine supplements in cultures of whole
blood samples or peripheral-blood mononuclear cells (PBMCs)
has been considered to favor the identification of effector or effec-
tor memory T cells, whereas the long duration (10–14 days
re-stimulation culture prior to the 24 hour assay) has been con-
sidered to favor the identification of central-memory
T cells.49,50,57-59 Limited correlations have been observed between
long-duration ELISPOT and lymphoproliferation and between
long-duration ELISPOT and intracellular-cytokine staining com-
bined with flow cytometry (ICS-FC).50,51,56

Figure 1. (A) Structure of the RTS,S antigen. Schematic description of the antigen.
The RTS,S antigen contains recombinant forms of circumsporozoite protein (CSP) -
NANP repeat regions (R) and T-cell epitope domain (T) linked to hepatitis B surface
antigen (HBsAg; S) - , as well as HBsAg alone (S). The T-cell epitope domain is fur-
ther subdivided into characterised epitopes; TH2R, Region II, TH3R and CS-T3. (B)
Scanning electron micrograph of a preparation of (low electron density) RTS,S
virus-like particles (scale bar D 100 nm).

Table 1. Efficacy and immunogenicity of RTS,S vaccines containing different adjuvant systems from first proof-of-concept efficacy trial.

Proportion of subjects with
CSP-specifica IgG concentrations

above geometric mean

Proportion of subjects with
IFN-g ELISPOTsb above maximum

pre-immune levels
Adjuvant System in
RTS,S vaccine

Adjuvant System
composition Protection

CSP-specifica IgG
geometric mean
concentration Protected Non-protected Protected Non-protected

AS02 QS-21 and MPL in oil-in-
water emulsion

6/7 53 mg/ml 3/6 0/1 5/6 0/1

AS03 a-tocopherol in oil-in-
water emulsion

2/7 53 mg/ml 2/2 1/5 2/2 1/5

AS04 MPL and aluminum salt 1/8 7.0 mg/ml 1/1 2/7 1/1 1/7

aIgG specificity was determined in ELISA against recombinant R32LR that contains circumsporozoite protein (CSP) tandem-repeat epitopes.9
bIFN-g ELISPOT responses to CSP peptides in 11–15 day re-stimulation peripheral blood mononuclear cell cultures.49
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With ICS-FC, different phenotypes and functionalities of
antigen-specific CD4C and CD8C T cells have been assessed,
typically through differences in the expression of the activation
marker CD40L,60,61 and cytokines including IL-2, IFN-g and
TNF-a.10 Other activation markers have also been examined,
including CD69 (a leukocyte-activation marker)62 and CD25
(IL-2 receptor).63 Furthermore, memory T cells have been char-
acterized by the expression of CD45RO and subdivided into
central memory and effector/effector memory subsets by the
presence or absence, respectively, of the cell surface expression
of the chemokine receptor CCR7.64,65

CMI in clinical studies

CSP-specific T-cell responses to RTS,S

CSP-specific CD4C T-cell responses to RTS,S/AS01 and RTS,S/
AS02, measured directly by ICS-FC or indirectly with ELISPOT
assays, are more prevalent than CD8C T-cell responses. Indeed,
targeted CD4C T-cell depletion, but not CD8C T-cell depletion,
has been shown to reduce the number of spot-forming units
(SFUs) in the ELISPOT assay.50,66 And where CSP-specific
CD8C T cells have been identified by ICS-FC, they are at low
levels,47,56,67 or are only detected in cell cultures subjected to
long-duration antigen re-stimulation.49 The relatively high
prevalence of antigen-specific CD4C T cells versus antigen-spe-
cific CD8C T cells in response to vaccination is likely to reflect
the nature of the adjuvant systems used in the vaccine composi-
tion because the relationship has been observed with other
AS01- or AS02-adjuvanted subunit vaccines.68-72

In some studies, the specificities of CD4C T cells have been
mapped to the epitopes of CSP, and include Th2R, Region II,
Th3R and CS-T3 (Fig. 1, Table 2). One of the conserved CSP
epitopes to which T-cell responses have been identified is also
associated with protection to natural Plasmodium falciparum
infection and disease.50

