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Abstract

Interactions between interleukin (IL)-8 and its receptors, CXCR1, and CXCR2, serve crucial

roles in inflammatory conditions and various types of cancers. Inhibition of this signaling

pathway has been exploited as a promising strategy in treating these diseases. However,

most studies only focused on the design of allosteric antagonists-bound receptors on the

intracellular side of IL-8 receptors. Recently, the first cryo-EM structures of IL-8-CXCR2-Gi

complexes have been solved, revealing the unique binding and activation modes of the

endogenous chemokine IL-8. Hence, we set to identify small molecule inhibitors for IL-8

using critical protein-protein interaction between IL-8 and CXCR2 at the orthosteric binding

site. The pharmacophore models and molecular docking screened compounds from Drug-

Bank and NCI databases. The oral bioavailability of the top 23 ligands from the screening

was then predicted by the SwissAMDE tool. Molecular dynamics simulation and free binding

energy calculation were performed for the best compounds. The result indicated that

DB14770, DB12121, and DB03916 could form strong interactions and stable protein-ligand

complexes with IL-8. These three candidates are potential IL-8 inhibitors that can be further

evaluated by in vitro experiments in the next stage.

Introduction

Interleukin (IL)-8, also known as CXCL8, was first identified as a member of the CXC chemo-

kine family and proinflammatory protein purified from the medium of lipopolysaccharide-

stimulated monocytes [1, 2]. IL-8 is first synthesized as a precursor protein of 99 amino acids

and then processed by NH2-terminal truncation resulting in multiple isoforms. Among them,

the predominant biologically active variant has 72 residues [3], present as both monomers and
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dimers under physiological conditions [4]. The monomer has a short loop that consists of a

flexible N-terminus followed by three β-strands and a C-terminal α-helix [3]. Hydrogen bonds

between the first β-strand stabilize the dimer in each molecule at a high concentration. Gluta-

mate-leucine-arginine (ELR) sequence motif and residues near the turn at His33 are presumed

to be crucial for binding to the receptor [5].

IL-8 mediates its effects via binding to two G protein-coupled receptors, CXCR1 (IL-8RA)

and CXCR2 (IL-8RB), which are widely co-expressed in immune cells, such as neutrophils,

monocytes, lymphocytes [5–8]. Previous studies proposed a two-site mechanism of IL-8 and

its receptors interactions: between the IL-8 N-loop and the receptor N-domain residues (site

1) and between the IL-8 N-terminal and the receptor extracellular loop residues (site 2) [7, 9–

16]. Moreover, while site 1 is responsible for the initial IL-8 recruitment, the interactions in

site 2 are believed to play an essential role in activating CXCR2 [9, 10, 13]. Abnormal regula-

tion of the IL8-CXCR1/2 axis was implicated in a few inflammatory-mediated diseases, such as

chronic obstructive pulmonary disorders, asthma, psoriasis, or rheumatoid arthritis, where

IL8 plays a vital role in the recruitment of neutrophils and other immune cells to the site of

infection [17]. In addition, there is substantial evidence that IL-8 affects the growth and pro-

gression of tumor cells. Compared to normal tissues, IL-8 was overexpressed in several types

of human carcinomas, including breast, colon, cervical, gastric, lung, or ovarian cancers [18].

Therefore, IL-8 appears to be a potential prognostic and predictive cancer biomarker.

Modulating IL-8 production can be an effective drug development strategy for treating

inflammatory disorders and certain malignancies. Two most common approaches are direct

inhibition of IL-8 receptors, CXCR1 or CXCR2 or both, and downstream regulation of IL-8

production via p38 kinase inhibition [19]. A few antibodies against IL-8 and CXCR1/2 alloste-

ric antagonists have been studied in clinical trials. Their efficacy, however, is yet to be proved

[17]. Since there had been no structure IL-8 and its receptors complexes, there are limited

studies on IL-8 inhibitors based on active site interaction. In 2020, the first cryo-electron

microscopy (cryo-EM) structures of both dimeric and monomeric IL-8 bound CXCR2-Gi

complexes were solved, shedding more light on the interaction between IL-8 and its receptor

at site two [13].

This study aimed to identify small molecule IL-8 inhibitors utilizing in silico approach: (i)
Structure-based pharmacophore models were generated from specific residues of IL-8/CXCR2

complex. These models were used to virtually screen two databases: the DrugBank and the

National Cancer Institute (NCI) database. (ii) Subsequently, the molecule docking was per-

formed to determine the small molecule’s conformations and its position within the active site

and assess the binding potential. (iii) Top compounds were validated by ADME analysis,

molecular dynamics simulations, and free binding energy.

