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Inference of causality in epidemics 
on temporal contact networks
Alfredo Braunstein1,2,3,* & Alessandro Ingrosso1,*

Investigating into the past history of an epidemic outbreak is a paramount problem in epidemiology. 
Based on observations about the state of individuals, on the knowledge of the network of contacts and 
on a mathematical model for the epidemic process, the problem consists in describing some features 
of the posterior distribution of unobserved past events, such as the source, potential transmissions, 
and undetected positive cases. Several methods have been proposed for the study of these inference 
problems on discrete-time, synchronous epidemic models on networks, including naive Bayes, 
centrality measures, accelerated Monte-Carlo approaches and Belief Propagation. However, most 
traced real networks consist of short-time contacts on continuous time. A possibility that has been 
adopted is to discretize time line into identical intervals, a method that becomes more and more 
precise as the length of the intervals vanishes. Unfortunately, the computational time of the inference 
methods increase with the number of intervals, turning a sufficiently precise inference procedure often 
impractical. We show here an extension of the Belief Propagation method that is able to deal with a 
model of continuous-time events, without resorting to time discretization. We also investigate the 
effect of time discretization on the quality of the inference.

Identifying past features of an epidemic outbreak remains a challenging problem even for simple stochastic epi-
demic models, such as the susceptible-infected (SI) model and the susceptible-infected-recovered (SIR) model. 
In recent years, this problem has received considerable attention, especially on discrete time models1–5. For these 
models, we recently proposed an approximate Bayesian method based on Belief Propagation (BP)6,7, that gave 
the first exact tractable solution to a family of discrete time inference problems on acyclic graphs and an excellent 
approximation on general graphs, including real ones. The problem addressed ranged from the inference of the 
epidemic source (the patient zero or index case), inference of the infection times and the epidemic parameters, all 
from the knowledge of the network plus a (partial, noisy) snapshot of the infection state of the system at a given 
instant.

In the last years, several precise spatio-temporal information about contacts between individuals in a community 
have been collected, representing close proximity8,9, social or sexual interactions10,11 and more. Each dataset consists 
of a time-stamped list of pairs of individuals. Seeking to explore characteristics of potential outbreaks, many authors 
studied the disease propagation over those communities employing compartment infection models such as SI and 
SIR. Technically, a simple way to achieve this is by computing a weighted discrete time network. This can be done by 
sub-dividing the time line into subintervals of length Δ (time-steps), aggregating all contacts falling in a given interval 
[tΔ,(t + 1)Δ] into a time-step dependent weight λ ij

t equal to λ− −1 (1 )kt, where λ is the probability of transmission in 
a single quasi-instantaneous contact and kt the number of contacts the interval8,6. Once this discrete time network has 
been constructed, the spread of infectious diseases on the community can be described through a discrete time SIR 
model, in which the transition probabilities between states defining each of these models depend on the time-step t. 
However, these coarsening methods naturally lead a loss of timing information and precision, becoming exact only in 
the limit of small Δ and a large number of intervals. Unfortunately, the computational time of both simulations and 
various inference algorithms typically increase with the number of time steps, making a sufficiently precise analysis 
unpractical, if not impossible in most cases. In the following, we will describe a very simple semi-continuous time 
stochastic model of infection dynamics that does not require coarsening or binning and is naturally equivalent to the 
Δ → 0 limit. For simplicity, we will concentrate on the SIR model, but all methods here can be naturally generalized to 
other variants such as SEIR8. We will then develop a semi-continuous time inference framework which is able to deal 
with contact network datasets without any discretization approximation, may it be implicit or explicit. The method 
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will be shown to perform very well on two datasets of real contact networks, being able to reconstruct the epidemic 
source, the infection times and the infection causality tree with a great degree of accuracy in a wide range of parame-
ters. In the concluding section, its performance will be compared to a discretized version of the model, showing that 
the inference performance under discretization approximations, although converging to the non-discretized one, does 
so in a range of discretization precision that renders it extremely unpractical.