Malaria-na€ıve adults and controlled human malaria
infection studies

In malaria-naive adults challenged two weeks after vaccination
with Plasmodium falciparum parasites in a controlled human
malaria infection (CHMI) setting, higher levels of short- and
long-duration CSP-specific IFN-g ELISPOTs on the day of
challenge have been associated with protection against parasite-
mia.10,49 Protected vaccine recipients had higher levels of CSP-
specific CD4C T cells (identified by ICS-FC as expressing at
least two markers among CD40L, IL-2, IFN-g or TNF-a after
short-term in vitro stimulation) than those from non-protected
vaccine recipients.10 The differences were the most distinct on
the day of challenge, and IL-2C/CD40LC was the most fre-
quently identified phenotype of CSP-specific CD4C T cells. A
further investigation of the T-cell phenotypes of the same
cohort also found that on the day of challenge, protection was
associated with CSP-specific IL-2C effector/effector-memory
(CD45ROCCCR7¡) and CSP-specific IL-2C central memory
(CD45ROCCCR7C) CD4C T cells.65

Gene-expression profiling (of transcriptomes) was also
applied to PBMCs taken from this CHMI study and suggested
potential insights into CMI and protection.10,73 Using a statisti-
cal approach driven by knowledge of gene networks, the genes
of the immunoproteasome pathway were associated with pro-
tection; and the differences in the expression of these genes
were dependent on vaccination. In another investigation of the
same CHMI study, a multiway partial least squared data analy-
sis (N-PLS-DA) was used.10,74 This approach took into account
the kinetics of gene expression prior to challenge and identified
110 genes that could be used in models to predict protection
outcome. Of these genes, 42 were known immune-related
genes, including 29 associated with the NF-kB pathway and 14
with the IFN-g pathway. Moreover, the application of N-PLS-
DA to the expression data of 45 genes in the IFN-g pathway
identified 44 genes that could predict protection. These

Table 2. Stimulatory peptides used to map CMI responses to circumsporozoite protein (CSP).

Reference
No. of (pools of)
peptides tested

Domains
represented Assay

Immunoprevalent
(>50% subjects) Immunodominant

Association with
protection

Malaria naive adults
Gordon et al..45 4 (TH2R, TH2R/Region II,

TH3R,/CS-T3)
Lymphoproliferation TH2R

Lalvani et al.66 6 (TH2R, TH3R, CS-T3) short-durn IFN-g ELISPOT TH2R
Kester et al.10 2 TH2R/Region II, TH3R short-durn IFN-g ELISPOT Th2R/Region II

(magnitude of
response)

Schwenk et al.117 7 TH2R, Region II, TH3R,
CST3

short-durn IFN-g ELISPOT TH2R, CS-T3 TH2R, CS-T3

Adults in the field
Bojang et al.7 8 (TH2R, Region II, TH3R,

CST3)
Lymphoproliferation TH2R, CS-T3

Pinder et al.51 9 (TH2R, Region II, TH3R,
CST3)

Lymphoproliferation TH2R, TH3R, CS-T3
long durn IFN-g ELISPOT TH2R

Reece et al.50 8 (TH2R, Region II, TH3R,
CST3)

long durn IFN-g ELISPOT CS-T3 (magnitude of
response in
recipients of
control vaccine
and RTS/AS02)

Children in the field
Olutu et al..56 3 NANP, TH2R/Region II,

TH3R/CS-T3
long durn IFN-g ELISPOT TH2R/Region II, TH3R/CS-T3
short-durn IL-2 ELISPOT TH2R/Region II, TH3R/CS-T3
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analyses, coupled with the observation that serum IFN-g levels
were higher in protected group than in non-protected group,
most distinctly one day after the final (third) dose suggested
that the IFN-g pathway may have a role in protection against
parasitemia. It is also plausible that IFN-g can affect the differ-
ential expression of the immunoproteasome and HLA-A
genes,73-75 supporting a putative role of the IFN-g pathway.