Materials and methods

Protein structures

Both the cryo-EM structure of the monomeric IL-8 bound CXCR2-Gi complex (PDB ID

6LFO) and the crystallographic structure of IL-8 (PDB ID 4XDX) are available for download-

ing from the Protein Data Bank [20].

Database of small molecules for virtual screening

The library of 295,348 compounds from the DrugBank [21] and the National Cancer Institute

chemical database [22] was used for virtual screening to discover potential IL-8/CXCR2 inter-

action inhibitors.
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The molecules in the two databases were first filtered through the “Lipinski’s rule of five”

[23] in the Molecular Operating Environment (MOE) 2015.10 software [24]. This screening

resulted in 259,692 compounds, which were then conformationally searched using the confor-

mational Import tool in MOE 2015.10 software. The setting parameters were as follows: sto-

chastic search iteration limit was 1000, energy minimization iteration limit was 1000, energy

minimization gradient test was 0.0001, and other parameters were at default [25]. Finally, the

output conformers were saved as MOE database (�.mdb).

Pharmacophore model generation

Structured-based pharmacophore (SBP) designing develops pharmacophores by using the

structure of the target protein (PDB file) at the specified binding site [26–28]. From the

recently solved 3D structure of the human IL-8-CXCR2-Gi complex, there are two binding

sites between IL-8 and CXCR2, of which site 2 is believed to play a vital role in the activation

of the CXCR2 receptor [13]. The hot-spot residues of IL-8 and CXCR2 contributing to binding

site 2 were also proven by mutation experiments [13, 29]. In detail, Glu4, Leu5, and Arg6 were

known to be essential for receptor binding. Individual mutations of Glu4, Leu5, or Arg6 to Ala

had approximately 100, 100, and 1000-fold reduced receptor binding affinity, respectively [29].

Similarly, the corresponding critical residues of CXCR2 (Arg208, Arg212, Arg278, Tyr197,

and Thr285) were also found to be necessary for IL-8 interaction and activity (Table 1) [13].

Two strategies to construct the SBP modeling have been applied in this study. From the IL-

8/CXCR2 complex, the first pharmacophore model was built using the potential protein-pro-

tein interactions [26, 30–34]. The key pharmacophoric features that mimic the components of

the CXCR2 receptor are easily determined from the characterization and position of specific

residues, including Arg208, Arg212, Arg278, Tyr197, and Thr285. The second pharmacophore

model was generated based only on IL-8 active site information [26, 33]. The residues on the

surface of the binding site 2 of IL-8 were identified as Glu4, Leu5, Arg6, Gly31, and Pro32.

[13]. Hence, the 3D-pharmacophore model is constructed based on the chemical features of

these residues and spatially favorable locations of their functional groups [33].

Molecular docking

Protein and ligand preparation. The IL-8 structure (PDB ID 4XDX) used for docking

calculations was initially prepared by the MOE software. In particular, setting steps comprised

of protonating and charging amino acids (protonate), minimizing energy (tether and mini-

mize), and converting to �.pdb format. The ligand for docking was performed energy minimi-

zation by MOE. The results were converted and saved as a �.sdf file [24].

Table 1. Interactions between the residues of IL-8 and the corresponding residues of CXCR2 receptor in the active

site 2.

IL-8 residues Type of interaction CXCR2 residues

Glu4a (negative) electrostatic interactions (positive) Arg208 a, Arg212 a, Arg278 a

(acceptor) hydrogen bond (donor) Tyr197 a

Leu5 a hydrophobic interactions Val187, Val 192

(donor) hydrogen bond (acceptor) Tyr197 a

Arg6 a (donor) hydrogen bond (acceptor) Thr285

Gly31 (donor) hydrogen bond (acceptor) Thr204

Pro32 (donor) hydrogen bond (acceptor) Thr204

a Site-directed mutagenesis of residues of IL-8 and CXCR2 have identified them as being necessary for binding.

https://doi.org/10.1371/journal.pone.0264385.t001
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Docking experiment. Docking calculations were carried out with the program LeadIT

(version 2.1.8), developed by BioSolveIT, including the docking tool FlexX [35]. The protein

was loaded into LeadIT, after which amino acids Glu4, Leu5, Arg6, Gly31, and Pro32 within a

radius of 6.5 Å were selected in the binding pocket. Docking runs were operated by using the

following parameters: the maximum number of solutions per iteration was 1000, that per frag-

mentation was 200, the number of poses to keep was the top 10, and default docking options

were used. Successfully docked ligand conformations were evaluated by docking scores and

the binding with targets, especially with crucial residues.