Methods
A static model to describe dynamics. Let us consider an evolving contact network G composed of N 
nodes. Each node i is equipped with a time dependent state variable xi(t) ∈ {S, I, R} so that at time t it can be in one 
of three possible states: susceptible (S), infected (I), and recovered/removed (R). We will define our dynamical 
model as follows: let time ∈ +t  be continuous, and contagion events be instantaneous with probability λ. Each 
pair of individuals (i, j) will be in contact in a discrete set of instants Tij(0) < Tij(1) < … < Tij(nij) (given by the real 
network traced dataset), where we assume for simplicity Tij(r) = ∞ for r > nij. As time advances, contagion to 
node j will happen at a time tj with probability λ if i is infected, j is susceptible and there exists a contact between 
the two nodes with some index ri such that Tij(ri) = tj. Let us define ti = min{t: xi(t) = I} the time at which node i 
gets infected (infection time) and gi = min{g: xi(ti + g) = R} the time passed before his recovery. Note that, as 
infections can only occur during contacts, each ti will be necessarily equal to the time of a contact. Let us define 

= >r̂ t r T r t( ) min { : ( ) }ij i ij i  the index of the first possible such contacts. Recovery of individuals will happen at 
a time ti + gi, where gi follows a given recovery probability distribution with density G(gi). This parametrization is 
reversible, i.e. given ti and gi, it is easy to compute the state of xi(t) at any time t:
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Since a node i has a finite probability to transmit the disease to a neighbor j in each of its contacts, one can com-
pute the probability that the contagion will occur during the contact at time + ∈ +ˆT r t r t t g( ( ) ) ( , )ij i ij i i i , assum-
ing that node j is still susceptible, simply as λ λ= −R r( ) (1 )ij

r ij. Note that after time ti + gi, contagion will not 
take place because node i will be recovered. Given {gk} and {rki}, infection time ti of a non-source node i must 
satisfy deterministically the condition ti = Fi({tk}, {gk}, {rki}) where

= +
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where ∂i denotes the set of neighbors of node i (i.e. nodes that share at least a contact with i) and it is conventionally 
assumed that the min is equal to +∞ if the set is empty. Eq. (2) must hold because each neighbor k will be in the 
infected state in the time interval +t t g[ , )k k k , and will transmit at time +ˆT r t r(( ( ) ))ki ki k ki ; the transmission that 
arrives first will be the one that succeeds. Suppose now an epidemic spreading is initiated by a spreader node i0, 
which was infected at some time −ε < 0 before the first contact, which we conventionally fix at time t = 0. Our aim 
is to infer the initial spreader from just a single (possibly incomplete) observation of the state x(T) of the network 
at a later time T. The posterior distribution over the initial state of the networks can be easily written by means of 
Bayes theorem. In order to identify the initial spreader we should, in principle, maximize over the following poste-
rior marginal probability:

 ε∈ = − |⁎i t Txargmax ( ( )) (3)i
i

we will give a very small prior probability γ to each initial seed, ensuring that configurations with more than one 
seed are overwhelmingly improbable (note that having at least one seed is necessary to explain any evidence of 
infection). The prior distribution S(ti) for the node i then reads:

γδ ε γ δ ε= − + − − −S t t t( ) [ ; ] (1 )(1 [ ; ]) (4)i i i

where δ ⋅ ⋅[ ; ] denotes the Kroenecker delta.
It is easy to see that (3) does not depend on ε. Indeed, for any ε′ > ε, ε ε| = − ′ = | = − |T t T tx x( ( ) ) ( ( ) )i i 

∫−
ε ε′− G g dg(1 ( ) )

0
 implying that the two posteriors only differ by a constant factor, that has no relevance in (3).