The hypothesis that CMI contributes to protection was fur-
ther examined in a subsequent CHMI study in which two vac-
cination regimens were compared. In that study, using a
regimen of three doses administered 28-days apart, a regimen
of three doses of RTS,S/AS01 (RRR regimen) was compared
with a regimen of one dose of an CSP-expressing replication-
deficient recombinant human adenovirus 35 (Ad35.CS.01) fol-
lowed by two consecutive doses of RTS,S/AS01 (ARR regi-
men).47 As anticipated from a preceding preclinical study,76 the
ARR regimen induced higher levels of CSP-specific IFN-g ELI-
SPOTs and CD4C T cells than the RRR regimen. By contrast,
the ARR regimen induced lower levels of CSP-specific antibod-
ies. Nevertheless the higher degree of CSP-specific CMI with
the ARR regimen did not translate into an increased level of
protection against parasitemia compared with the RRR regi-
men. Overall, CSP-specific antibody levels were most associated
with protection. Yet, antibody levels in the non-protected RRR
group were similar to those in the ARR protected group. So
although the study suggested that CMI may have contributed
to protection in the ARR regimen only, the study may not have
been sufficiently powered to identify an association between
CMI and protection in the RRR regimen. However, an involve-
ment of CMI in protection in the RRR group was suggested
from a systems-biology analysis of PBMC transcriptomes from
that study.77 Mathematical models of correlations with protec-
tion were identified at several time points, including the day of
the third RTS,S dose. The frequently represented genes in those
models and other gene-set enrichment analyses identified an
inverse correlation between NK-cell-related gene expression
and protection at multiple time points (2 and 28 days after the
first dose, 1 and 28 days after the second dose). This suggests
that in those individuals who were subsequently protected,
there may have been a greater efflux from the blood of NK cells
expressing homing receptors to the draining lymph node or
injection site between the second and third RTS,S doses. Hence
NK cells may have been differently primed in protected versus
non-protected individuals by the time of the third RTS,S dose,
thus contributing to the differences in IFN-g production after
the third dose.

Field studies

The clinical field studies of malaria-exposed adults have sug-
gested that CSP-specific long-duration IFN-g ELISPOT levels,
rather than CSP-specific short-duration IFN-g ELISPOT levels,
are associated with protection against parasitemia and clinical
disease, such as over one malaria season of five months.50 How-
ever, an association between CSP-specific (long or short term)
IFN-g ELISPOT levels and protection was not identified in the
recipients of three RTS,S/AS02 doses even though these ELI-
SPOT levels were higher than in the control (rabies) vaccine
recipients.50,51 In RTS,S-vaccinated children living in a

malaria-endemic region, no association was identified between
protection and short- or long-duration, CSP-specific IFN-g or
Il-2, ELISPOT levels,56 even though long-duration IFN-g ELI-
SPOT levels and short-duration IL-2 ELISPOT levels were
higher after than before RTS,S vaccination.

CSP-specific CD4C T cells have also been characterized by
short-duration ICS-FC in the field studies of young children
vaccinated with RTS,S/AS02 or RTS,S/AS01. The most promi-
nent CSP-specific CD4C T-cell phenotype induced at one
month post-vaccination was IL-2C.55,56,78,79 Although fewer in
number, CSP-specific TNF-aC CD4C T cells and IFN-gC

CD4C T cells were also induced at one month post-vaccina-
tion.55,56,79 CSP-specific CD4C T cells expressing the markers
CD69, or CD25 have also been detected in children vaccinated
with RTS,S/AS01.63 The phenotype of CSP-specific CD4C T
cells that has been associated with vaccine-induced protection
against clinical episodes of malaria is TNF-aC, but not IL-2C or
IFN-gC;56,79 and in part, TNF-aC CD4C T cells may also be
induced by natural exposure to malaria parasites.79

Potential roles of CMI in RTS,S-mediated protection?

In both the sporozoite-challenge studies and the field studies,
associations with CMI endpoints and protection against parasi-
temia or clinical disease have been identified (summarized in
Table 3). However, stronger associations with protection have
been typically identified with CSP-specific antibody levels
rather than CSP-specific CMI.7,10,46,47,80,81

The CHMI studies in RTS,S vaccinated malaria-naive adults
provide a more controlled view of CMI and its relationship to
vaccine protection compared with studies in the field. In the
field, certain CSP-specific CD4C T-cell populations may have
been acquired by natural exposure to malaria before and during
the entire period of the trial, and may have also been boosted by
vaccination.50,51,56,79

Although not identified in a subsequent CHMI study, the lev-
els of IL-2C CD4C T cells have been associated with protec-
tion.10,47,65,80 Such IL-2C CD4C T cells could provide helper
support to antibody-producing B cells82 and correlations between
the frequencies of CSP-specific IL-2C CD4C T cells and CSP-
specific antibody titers have been identified in RTS,S vaccinated
in adults in the CHMI study,65 and in RTS,S vaccinated infants
in Ghana.55 The ICS-FC and ELISPOT results from this CHMI
studies suggest that circulating CSP-specific effector/effector-
memory CD4C T-cell population and a CSP-specific central-
memory T-cell population may participate in protection.

