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Abstract
Despite significant advances in breast imaging, the ability to accurately detect Breast Can-

cer (BC) remains a challenge. With the discovery of key biomarkers and protein signatures

for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct

to imaging. Research studies have shown that breast tumors are associated with systemic

changes in levels of both serum protein biomarkers (SPB) and tumor associated autoanti-

bodies (TAAb). However, the independent contribution of SPB and TAAb expression data

for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully

investigated. This study evaluates these contributions using a retrospective cohort of pre-

biopsy serum samples with known clinical outcomes collected from a single site, thus mini-

mizing potential site-to-site variation and enabling direct assessment of SPB and TAAb con-

tributions to identify BC. All serum samples (n = 210) were collected prior to biopsy. These

specimens were obtained from 18 participants with no evidence of breast disease (ND), 92

participants diagnosed with Benign Breast Disease (BBD) and 100 participants diagnosed

with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from

biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and

ND) using expression data from SPB alone, TAAb alone, and a combination of SPB and

TAAb. When SPB data was independently used for modeling, clinical sensitivity and speci-

ficity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was inde-

pendently used, clinical sensitivity and specificity for detection of BC were 72.2% and

70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical

sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively.

These data demonstrate the benefit of the integration of SPB and TAAb data and strongly

support the further development of combinatorial proteomic approaches for detecting BC.
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Introduction
Breast cancer (BC) is the most commonly diagnosed malignancy and is the leading cause of
cancer mortality among women [1]. Approximately 40,000 deaths from the disease occur
annually in the US [2]. Detection of early-stage BC is widely recognized as being associated
with a high cure rate and less morbid treatment. Unfortunately, even after decades of wide-
spread mammographic screening, the rate at which women present at a later stage of BC has
been only marginally reduced [3–5]. Multi-modality screening (using whole breast ultrasound
or breast magnetic resonance imaging, MRI) has demonstrated significant improvement in
cancer detection [6], but these approaches are limited to a minority of patients who are at high
risk and/or have high mammographic density, with additional restrictions dictated by cost and
feasibility. Furthermore, critics have pointed out that multi-modality screening will increase
the number of unnecessary biopsies and could also add to the issue of over-diagnosis [7–9].

The American College of Radiology adopted BI-RADS1 (Breast Imaging–Reporting and
Data System) as a quality assurance approach to standardize the lexicon used in breast imaging
reports, as well as affording the opportunity to monitor outcomes and to update the system as
new information accumulates [10]. Specifically, each BI-RADS category is associated with a
probability of breast cancer–Level 1 (negative), Level 2 (benign finding), Level 3 (probable
benign finding, below 2% chance of malignancy), Level 4 (suspicious finding, 2–94% probabil-
ity of malignancy), and Level 5 (highly suspicious finding,> 95% probability of malignancy)
[11]. It is important to note that, despite a seemingly simple classification system, misread
mammograms account for up to 75% of malpractice claims against radiologists [12].

The primary decision point for breast cancer radiologists is between the 3 and 4 assessment.
In BI-RADS 4 cases, the radiologist will recommend biopsy. In BI-RADS 3 cases, they likely
will not. It is important to note that Category 4 includes a wide range of probabilities between
Category 3 and 5, leaving the positive predictive value (PPV) in a wide range for Category 4
and thus somewhat imprecise [13,14]. Category 4 was later sub-divided into 4a (low index of
suspicion for malignancy), 4b (intermediate suspicion), and 4c (moderate suspicion, but not
conclusive). Yet the current standard of care is to biopsy all Category 4 and 5 lesions, so while
the sub-division of Category 4 improves quality assurance monitoring, the relatively low PPV
remains unchanged overall. Improving upon the Category 4 PPV would be a welcome addition,
especially for those concerned with the harms of screening.

In clinical practice, a NPV would provide a superior level of confidence when determining
whether to re-assess a patient at 6 months or follow with more aggressive screening at the cur-
rent visit. In total, improving PPV could help “rule in” biopsy for some BI-RADS 3 lesions and
BI-RADS 4a where the radiologist is sometimes faced with a subjective decision about whether
or not to perform biopsy. The standard of care (SOC) for BI-RADS 3 lesions is six month fol-
low-up imaging, but patient compliance with this recommendation can be problematic [15].
While a BI-RADS 3 lesion may have only a 2% chance of malignancy, if that patient does not
return for the six month follow-up study the chance for early diagnosis could be lost. At the
same time, improving the negative predictive value (NPV) could assist radiologists in the deci-
sion to “rule out” biopsy in this same patient population.