The posterior distribution of infection times can now be written as 
∫| = ∑ |
+
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The patient zero problem can be recast as the one of computing single site marginals  x x( )i
T0  from the poste-

rior distribution in equation (3). The problem of computing marginals over large dimensional probability distri-
butions is in general intractable (NP-hard). In analogy with a previously introduced approximation method6,7, we 
will tackle this problem by means of Belief Propagation, a method which is exact on acyclic graphs, and that was 
shown to perform very well on random and real contact networks in the discrete time scenario.
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For each node in the network, the BP algorithm provides an estimate of the posterior probability that the node 
got infected at a certain time, and thus also the probability that the node was the origin of the epidemics.

Graphical model formulation. In order to apply BP, we will first formulate an alternative expression  
with no continuous variables, as the numerical representation of their distributions is problematic. Note that 
variables ti are already discrete, as they live in the finite subset of the real line formed by all incoming contact 
times ∪= ∈∂ = …H T r( )i k i r n ki, 0, ki . Let us consider the ordered sequence of values Ti(0) < … < Ti(ni) in this subset, 
and define Ti(ni + 1) = ∞. To cope with continuous variables gi, we will define from gi a discrete  
variable ∈ …g n{0, , }i i , by exploiting the fact that ∑ + ∈ + ==  
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i  (here  is the indi-

cator function of the condition in its argument), and that X and F are constant for gi inside an interval 
+ T g T g[ ( ), ( 1))i i i i . We can recast (3) as
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ization, we will introduce the variables = s S t g r( , , )ij ij i i ij  where
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The introduction of sji variables allows to simplify the structure of equation (6):

 ∑ ∏ ψ| = 
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Belief Propagation equations. To briefly describe the essence of the BP method, let us consider a proba-
bility distribution over the variables =z z{ }i  that has the following factorized form:

∏=M z
Z

F z( ) 1 ( )
(10)a

a a

where za is the subset of variables that Fa depends on. BP equations are a set of self-consistent relations linking the 
so-called cavity messages (or beliefs), a set of single-site probability distributions which are associated to each 
directed link in the graphical model defined by the joint distribution in equation (10). The general form of BP 
equations is the following:
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where Fa is a factor, zi is a variable, ∂a is the subset of indices of variables in factor Fa and ∂i is the subset of fac-
tors that depend on zi. The terms Zia, Zai and Zi are local partition function, serving as normalizations. To solve 
equations (11) and (12) an iterative procedure is typically used, where the cavity messages are initialized with 
homogeneous distributions and they are asynchronously updated until convergence to a fixed point12,13. While 
the computation of equation (12) is straightforward, the summation in (11) often involves a number of steps 
growing exponentially with the size of ∂a. In a number of interesting contexts, though, it is possible to devise 
efficient methods for computing this sum, and so reducing the computational complexity of the BP updates.

The inference problem of equation (8) is interpreted as a partial marginalization of a factorized distribution as 
in equation (10). In this settings, there are only two types of BP message, namely ψ→m s s( , )ij ij ji( )i  and ψ→m t( )i ii , 
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and the corresponding updates are derived straightforwardly from equation (11). The node-to-factor BP mes-
sages, namely namely ψ→m s s( , )ij ij ji( ) i

 ψ→m t( )i ii
, can be computed very easily by virtue of equation (12).

Calling δ= −  M g t L g t S t X t T g t T x T( , ) ( , ) ( ) [ ( , ( ) , ); ( )]i i i i i i i i i i i i , the BP equations for ψi are
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where (15) follows because
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can be computed in time O n( )i
2 . Then equations (14)–(20) can be computed as
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t g,i i.

The pseudocode in Algorithm 1 illustrates the implementation of our BP algorithm in detail. Please note that 
at each iteration we store factor-to-variable messages and marginals for each variable, the variable-to-factor mes-
sages being easily extracted at each iteration in view of the simple relation:

∝→
→

m m
p (25)

i F
i

F i
a

a

Algorithm 1 Belief Propagation based inference in continuous time SIR model.

input: A set of contacts over a graph G, a maximum tolerance emax and a maximum number of iterations τmax

output: A set of estimated marginals {mi}

 Initialize uniformly factor-to-variable messages {p}.

 Initialize uniformly link marginals {m(kl)} and node marginals {mi}.