ADME analysis

The accessible SwissADME web server [36] was used to predict the ADME values of best

ligands after molecular docking by loading the ligand files directly in �.smiles format onto the

submission page (http://www.swissadme.ch). ADME parameters are in the optimal range for

each property. In detail, the molecular weight is between 150 and 500 g/mol. A compound

with no more than ten rotatable bonds and twelve H-bond will have a high probability of good

oral bioavailability. The topological polar surface area (TPSA) value should be between 20 and

130 Å. For lipophilicity, we used the descriptor Consensus LogP(o/w), the arithmetic mean of

the logP(o/w) values predicted by the five proposed methods. A drug’s solubility is better when

LogP is less than +5. SwissADME provides three methods to predict water-solubility and quali-

tative solubility classes. The ESOL model is a fast and robust method for estimating the solubil-

ity without recourse to physical measurements, where logS should be from −6.5 to 0.5 mol/

dm3. The BOILED-Egg plot indicates biological barrier crossing such as absorption and brain

access [36–38].

Molecular dynamics simulations

MD simulations were performed using the Gromacs 2020.2 software to evaluate the stability

and conformational flexibility (global and local) of the protein and ligand [39]. The simula-

tions were carried out for the apoprotein state and the ligand-protein complexes. Protein

topology was prepared by the pdb2gmx module of GROMACS using the all-atom

CHARMM27 force field. Ligand topologies were constructed by the Swissparam web server

[40] after adding hydrogen atoms to the initial structure by the Avogadro software [41]. The

generated GROMACS compatible files for the proteins and the ligands were then merged, sol-

vated, minimized, and equilibrated. Production runs of 50 ns were performed at 300K for the

NVT (isothermal-isochoric) ensemble and 1.0 bar pressure for the subsequent NPT (isother-

mal-isobaric) ensemble. Trajectory snapshots were stored at every 10 ps during the simulation

and later analyzed to evaluate the deviation of structures from the initial configuration through

the root mean square deviation (RMSD), the mobility of amino acids via the root mean square

fluctuations (RMSF), and the occupancy interactions between ligands and crucial residues (%

Occupancy) by the equation as follows:

%Occupancyi ¼
1

N

XN

x¼1
Ci txð Þð Þ�x100%

� �

x100% ð1Þ

where N is the number of the trajectory’s frames sampled in the MD simulations, Ci is the total

number of contacts of residue i with the ligand in frame x. Occupancy proportion values of

some protein residues can be>100% as they form multiple contacts of the same subtype with

the ligand.
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MM/PBSA binding energy calculation

In drug design, the binding free energy often characterizes the binding strength between a pro-

tein and a drug molecule. Binding free energy was determined using the molecular mechanics

Poisson–Boltzmann surface area (MM/PBSA) method with the following equations:

DGbind ¼ Gcomplex � Gprotein þ Gligand

� �
ð2Þ

DGbind ¼ EMM þ Gsol � TDS ð3Þ

EMM ¼ Ebond þ Enonbond ¼ Eint þ Evdw þ Eele ð4Þ

Gsol ¼ Gpol þ Gnonpol ð5Þ

Total free energies of the protein-complex, protein, and ligand are indicated by Gcomplex, Gpro-

tein and Gligand, respectively. The ΔGbind was decomposed to its individual contributions (Eqs 3

to 5). The vacuum potential energy (EMM) is a sum of bonded (Eint) and nonbonded terms,

including both Eele (electrostatic) and Evdw (van der Waals) energies. Similarly, the solvation

free energy (Gsol) was decomposed into polar (Gpol), nonpolar (Gnonpol) solvation energy com-

ponents, and the conformational entropy (-TΔS). In the MM/PBSA approach, the entropy

contribution can be omitted if relative binding free energies of different ligands for the same

protein shall be computed [42–45]. The bonded terms can get canceled due to the single trajec-

tory approach used. Hence, the binding free energy was calculated as the sum of van der Waals

energy, electrostatic energy, polar solvation energy, and solvent-accessible surface area energy

(SASA) [46].

Results and discussion

Pharmacophore models

Based on the structure-based approach, two pharmacophore models were constructed by the

Pharmacophore Query Editor tool that can be directly mapped onto IL-8’s structure. In the

first pharmacophore model (Ph-1), the features were represented as five points from the resi-

dues of the CXCR2 receptor that interacted with IL-8 at the binding site. In detail, Arg 208,

Arg212, Arg278 of the receptor interact with Glu4 of IL-8, Tyr197, and Thr285 of CXCR2

form hydrogen bond with Leu5 and Arg6 in the “ELR” motif of IL8, respectively [13]. The

developed pharmacophore contained F1: Cat (cationic), F2: Cat, F3: Cat, F4: Acc (hydrogen

acceptor), and F5: Acc. Nevertheless, it is known that drug candidates as small molecules are

unlikely to satisfy the pharmacophore model containing excessive charged points [33]. There-

fore, three cationic points (F1, F2, and F3) were constrained to “at least one” property, and two

points (F4 and F5) were essential features (Fig 1A and 1C).