In the field studies of children, the levels of TNF-aC CD4C T
cells, but not the levels of the more frequent IL-2C CD4C T
cells, were associated with protection.56,79 These TNF-aC

CD4C T cells may have a roles that are both complementary to
and independent of the antibody response.55,56,79 One indepen-
dent role could include the potential cytotoxic activity of cer-
tain TNF-aC CD4C T cells against sporozoite-infected cells.83

Although CSP-specific IFN-gC CD4C T cells were less fre-
quent than IL-2C and TNF-aC CD4C T cells, the numbers of
IFN-g producing cells in ELISPOT have been associated with
protection. This difference between the assay results may be
explained by a model (see Fig. 2A) whereby IL-2C CD4C T cells
recognize the antigen and activate NK cells in their proximity
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Table 3. CMI conclusions from clinical studies.

Vaccination schedule
Location Vaccines

No. of subjects /
samples analysed CMI conclusion Reference

Malaria na€ıve adults
0, 1, 6 month Belgium RTS,S/AS02 10 CSP-specific IFN-g ELISPOTs were induced in 8/10 subjects. RTS, S-specific IFN-g

production was induced in all subjects. Lymphoproliferative responses to CSP
were induced in all subjects. CSP-specific CD8C CTL responses were not
detected.

Lalvani et al.66

0, 1, 2 month Belgium RTS,S/AS01 11 CS-specific CD4C T-cell responses (i.e. cells expressing at least 2 markers among
CD40L, IL-2, TNF-a, and IFN-g) were detected in all vaccine groups with a
trend for higher responses in the RTS,S/AS01 and RTS,S/AS02 groups versus
the RTS,S group.

Leroux-Roels
et al.67RTS,S/AS02 11

RTS,S 12

CHMI studies in malaria na€ıve adults
0, 2, 6 month USA RTS,S/Alum 10 One of two protected subjects had RTS,S and CSP-specific lymphoproliferative

and cytotoxic T-cell activity.
Gordon et al.45

RTS,S/AS04 10
0, 1, 7 month USA RTS,S/AS02 7 Highest rate of protection with RTS,S/AS02 although CMI results inconclusive Stoute et al.9

RTS,S/AS03 7
RTS,S/AS04 8
RTS,S/AS02 1 Inconclusive due to small sample size. Stoute et al.118

RTS,S/AS03 5
RTS,S/AS04 1
RTS,S/AS02 7 IFN-g ELISPOTs associated with level of protection, »2 weeks after Dose 3

and on DOC. Protection most frequent for RTS,S/AS02 recipients
Sun et al.49

RTS,S/AS03 7
RTS,S/AS04 6

0, 1, 2 month USA RTS,S/AS01 36 Association between CSP-specific CD4C T cells and protection, 2 weeks after
Dose 3 and on DOC. Association between short duration IFN-g ELISPOTs and
protection. Higher frequency of CSP-specific CD4C T cells with RTS,S/AS01 vs
RTS,S/AS02A.

Kester et al.10

RTS,S/AS02 44

Association between CSP-specific IL-2C CD4C T-cell central-memory and effector-
memory populations and protection.

Lumsden
et al.65

RTS,S/AS01 36
RTS,S/AS02 44

0, 1, 2 month USA RTS,S/AS01
(group RRR)

25 No evidence of independent association between CSP-specific CD4C T cells or
IFN-g ELISPOTs and protection. No difference in protection between groups.
CMI responses significantly greater in AAR group than in RRR group.

Ockenhouse
et al.47

Ad35.CS.01 (dose
1) & RTS,S/AS01
(doses 2 & 3;
group ARR)

21

Adults in the field
0, 1, 6 month Gambia RTS,S/AS02 20 CSP-specific lymphoproliferation, short duration IFN-g ELISPOT levels were

increased by vaccination. All 20 vaccine recipients responded to at least one of
the CMI tests after Dose 3 whereas only 15/20 responded before vaccination.
No CMI data on protection.

Pinder et al.51

0, 1, 5 month Gambia RTS,S/AS02 16 Higher lymphoproliferative responses in RTS,S/AS02 recipients than in rabies-
vaccine recipients two weeks after Dose 3.

Bojang et al.7

Rabies vaccine 16
An association between long duration IFN-g-ELISPOT response and protection

was seen across the total population of vaccine recipients and controls, and
was not caused or confounded by vaccination with RTS,S/AS02. A significantly
higher level of IFN- g-ELISPOTs was also observed in RTS,S/AS02 vaccine
recipients compared with rabies-vaccine recipients at 11 weeks after Dose 3.