 Initialize uniformly average marginals m t{ ( )}i i .

 for τ = 1 to τmax do

  Pick a random permutation π of nodes in G.

  e ← 0 

  for j ∈ G do

   Pick node f = π(j).

   for k ∈ ∂f do

    Extract variable-to-factor messages ∝ψ ψ→ →m m p/kf f kf f kf( ) ( ) ( ).

   end for

   Extract variable-to-factor message ∝ψ ψ→ →m m p/f f f f f
.

   Update factor-to-variable message =ψ →m m
f f f  via equation (23)

   Update average marginal m t( )j j  using the recently computed mf.

   for k ∈ ∂f do

    Compute outgoing factor-to-variable message ψ →m
f kf

new
( )  via equations (24)

    ← −ψ ψ→ →
∞

‖ ‖e e m mmax{ , }
f kf

new
f kf( ) ( )

    ←ψ ψ→ →m m
f kf f kf

new
( ) ( )

    Update link marginal m(kf ) as ∝ ψ ψ→ →m m pkf kf f f kf( ) ( ) ( ).

   end for

  end for

  if e < emax then

   return marginals = ψ→m mi i i.

  end if

 end for

 if τ = τmax then

  return average marginals m t( )i i . 

 end if

The time complexity of the computation of all messages 
ψ→ ∈∂
p{ }ij j i( )i

 exiting node i is ∑ ∈∂O n n( )i j i ji
2 2 . 

Assuming a bounded number of contacts per individual ni, this scaling results in an update with a number of 
operations per BP iteration which is linear in the number of edges (i.e. the number of pairs of individuals that are 
in contact) in the full system. On a BP fixed point, equation (13) is used to compute the marginal probability 
mi(ti = −ε), which brings an estimation of the posterior probability  ε= −t Tx( ( ))i  for the node to be the active 
before the first contact. Note that, in the present case, the marginal mi(ti) is equal to the message 

ψ→p ii
. In the 

event that BP doesn’t converge, reliable information can be extracted equivalently from the average value over 
iterations of the marginals mi(ti), that we call m t( )i i .
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Results
Patient zero detection in two large real contact time networks. We tested our methods on two 
large evolving networks: a database of time-stamped sexual interactions and a network of face-to-face contacts 
in a high school.

For each dataset, we simulated a large number of epidemic propagations, each one initiated from a unique 
random source (the patient zero, or seed). The nodes in the network are then ranked in decreasing order of their 
estimated posterior probability of being the origin of the observed epidemics: the position of the true origin in 
the ranking provided by the algorithm is a good measure of the efficacy of the method. In what follows, i0 stands 
for the index of the true origin of the epidemics, its rank being indicated by r0 = rank(i0). For simplicity, we will 
always consider homogeneous epidemic parameters λij = λ and G(gi) an exponential distribution with rate con-
stant μ.

The first dataset comes from a database of sexual encounters between clients and escorts on a Brazilian web-
site, covering the beginning of the community, September 2002 through October 2008, and composed of a total 
of E = 50185 contacts between between 6642 escorts and 10106 sex-buyers. This kind of data are particularly rel-
evant in the study of spreading of Sexually Transmitted Infections (STI), and have been previously used to model 
the diffusion of HIV by means of simple SI-SIR compartmental models11. We build a bipartite evolving network, 
focusing on the last two available years of operation of the website (E = 29628 contacts, slightly over half of the 
dataset) in order to skip the initial period where reporting of encounters are very sparse and incomplete. For each 
value of λ, we simulate M = 1000 single source epidemic propagations, with a recovery rate equal to μ = 0.5/year. 
Concerning algorithmic efficiency, the efficient implementation of the BP updates presented in the previous sec-
tion allows us to perform inference in large-scale contact network with a remarkably small computational cost. 
As an example, a parallel C++ implementation with 5 concurrent processes took roughly 11 minutes to converge 
to a solution with rank(i0) = 1 (perfect identification of the source) on a single instance with an epidemic size of 
NIR = 1810 individuals, obtained with λ = 0.4 and μ = 0.5/year.