The second pharmacophore model (Ph-2) comprised five features that must complement

to functional groups of Glu 4, Leu5, Arg6, Gly31, and Pro32 of IL-8. For instance, the −COOH

group in IL-8’s Glu4 considered by default as hydrogen acceptor would be converted to hydro-

gen donor and labeled out as a donor pharmacophore feature. Thereby, the pharmacophore

model was manually generated with five points as follows: one hydrophobic point (F1: Hyd),

three hydrogen bond acceptor points (F2, F4, F5: Acc), and one hydrogen bond donor feature

(F3: Don). Because the ELR motif in the N-terminal peptide is a crucial residue, F1, F2, F3

were essential points, and either F4 or F5 was constrained at least one point in this model (Fig

1B and 1D).
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Molecular docking model

It was known that Glu4, Leu5, Arg6 residues (“ELR” motif) on the surface of IL-8 were impor-

tant for receptor binding. In addition, the “GP” motif (Gly31, Pro32) of the 30s-loop and the

conserved N-terminal “ELR” motif of IL-8 formed significant intermolecular interactions with

CXCR2 [13]. Hence, interactions within this area were suitable to construct a molecular dock-

ing model (Fig 2). Since these residues were on the surface, small ligand binding grooves in

this model were not too deep.

In silico screening

The constructed pharmacophore models were used to screen 259,692 compounds previously

prepared for conformational sampling from the DrugBank and NCI databases. This screen

resulted in 5,967 compounds that fulfilled the total two pharmacophore models’ constraints.

They were ranked based on their RMSD values. After being further refined with RMSD and

energy minimization, the hit substances were used for docking into the binding pocket of IL-8

(Fig 2). As a result, 5,718 compounds successfully docked to IL-8; 0.44%, 26.85%, and 60.70%

of which had docking scores <−20 kJ/mol, from −20 to −10 kJ/mol and from −10 to 0 kJ/mol,

respectively. The remaining compounds had positive docking scores (12.01%) (Fig 3A). Top

23 ligands neatly bound to the specified binding pocket on IL-8 with the presence of the five

residues were shown in Fig 3B, and their docking scores listed in Table 2.

Out of 23 compounds, twenty interacted with three key residues and other amino acids of

IL-8. The number of substances that satisfied either the Ph-1 or the Ph-2 model was roughly

equal, among which DB13060 and DB12276 satisfied both models. The detailed interaction

Fig 1. The generated pharmacophore models and their alignment to the IL-8 backbone. (A-B) The pharmacophore models were constructed by

two SBP strategies. (C-D) Two of them were mapped on the IL-8 structure (shown as grey ribbons). Pharmacophore features were color-coded

spheres: purple (cat), cyan (acc), dark green (don), orange (hyd). The light green lines indicated the distance (Å) between pharmacophore points.

https://doi.org/10.1371/journal.pone.0264385.g001
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models of the top 23 compounds with the residues in the binding pocket of IL-8 were shown

in S1 Fig.

ADME analysis

The ADME parameters of the SwissADME web tool can be used to estimate various character-

istics of small molecules, such as physiochemistry, pharmacokinetics, drug-likeness, medicinal

chemistry friendliness, and related properties [36]. Compounds that do not meet the criteria

of this “drug-like” analysis will be omitted for MD simulations.

Physicochemical and solubility descriptors for the top ligands were shown in the S1 Table.

Most top docked compounds fell in the optimum range for drug-likeness except for DB13060

and DB2276 (MW> 500). Although the majority of substrates had no more than ten rotatable

bonds, several of the compounds, namely NCI640971, NCI640965, NCI641429, NCI630293,

and NCI641442, could not have good oral availability because they had 11 rotatable bonds.

The numbers of H-bond acceptors and donors of the ligands were in the range of 4–8 and 2–6,

respectively. The ESOL LogS values of four ligands, NCI89682, NCI71041, NCI106128, and

NCI270335, were out of standard range and highly soluble.