Reece et al.50RTS,S/AS02 �131
Rabies vaccine �119

Children in the field
0, 1, 2 month Mozambique RTS,S/AS02 �63 Significant induction of IL-2 secretion in CSP re-stimulation cultures in 24% of

RTS,S vaccine recipients. IL-2 secretion was detected in CSP-re-stimulation
cultures from 32% of individuals without a malaria episode whereas IL-2
secretion was detected in only 6% of individuals with malaria episodes
(p D 0.053).

Barbosa et al.52

HBsAg �69

0, 1, 2 month Gabon RTS,S/AS01 �31 The frequencies of IL-2C CD4CT cells were higher than pre-immune levels in
both RTS,S vaccine groups. CD40LC CD4C T cells were not detected.
Responder rates ranged from 13–29%. No CMI data on protection.

Agnandi
et al.78RTS,S/AS02 �32

0, 1 month; 0, 1, 2 month;
and 0, 1, 7 month Ghana

RTS,S/AS01 �77; �37; �73 The frequencies of IL-2C CD4CT cells were higher than other marker positive
CD4C T cells (and responder rate of 76% 1 month after dose 3 with 0, 1,
7 month schedule). CD40LC CD4C T cells were detected in 0, 1, 7 schedule.
Highest T-cell responses were induced by a 0,1,7-month immunization
schedule (and responder rate of 73% 1 month after dose 3 with 0, 1, 7 month
schedule). RTS,S/AS01E induced higher CD4

C T-cell responses than RTS,S/AS02
for the 0,1,7-month schedule. No CMI data on protection.

Ansong et al.55

RTS,S/AS02 �80; �38; �73
Rabies vaccine

(0, 1, 2 month
only)

-; �45; -

0, 1, 2 month Kenya/
Tanzania

RTS,S/AS01
Rabies vaccine

�182
�197

The frequency of RTS,S-induced CSP-specific (IFNg¡IL-2¡)TNF-aC CD4C T cells
was associated with protection, and CSP-specific TNF-aC CD4C T-cell
responses and anti-CSP antibody responses were synergistically associated
with protection.

Olotu et al.56

Ndungu et al.79

RTS,S/AS01
Rabies vaccine

�80
�98

Evidence that IL-2C-secreting CSP-stimulated memory CD4CT cells can activate
NK cells to secrete IFN-g. IFN-g ELISPOTs may include IFN-g-secreting
activated NK cells. No CMI data on protection.

Horowitz
et al.63

CMI, cell-mediated immunity; CSP, circumsporozoite protein; DOC, day of challenge; and HBsAg, hepatitis B surface antigen.
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by secreting IL-2. In turn, the activated NK cells secrete IFN-g,
perhaps also in response to an additional signal.63,84-87 During
an infection, this additional signal may come from activated
CSP-presenting antigen-presenting cells (APCs) that are secret-
ing cytokines such as IL-12 or IL-18 (Fig. 2B). As well as medi-
ating cytotoxicity, IFN-g may signal to the APC to produce
more IL-12 or IL-18, thus establishing a positive feedback loop
for its production.88,89 Therefore the CSP-specific IL-2C CD4C

T cells would dictate the localized nature of the IFN-g response
by their direct interaction with the APCs in a similar mecha-
nism to what has been proposed for CD8C T-cell interactions
with APCs (i.e. Kupffer cells).90 Since 35–50% of all liver-resi-
dent lymphocytes are NK cells,91 a parallel mechanism involv-
ing NK-cell activation and antibody-dependent cell-mediated
cytotoxicity (ADCC) is attractive (Fig. 2C). In this mechanism,
CD4C T cells expressing IL-2 recognize CSP-fragments pre-
sented by local APCs and activate NK cells. These NK cells are
further activated through the binding of their FcgRIII receptors
with CSP-specific antibodies bound to CSP shed on the surface
of infected hepatocytes.92-95 Hence ADCC may explain why the
combination of CD4C T-cell and antibody responses to RTS,S
can be associated with protection.