In Fig. 1 we show the average absolute rank r0 of the true first infected individual i0 as a function of the epi-
demic size NIR = |I| + |R| (i.e. the number of infected and recovered sites), whose values are discretized in intervals 
of width equal to 0.1. The low values of the rank show the effectiveness of the method.

The second dataset consists of a collection of Close Proximity Interactions (CPIs) obtained by means of wire-
less sensor network technology (TelosB motes)8. Data were collected in a US high school and provide an almost 
complete account of face-to-face interactions during a whole day at school. All in all 798 individuals were mon-
itored, corresponding to the 94% of the total school community, and 2148991 unique Close Proximity Records 
(CPR) were acquired. A single CPR corresponds to a close proximity detection event between two motes (max. 
3 meters). The authors of the study perform an aggregation of the raw data in interactions, defined as continu-
ous sequences of CPRs between the same two nodes. Our choice was to go back to the raw data and investigate 
the spreading process at the level of single CPRs, using the intensity signal as a proxy for the closeness of a 
face-to-face contact (a detailed account is present in Salathe et al. - Supplementary Information8). We constructed 
a set of evolving networks by setting a threshold θint for the signal intensity of the motes, thus resulting in denser 
networks for smaller θint, where more weaker (and distant) contacts are taken into account. A second interesting 
possibility could be to allow for a probability of contagion that depends on the proximity (i.e. the strength of the 
signal). We did not persue this route as the dependence of probability cf contagion on the distance is hard to 
determine (to our knowledge, no study provides this information for known diseases), and moreover we don’t 
have information on the correspondence between signal strength and distance. Besides, a threshold-like depend-
ence on the distance could be adequate for contagion of many infectious diseases, such as non-airborne ones. In 
any case, the analysis technique presented here can be adapted directly to the case of contact-dependent probabil-
ity would the needed modelling information mentioned above be available in the future.

Figure 1. Left: Average absolute rank r0 of the true patient zero as a function of the epidemic size 
NIR = |I| + |R| for μ = 0.5/year and increasing values of the infection probability λ in the network of sexual 
contacts. Each curve represents a sample of M = 1000 random instances. Lines are guide to the eye. Right: 
probability distribution of rank i0 over the same epidemics for each value of λ.
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Three representative examples are show in Fig. 2, which displays the average rank of the true first infected 
individual i0 for different values of λ and threshold θint. Two values of λ = 0.3, 0.4 are explored for θint = 250. Then 
we attempted with the much denser graph resulting of considering θint = 245. Here the infection probability λ has 
been chosen to maintain the same average number of infections as the case θint = 250, λ = 0.3.

Reconstruction of causality. Consider the problem of inferring for each non-susceptible individual i at 
time T, the individual k from which he contracted the infection. The probability pktoi of such transmission event 
corresponds to

∑= = + = |→  



ˆp t T r t r r r Tx( ( ( ) ), ( ))
(26)

k i
r

i ki k ki ki ki
ki

Once pk→i has been computed for every (ordered) pair (ki), a prediction will be formed by the subset of pairs 
with probability larger than a given threshold. A receiver operating charasteristic (ROC) curve can be computed by 
considering the performance for all possible thresholds. The ROC curve for an instance of an outbreak on the sex-
ual contacts dataset is shown in Fig. 3, along with the inferred pairs in one single point of the curve. It is evident 
that a large fraction of the entire history of the propagation can be reconstructed with a high degree of reliability, 
despite the apparently limited amount of information available in a single observation of the nodes’ states.

For a comparison between the true infection times ti
true of each node and the ones that can be inferred by our 

method, we show in the left panel of Fig. 4 a scatter plot of ti
true versus ti for a single epidemic cascade in the net-

work of sexual contacts, with epidemic parameters λ = 0.4 and μ = 0.5/year (in the resulting epidemics the num-
ber of infected individuals is |I| = 991, total epidemic size being NIR = 1070). The infection times ti have been 
simply obtained by averaging over the marginal posterior distribution  t Tx( ( ))i  of single-node infection times. 
In addition, we show in the right panel of Fig. 4 the Average Time Error (ATE) between ttrue and t, which we define 
as = ∑ − +∈ATE t t I R/( )i G t i

true , for a set of 200 different samples of simulated epidemic outbreaks in the 
same network and with the same epidemic parameters as in the previous example. The reconstruction of the 
dynamical history is remarkably good over a wide range of epidemic sizes.