The BOILED-Egg plot (Fig 4) to predict the molecules’ oral bioavailability relied on

WLOGP and TPSA values (for lipophilicity and polarity). There were four substances with

TPSA values that were greater than 200 Å and were not shown on this plot. The grey space was

associated with minimal human intestinal absorption (HIA) and restricted blood-brain barrier

(BBB) permeation. In contrast, the white egg region was associated with passive HIA without

brain penetration. Furthermore, the chemical was located within the yolk area, allowing it to

cross through the BBB. Even though NCI106128 was on the line between white and grey, it

nevertheless had a low bioavailability profile. Thus, nine compounds only in the white egg

region would be suitable for drug development. In the graph, the blue dots were for P-GP sub-

strates (PGP+) and red dots for P-GP non-substrate (PGP−). More than half of the candidates

were P-GP substrates, suggesting that they can be actively effluxed from the brain or the gas-

trointestinal lumen. This could lead to decrease intestinal absorption and molecule’s bioavail-

ability, presumably protecting the central nervous system [36].

Fig 2. The molecular docking model. Glu4, Leu5, Agr6, Gly31, and Pro32 of IL-8 were shown as spheres, the

molecular docking model as the green region, and the remaining residues of IL-8 in grey.

https://doi.org/10.1371/journal.pone.0264385.g002
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Drug metabolism via the cytochrome P450 (CYP) system, especially five major isoforms

(CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4) play a significant role in drug interactions

that can result in toxicities, reduced pharmacological effect, and adverse drug reaction. We

Fig 3. Results of molecular docking. (A) Percentage of docked ligands into the binding pocket of IL-8 according to the score range. (B) The top 23

hit compounds (carbon atoms in green) in the binding pocket.

https://doi.org/10.1371/journal.pone.0264385.g003

Table 2. Studied ligands with docking scores smaller than −20kJ/mol.

Rank Ligand ID Docking Score (kJ/mol) IL-8 residues interaction Satisfying pharmacophore models

1 NCI640971 −23.8640003 Glu4, Leu5, Arg6 Ph-2

2 NCI640965 −22.7520008 Glu4, Leu5, Arg6, Ile28 Ph-2

3 DB13060 −22.2259998 Leu5, Arg6, Gly31, Pro32, His33 Ph-1 and Ph-2

4 DB12121 −21.7240009 Glu4, Leu5, Arg6, Gln8, Pro32 Ph-1

5 NCI144941 −21.9069996 Glu4, Leu5, Gly31, Pro32, Gln8, Cys7 Ph-1

6 NCI65378 −21.6900005 Glu4, Leu5, Arg6 Ph-1

7 NCI641429 −21.6539993 Glu4, Leu5, Arg6, Gly31, Pro32 Ph-2

8 NCI53309 −21.5330009 Glu4, Leu5, Arg6, Gln8, Cys7 Ph-1

9 NCI630293 −21.4549999 Glu4, Leu5, Arg6, Pro32, Cys7 Ph-2

10 NCI641442 −21.3889999 Glu4, Leu5, Arg6, Pro32, His33 Ph-2

11 NCI673841 −21.3630009 Leu5, Arg6, Pro32 Ph-1

12 DB14770 −20.9659996 Glu4, Leu5, Arg6 Ph-1

13 NCI658915 −20.9230003 Glu4, Leu5, Arg6, His33 Ph-2

14 DB03916 −20.8980007 Glu4, Leu5, Arg6, Gln8 Ph-1

15 NCI63667 −20.6219997 Glu4, Leu5, Arg6, Pro32, Cys7 Ph-1

16 NCI641433 −20.5839996 Glu4, Leu5, Arg6, His33 Ph-2

17 NCI89682 −20.4300003 Glu4, Leu5, Arg6, Pro32, His33 Ph-1

18 NCI71041 −20.3929996 Glu4, Leu5, His33, Ile28, Gln8, Arg26 Ph-1

19 NCI106128 −20.3780003 Glu4, Leu5, Arg6, His33, Lys3 Ph-2

20 NCI270335 −20.1660004 Glu4, Leu5, Arg6, Ile28, His33, Glu38 Ph-1

21 DB12267 −20.1590004 Glu4, Leu5, Arg6 Ph-1 and Ph-2

22 NCI106112 −20.0939999 Leu5, Arg6 Ph-2

23 NCI640966 −20.0330009 Glu4, Leu5, Arg6 Ph-2

https://doi.org/10.1371/journal.pone.0264385.t002
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found that more than half of top virtual screening hits could potentially cause severe drug-

drug interactions by inhibiting three to five isozymes. Meanwhile, a few ligands did not affect

the CYP450 system (S2 Table).

Molecular dynamics simulations

The best seven molecules were selected from the docking to validate protein-ligand binding

with 50 ns MD simulations, including DB12121, DB14770, DB03916, NCI65378 NCI658915,

NCI63667, and NCI106112. The simulation trajectories were analyzed to predict spatial fluctu-

ations of the apoprotein and the protein-ligand complex.