A putative role for NKT-cell derived IFN-g has been shown
in a mouse model of primary Plasmodium infection.96 In this
model, the control of infection in the liver was dependent on
IFN-g and on NKT cells but not NK cells, and the authors
speculated that NKT cell could potentially recognize Plasmo-
dium-derived lipids. However, it is not clear how this mecha-
nism would translate in humans because the recognition of
lipid antigens and production of IFN-g may be a property
restricted to invariant NKT (iNKT) cells rather than all NKT
cells.97,98 Although, in human liver, the frequency of NKTs is
high, the relative proportion of iNKT cells to all NKT cells is
much lower than in the mouse liver.91,99,100 Moreover, after
CHMI in humans, the level of iNKT cells in peripheral blood
appeared unaffected unlike that of NK cells, suggesting iNKT
cells, at least in peripheral blood, were unresponsive to Plasmo-
dium infection.101 Nevertheless, we speculate that NK cells are
relevant to controlling Plasmodium infection in humans after
RTS,S vaccination, and they adopt a function similar to those
NKT cells in the mouse model, except, as hypothesized above,
the recognition of Plasmodium-infected cells by IFN-g-produc-
ing NK cells is driven in by CSP-specific CD4C T cells and
antibodies.

Figure 2. Models for the initiation of NK-cell activation and the interactions between a CSP-specific CD4C T cell, an antigen-presenting cell (APC) and an NK cell. Direct
interactions are marked by cognate receptor-ligand interactions, indirect interactions via the production of cytokines are marked by black arrows, and effector mecha-
nisms due to IFN-g or cytotoxic molecules are marked by large grey-shaded arrows. (A) After vaccination, APCs take up RTS,S antigen and, in the draining lymph node,
present processed RTS,S-derived peptides via HLA-II T-cell receptor (TCR) interactions. From these interactions and from CD40-CD40L interactions, CD4C T cells are stimu-
lated to produce IL-2. This IL-2 then activates NK cells and helps B cells to proliferate and produce antibodies, as well as inducing T-cell proliferation through a positive
feedback loop. (B) Upon re-encounter with CSP in the draining lymph nodes, (derived from RTS,S or sporozoites), APC present CSP derived peptides to CS-specific CD4C T
cells. NK cells, in the proximity of IL-2 secreted by CD4C T cells are activated and start secreting IFN-g . This IFN-g may signal to the APC to produce IL-12 and IL-18,115,116

which in turn further promotes IFN-g production by NK cells in a positive feedback loop. The IFN-g produced by NK cells may further activate CD4C T cells. Death of
infected cells can then be induced by NK cells through released IFN-g or degranulating cytotoxic molecules. (C) In the liver, sporozoites traverse from the sinusoidal capil-
lary lined with liver sinusoidal endothelial cells (LSECs) through (a few) Kupffer cells (KC) before infecting a hepatocyte (HC) (dashed line). CSP peptides are presented by
Kupffer cells to memory or activated CD4C T cells, which start secreting IL-2. This IL-2 activates liver NK cells, which are further activated by IL-12 secreted by the Kupffer
cells. The NK cells then also secrete IFN-g and cytotoxic degranulation molecules. Circulating CSP-specific antibodies induced by RTS,S/AS01, recognize the CSP shed by
traversing sporozoites on the surface of hepatocytes and NK cells are further activated through binding of those antibodies to the FcgRIII receptors on NK cells.
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Perspectives for analyzing CMI in future clinical studies

So far, the most informative CMI results in clinical studies have
been obtained from ELISPOT and ICS-FC analyses of re-stimula-
tion cultures. The use of peripheral blood as the samplingmaterial
imposes certain logistical constraints as well as caveats on the
interpretation of the results. T-cell frequencies in peripheral blood
may only reflect patrolling populations of T cells and may not
capture T cells that have a more localized activity such as the site
of infection or secondary lymphoid organs. Nevertheless, the cap-
ture of antigen-specific CD4C T cells using HLA class II tetramers
and flow cytometry has the potential to allow a more relevant
functional characterization of those cells because an ex vivo acti-
vation step can be avoided.102,103 Technical improvements in ICS-
FC and the development of cytometry by time-of-flight (CyTOF)
are expanding the range of markers that can be examined and
therefore increasing the range of CD4C T-cell phenotypes that
can be measured in a single run.104-108 These improvements are
coupled with new sensitive statistical approaches that consider
the heterogeneity CD4C T cell populations in the identification of
correlations with clinical outcomes.109,110

The co-operative relationship between different immune-cell
populations even within an ELISPOT assay is illustrative of the
idea that the association of CMI with protection may be difficult
to identify with a single CMI endpoint and could therefore
explain, in part, some of the inconsistent findings between differ-
ent studies. Hence a more global appreciation of the relation-
ships between CSP-specific antibodies, CSP-specific CMI and
innate-immunity with protection may come with sophisticated
systems-biology analyses of omics data in conjunction with data
from more conventional immunology endpoints.74,77,111-114
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