Partial and noisy observations. It is not difficult to extend the present model to account for observations 
affected by some kind of uncertainty. One simply introduces the Observational Transition Matrix (OTM) oi (yi|xi), 
containing the transition probabilities from the true state xi to the observed state: in order to perform inference, 
one has to some over all the possible true unobserved states with a weight given by the corresponding entry in the 
OTM, a task which is easily accomplished in the BP inference scheme. The identity matrix oi(yi|xi) = δ[yi; xi] cor-
responds to the a case in which no noise enters the observations. Please note that, in this generalized scheme, we 
can simply take into account partial observability with a totally flat OTM | =o y x( )i i i

1
3
 for unobserved nodes.

Firstly, we consider the case of partial observations, i.e. the case in which only a subset of nodes are accessible 
for observation at time T: this is the standard realistic scenario in practical applications, when a complete moni-
toring of a full network is infeasible in the general case. We simulate a number of epidemic spreading in the con-
tact network and model the partial observability by a fixed probability pob of observing a node at time T. In what 
follows, we will use the sexual encounters dataset, mostly because of its epidemiological relevance.

Results for decreasing values of pob in the network of sexual contacts are shown in the left panel of Fig. 5 (the 
complete observation case pob = 1 is shown in the dashed line for reference). The BP method happens to be highly 
resilient even with a high amount of hidden information at time of observation T.

Turning to the problem of uncertain observations, we use a very simple symmetric model for observational 
noise. Let us consider the following OTM:

Figure 2. Left: Average abolute r0 = rank(i0) as a function of the total epidemic size NIR = |I| + |R| in the 
network of face-to-face contacts in a high school for different values of the threshold θint. Each curve is an 
average over M = 1000 (θint = 250) or M = 300 (θint = 245) random instances. Lines are guide to the eye. Right: 
probability distribution of ranki0 over same epidemics for the three set of parameters.
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ν δ ν δ| = − + −o y x y x y x( ) (1 ) [ ; ]
2

(1 [ ; ]) (27)i i i i i i i

This matrix describes a kind of symmetric noise, where a node that is in the state x has a probability 1 − ν of 
being correctly observed in its state, and a probability ν of being observed incorrectly in one of the other two 
states. Suppose, for example, node i is S (susceptible) at observation time T: for a given noise probability ν, there 
is an equal probability ν

2
 for the node i to be observed in the R (recovered) or I (infected) state - the same holds for 

the others two cases, equivalently. In Fig. 5, right panel, we show that our BP algorithm is highly robust even to a 
significant amount of noise, up to 30%.

Discretization and binning. In order to ascertain the eventual loss of inference precision due to 
time-discretization, we performed the following experiment on the sexual intercourse dataset10. We generated 
M = 100 random epidemics with the semi-continuous time model with instantaneous probability of transmission λ.

Figure 3. Reconstruction of the causal history of transmissions on a simulated epidemic outbreak on a 
sexual contact network infecting 719 individuals (black dots) from a snapshot of the infection state at 
time 2y (corresponding to the outer dashed semicircle). The figure represents the tree of transmissions in 
the outbreak originated in the central node (time flows in the outwards radial direction). Radial segments 
correspond to 718 true transmission events. The 4130 oriented pairs of infected individuals that were in contact 
were ordered by their decreasing estimated posterior probability of transmission. A ROC curve (area equal to 
0.898) of the ordered list is shown in the top right panel, with the black point corresponding to the main figure. 
In the main figure, red full radial segments correspond to 202 correctly inferred transmissions (true positives, 
TP), black ones to non-inferred transmissions (false negatives, FN) and red dashed lines to the 16 wrongly 
predicted transmissions (false positives, FP).