Stability of the structures. The RMSD of carbon backbone atoms was calculated for the

apo and the complex states, as presented in S2 Fig. According to Roccatano [47], depending

on the size of the protein, Cα RMSD values within 2 Å are usually considered acceptable,

whereas in Reva’s study [48] this value was less than 3 Å for two 100-residue chains. The

RMSD range was found to be about 1–3.3 Å for the apostate, slightly high in the beginning but

becoming less flexible after 10 ns till the end of the simulation. When complexed with

NCI658915, both the protein and the ligand became very unstable during the simulation with

a backbone deviation range of about 4 Å. On the other hand, DB14770 and NCI65378 in the

complex had the lowest RMSD with a fluctuation value < 1 Å, while DB03916 and DB12121

complexes had constant RMSD values over the simulation period. NCI106112 remained its

stability for a long time and only deviated largely from its initial position at the last ten ns with

Fig 4. TPSA and WLOGP of top ligands plotted on the BOILED-Egg.

https://doi.org/10.1371/journal.pone.0264385.g004
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an RMSD value in a range of 2 Å. From this analysis, it could be concluded that most ligands

binding to IL-8 played a role in the structural stability of the protein.

The root mean square fluctuation (RMSF) is a measure of the mobility of the alpha carbons

of the protein chain. Residues bearing RMSF values below 2 Å are considered to reach a steady

state during the simulation [49]. Most RMSF results of the apoprotein and seven complexes

were quite similar in this simulation, ranging from 0.6 to 1.6 Å (S3 Fig). Inspection of the EFR

motif, which is crucial for protein interaction, revealed that RMSF of Glu4 of both apoprotein

and complexes were above 2 Å, whereas that of Leu5 and Arg6 did not exceed 2 Å. A few

atoms at the N and C termini were more mobile than the remaining molecule because these

flexible regions may be involved in intermolecular interactions. This result suggested that pro-

tein-ligand complexes were relatively stable at the binding site.

The number and occupancy of hydrogen bonds are crucial to determining the binding

strength of the ligands at the active sites, with the H-bond occupation of> 75% defined as a

strong hydrogen bond and� 50% as a medium one [50]. Analysis of H-bond occupancy indi-

cated that seven compounds established an average number of hydrogen bonds with residues

in IL-8 (Fig 5A). DB14770 had the largest hydrogen bonds among these compounds. More-

over, IL-8’s Lys3 and Arg6 had the highest percentage of H-bond occupancy with DB14770

during the simulation time, and the key residue Glu4 also had a relatively high H-bond fre-

quency of about 200% with this ligand (Fig 5B). Meanwhile, DB03916 established an average

of 6.5 hydrogen bonds and high occupancy of two crucial residues, Glu4 and Leu5 of IL-8

(approximately 452% and 99%, respectively). Thus, DB03916 could have a good potency in

binding to IL-8. NCI106112 and NCI65378 created an average of 5 hydrogen bonds with IL-8

protein. However, the major contributors to H-bond formation with NCI65378 were residues

Glu29, Glu70, Ser72, and Ser30, and they were outside the active site of IL-8. At the same time,

NCI106112 was found to interact with the two hot-spot amino acids (> 75%) highly. This

result strongly supported the greater binding strength of the active sites of IL-8 to only

NCI106112. Similarly, DB12121 also interacted with Glu4 and Arg6 by strong H-bonds. On

the other hand, NC63667 and NCI658915 created a merely average of two hydrogen bonds

and a low H-bond percentage with key residues (< 50%) throughout the simulation.

Overall, with three critical parameters to validate the results of molecular dynamics simula-

tions, the analysis demonstrated that DB03916, DB12121, DB14770, and NCI106112 could form

H-bond to crucial residues of IL-8 with high occupancies. Their RMSD and RMSF values were

within the allowed range. This result signified the stability of the protein-ligand complexes.

100 ns MD simulations to identify the best compounds. Complexes and apo forms of

IL-8 with DB14770, DB12121, DB03916, and NCI106112 were simulated in a longer time (100

ns) to investigate the potential of stable binding at an active site. The apostates and the protein

complexes with DB12121 and DB03916 had acceptable stability with their RMSD carbon back-

bone fluctuations of� 3 Å. The IL-8 DB14770 complex was quite stable in the first half of the

MD simulations and the last 30 ns. However, during the 50–70 ns period, the RMSD value

increased significantly. When complexed with NCI106112, IL-8 protein had an RMSD rising

for up to 30 ns and became relatively stable near the end of the simulation.

Additionally, to take a closer look at the effect of ligands on IL-8 protein, the RMSD of

ligands was also examined. DB14770, DB12121, and DB03916 were in the range fluctuation of

about 1 Å, which could be observed over the simulation time, as shown in Fig 6B. The

NCI106112 compound is considered to be less stable than the three above ligands, with a devi-

ation in a range of 2.5 Å.

The RMSF analysis showed that most residues have an RMSF value of less than 2 Å, except

for Lys3 and residues 68−72 at the N and C termini regions (Fig 7). As previously mentioned,

the higher mobility of residues in these regions was also described proven in another study
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[47]. These results indicated that the structures fluctuated around a stable average

conformation.

The ligand DB14770 exhibited the highest frequency of total interactions, followed by

DB12121, DB03916, and NCI106112 (Fig 8). Detailed calculations identified Glu4 and Arg6 as

residues strongly H-bonded to DB14770 with a high frequency of 322% and 290%, respec-

tively. These amino acids also had ionic interactions with the occupation of more than 100%.

In addition, DB14770 was found to interact with the key residue Leu5 (131%) by hydrophobic

contact and one non-hot-spot Lys3 (190%) through electrostatic interaction. The analysis indi-

cated that DB14770 took part in the number of interactions, especially establishing potent

hydrogen bonds with IL-8 active site residues, and the binding strength of this compound was

outstanding.

Fig 5. The hydrogen bond H-bond analysis. (A) H-bond average values of seven investigated compounds. (B)

Hydrogen bond occupancy of 7 ligands by residues in 50 ns simulations trajectories, only interactions with a frequency

greater than 30% were presented.

https://doi.org/10.1371/journal.pone.0264385.g005

PLOS ONE Computational identification of potential interleukin-8 inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0264385 February 24, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0264385.g005
https://doi.org/10.1371/journal.pone.0264385


The compound DB12121 formed hydrogen bonds, electrostatic and hydrophobic interac-

tions with Arg6 of IL-8; the occupancies were approximately 27%, 25%, and 107%, respec-

tively. Meanwhile, DB12121 strongly interacted with Glu4 by only H-bond (101%). The ability

of DB12121 to form pi–alkyl bonds with Leu5 was the highest of four investigated ligands.

Additionally, four in ten amino acids that interacted with DB12121 were non-hot-spot resi-

dues of IL-8: are Lys3, Gln8, Pro32, and His33. However, this compound’s interactions with

these residues accounted for a significant portion of total interactions. The results of the inter-

action analysis suggested that DB12121 might be a promising inhibitor for IL-8.

The binding of DB03916 to IL-8’s Glu4 was found to be stabilized by a strong H-bond

(102%). Nevertheless, the frequency of interactions between this ligand and two crucial resi-

dues, Leu5, Arg6 at the binding site, was too low. By contrast, DB03916 was bound to other

amino acids of IL-8, namely Gln8, Glu29, Ser30, Gly31, Pro32, and Ala35, with more than 50%

percentage. Thus, it was considered the binding potency at the active site of this ligand lower

than that of DB14770, DB12121.

Fig 6. RMSD of (A) protein backbone and (B) ligands of complexes from 100 ns MD trajectories.

https://doi.org/10.1371/journal.pone.0264385.g006
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In comparison to the three above compounds, NCI106112 created much fewer interac-

tions with the ELR motif of IL-8. The highest occupancy observed was 58% of hydrogen

bonding with IL-8’s Arg6, and the proportion of other interactions with mentioned resi-

dues in the plot was minimal. This demonstrated NCI106112 had the weakest binding

capability on target in four compounds. The 3D and 2D diagrams in Fig 9 clearly illustrated

the four best ligand atoms’ interaction with the IL-8 residues at the end of 100 ns of the

MD simulations.

Generally, analysis of RMSD, RMSF values, H-bond formation, and other interactions with

IL-8 protein revealed that DB14770, DB12121, and DB03916 compounds established high

Fig 7. C-alpha RMSF analysis for IL-8 in apo and holo states.

https://doi.org/10.1371/journal.pone.0264385.g007

Fig 8. The interactions occupancy between ligands and the residues of IL-8.

https://doi.org/10.1371/journal.pone.0264385.g008
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structural stability and binding potential with IL-8 active site key residues. Their free binding

energies were further calculated.

Free binding energy. In the molecular dynamic simulation, free energy calculation takes a

significant role in determining the binding energy of the ligand-protein complex. In this work,

the g_mmpbsa tool of Gromacs was used to calculate binding energy. The ligand and the protein

created a variety of interactions, including hydrophobic, hydrogen, electrostatic, and other inter-

actions. Each of the individual interactions contributed either positively or negatively to the over-

all binding free energy. The binding energy of all compounds had negative scores (Table 3),

which demonstrated a good affinity for IL-8. Among the three hits, DB14770 had the most nega-

tive binding free energy in the range of −488.998 kJ/mol. This is followed by DB12121, and

DB03916, with the total binding energy values of −89.698 and −26.981 kJ/mol, respectively.