Figure 4. Left panel: inferred vs true infection time for a single epidemic cascade in the network of sexual 
contacts. Epidemic parameters are λ = 0.4 and μ = 0.5/year. The vertical bars represent the standard deviation 
of the inferred infection time computed from the BP marginals. The zero patient, highlighted in orange, is 
correctly identified as the first infected individual. Right panel: Average Time Error (ATE) sorted as a function 
of the epidemic size NIR in 140 samples (we simulated 200 epidemic cascades and then focused on samples with 
NIR > 20, where enough information is present at the time of observation). Epidemic parameters are the same as 
in the left plot, each point represents the ATE value for a single epidemic cascade. The orange dot corresponds to 
the cascade on the left panel.
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Separately, for each value of T = 10, 15, 20, 25 we produced a discrete time temporal network from by 
sub-dividing the time interval [t0, t1] into T equal subintervals (time-steps) of length Δ = (t1 − t0)/T, aggregating 
all contacts falling in a given interval [tΔ; (t + 1)Δ] into a time-step dependent weight λ λ= − −1 (1 )ij

t kt, 
where kt is the number of contacts in the interval8,6.

We then performed the inference analysis on the M previously generated epidemics both in the discretized 
network with the the discrete-time BP algorithm6 and using the semi-continuous time inference BP algorithm 
presented here. We investigated the difference in performance for different combinations of the epidemic param-
eters, noting that the semi-continuous time method strikingly outperforms the discretization procedure in all 
cases. As an example, we show in Fig. 6 a comparison of the continuous time method versus the discretized ver-
sion for λ = 0.4 and μ = 0.5/year with an increasing number of time bins.

Discussion
In this work, we developed an inference framework to analyze the dynamics of infection in temporal contact net-
works with continuous or very fine-grained time resolution. We showed by means of simulations on real contact 
networks how the approach is able to reconstruct with great degree of accuracy both the source of the epidemics, 
the infection times and the underlying epidemic causal history from the mere observation of the state of the sys-
tem (noisy or incomplete) at a single instant in a wide range of parameters.

Moreover, we were able to quantify the loss of information due to time-discretization, demonstrating a 
remarkable improvement with continuous time inference when compared with time discretized data even for a 
relatively large number of time sub-intervals.

Figure 5. Inference performance with partial or noisy observations in the network of sexual contacts. In 
each curve we show the average normalized rank over M = 100 random instances of the true patient zero i0 as 
a function of the total epidemic size NIR = |I| + |R| for λ = 0.2, μ = 0.5/year. Left panel: r0 = rank(i0) normalized 
over |G| vs NIR for different values of probability of observation pobs; dashed curve is the case with full 
observations. Right panel: normalized r0 = rank(i0) vs NIR for different noise intensity ν; dashed curve is the case 
with no noise. Lines are guide to the eye.

Figure 6. Left: Comparison between the continuous time method and the discretized version in the 
network of sexual contacts for infection probability λ = 0.4 and μ = 0.5/year. Each curve is the average 
absolute rank r0 over M = 100 samples as a function of the epidemic size NIR. Full curve: continuous time 
version. Dashed curves: contacts have been aggregated in effective contacts so that final time of observation T is 
systematically increased from T = 10 to T = 25. Lines are guide to the eye. Right: probability distribution of rank 
i0 over the same epidemics for the four values of T. The distribution for the continuous case has been omitted 
since probability is extremely concentrated around r0 = 1 and appears off-scale.
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It would be interesting to apply this technique on other relatively closed communities where the interactions 
can be monitored but the infections themselves are hidden, such as in hospital wards14 and for applications to 
computer virus forensics4. The ability to reconstruct the epidemic history and causality of transmissions could 
prove to be helpful to devise better containment strategies. In those cases, generalizations of the method to epi-
demic models related to SIR such as SEIR and other distributions of recovery time different from exponential 
could be necessary.
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