Fig 9. Schematic representations (3D and 2D) of the binding interactions between the IL-8 active site and (A & E)

DB14770, (B & F) DB12121, (C & G) DB03916, (D & H) NCI106112 at 100 ns of the MD simulations.

https://doi.org/10.1371/journal.pone.0264385.g009
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The ΔGbind can be divided into polar (Eele + Gpolar) and nonpolar (Evdw + Gnonpol) energies.

The free energy of IL-8 binding was primarily contributed from the Evdw + Gnonpol for

DB03916, while Eele + Gpolar showed a high unfavorable positive energy of contribution. Thus,

the free binding energy of this compound was higher than the two remaining complexes. Gen-

erally, the binding free energies values were clearly low, especially for DB14770. One explana-

tion might be the contribution of the electrostatic energy, which is highly influenced by the

dielectric constant (ε). The dielectric constant’s value depends on the binding site’s character-

istics between the protein and each ligand. It has been suggested that ε should be varied with

Table 3. Free energy calculations for the best ligands after MD simulations.

Energy terms (kJ/mol) DB03916 DB12121 DB14770

van der Waal energy (Evdw) −77.287 ± 0.252 −67.334 ± 0.278 −76.460 ± 0.192

Electrostatic energy (Eele) −281.433 ± 3.899 −44.379 ± 0.443 −903.067 ± 1.047

Polar solvation energy (Gpolar) 344.398 ± 1.688 30.663 ± 0.472 503.504 ± 0.661

SASA energy (Gnonpol) −12.536 ± 0.022 −8.626 ± 0.034 −12.997 ± 0.012

Binding energy (ΔGbind) −26.981 ± 2.286 −89.698 ± 0.387 −488.998 ± 0.440

https://doi.org/10.1371/journal.pone.0264385.t003

Fig 10. Summarize the studied results.

https://doi.org/10.1371/journal.pone.0264385.g010
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the protein or the ligand residues instead of using the default parameter [44]. However, for the

sake of simplicity, a default dielectric constant is usually used for the whole solute in the Pois-

son–Boltzmann models [42]. Hence, in our study, Eele was calculated with a dielectric constant

of unity (ε = 2). Additionally, the MM-PBSA approach was used to estimate the binding

energy of top hits to give a comparable prediction of these compounds.

In summary, by analyzing the MD simulation process and calculating free binding energy,

the best compounds were identified as DB14770, DB03916, and DB12121. They may block the

protein-protein interaction between IL-8 and its receptor CXCR2, hence could be potential

inhibitors for IL-8. The results of virtual screening, ADME properties prediction, and MD

simulations are summarized in Fig 10.

Conclusion

The role of IL-8 and its CXCR2 receptor in inflammations and human melanoma’s metastasis

has become clear in recent years, rendering IL-8/CXCR2 an attractive drug target. Through

computer-assisted drug design, we aimed to search for compounds that can bind to IL-8 at the

IL-8/CXCR2 interface, thereby inhibiting the interaction between the two proteins. This may

be an effective strategy to modulate the IL8-involved signaling pathway, providing potential

therapy in related diseases. This in silico screening will enhance the hit rate and reduce the in
vitro and in vivo experimental time and cost. The virtual screening by structure-based pharma-

cophore and molecular docking models was carried out with large libraries to identify poten-

tial drug candidates capable of binding to IL-8. We have identified 23 compounds having

docking scores <–20kJ/mol that interacted with key residues of IL-8. Subsequent application

of the SwissADME tool resulted in seven druggable candidates with suitable pharmacokinetic

properties. MD simulation during 100 ns was further executed, revealing that DB14770,

DB12121, and DB03916 could form stable complexes with IL-8. The negative binding energy

finally confirmed their structural stability and effective binding affinities for IL-8. These poten-

tial compounds can be developed into novel IL-8 inhibitors.

Supporting information

S1 Fig. The detail interactions of docking results. Interactive models of top 23 ligands.

(TIF)

S2 Fig. The RMSD results throughout the course of 50 ns MD simulations. RMSD of IL-8

in apoprotein and in complexes with the seven ligands (in blue) and RMSD profiles of the cor-

responding ligands (in orange).

(TIF)

S3 Fig. RMSF output along the 50 ns MD trajectory. Carbon alpha RMSF values of IL-8 in

the apoprotein and its complexes with seven ligands.

(TIF)

S1 Table. Computed physicochemical properties of top ligands. Including descriptors:

molecular weight, rotatable bonds, H-bond, LogP and LogS.

(PDF)

S2 Table. Predicted the metabolism by some major CYP450 enzymes of top ligands. Five

major isoforms (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4).

(PDF)
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