Contrarily, women who undergo biopsy for a false-positive breast lesion may experience a
range of post-procedure effects, from future false-positive mammograms to rare complications
related to invasive biopsies [16,17]. In the US, mammogram guidelines proposed by the Ameri-
can Cancer Society [18] have recently changed from beginning annual exams at age 40 to age
45, due in part to the large number of false-positive findings in younger women [19]. Further-
more, a recent UK study noted that women who were told that their mammogram findings
were likely false-positive wanted alternatives to invasive biopsy, including additional imaging
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and watchful waiting [20]. Serum-based biomarkers may provide some relief from these con-
cerns as they are based on an additional objective measurement; therefore, they are an ideal
complement to subjective image-based screening. The sensitivity of image-based BC screening
might be greatly aided through the incorporation of molecular diagnostics, such as serum pro-
tein biomarkers (SPB) [21] and tumor associated autoantibodies (TAAb) [22,23].

This study evaluated the independent and combined contributions of SPB and TAAb in
identifying BC using pre-biopsy blood samples collected at a single site over a six-year period
from women with later known clinical outcomes. The use of pre-biopsy samples is important
because: (1) it represents the intended use population when evaluating a test to be used in con-
junction with inconclusive imaging results and (2) the inflammation and wound healing that
occurs following a biopsy could confound serum biomarker data, potentially producing false
positives or false negatives [24,25]. To our knowledge, this is the first study to directly evaluate
the independent and combined contributions of SPB and TAAb in detecting BC in pre-biopsy
specimens obtained from an independent cohort with known clinical outcomes.

Materials and Methods

Sample Collection and Serum Preparation
All samples used in this study were collected by Mercy Women’s Center-Oklahoma City under
a protocol approved by the Mercy Hospital-OKC Institutional Review Board. Following writ-
ten informed consent, one tube of blood was collected in a Vacutainer clot tube. Samples were
drawn from two groups of patients–“healthy” controls with no evidence of breast disease (with
breast MRI confirming normalcy in nearly, but not all, cases) and women scheduled to
undergo a biopsy; all samples were drawn prior to biopsy. Blood was allowed to coagulate for
1.5–2 hours, then placed in a centrifuge and spun at 1,100 x g for 20 minutes. Samples were
then further processed only if non-hemolyzed, non-lipemic, and non-icteric. Immediately after
centrifugation was completed, 1 mL serum aliquots were transferred into 2 mL cryovials. All
patient information was de-identified prior to distribution of specimens to Provista Diagnos-
tics, Inc. for biomarker testing; tubes were labeled with a specimen ID number and date. Upon
receipt by Provista, cryovials were placed immediately into -80°C for storage. De-identified
patient demographical data was provided to Provista Diagnostics, Inc.

Patient Population
All subjects were enrolled after imaging assessment, which may include screening mammogra-
phy, diagnostic mammography, ultrasound, MRI, or any combination thereof. BI-RADS infor-
mation for all subjects was obtained from the annual screening or initial visit radiology reports,
even in cases where subsequent imaging resulted in a change in BI-RADS assessment.

Of the samples obtained for this study, 18 were collected from women with no evidence of
breast disease (ND, no biopsy), 102 were collected from women with BBD (confirmed by
biopsy), and 90 were collected from women with BC (confirmed by biopsy) (Table 1). Of these
210 samples, one was subsequently determined to be from a patient with prior BC; this sample
was excluded from testing. Of the remaining 209 samples tested, 17 did not have valid mea-
surements for one or more SPB; these samples were omitted from SPB modeling.

Serum Protein Biomarker (SPB) Measurements
Serum Protein Biomarkers selected for evaluation in this study were based on assessment of
previously published literature on potential BC biomarkers [26–32]. Additional SPB known to
participate in cancer-related pathways (e.g., angiogenesis and inflammation) were also
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included [33,34]. All SPB concentrations were determined using electrochemiluminescent
(ECL)-based ELISA kits manufactured by Meso Scale Discovery (Rockville, MD). All assays
were performed according to manufacturer’s specifications. Briefly, ELISA plates were blocked
and protein standards and controls of known analyte concentrations were added in duplicate.
Primary antibodies were diluted according to manufacturer specifications and added to all
wells. Secondary antibodies, containing an ECL tag, were diluted as specified and added to all
wells. All plates were analyzed using a MSD S-600 imager. To be deemed valid for SPB assess-
ment, a sample’s result had to fall within the standard curve and have a duplicate coefficient of
variation (CV) value below 20%. Any samples with duplicate measurements outside of this

Table 1. Patient Characteristics. A total of 210 patients provided serum specimens for this study. Screen-
ing BI-RADS categories are shown for all samples and the breakdown of ND, BBD, and BC samples within
each BI-RADS category are shown in parentheses. The number of samples excluded and the reason for
exclusion is provided in parentheses in the “Diagnosis” section. BBD and BC were confirmed by biopsy, and
all serum was obtained prior to biopsy.

n =

All Samples 210

Screening BI-RADS

0 3

ND (0)

BBD (3)

BC (0)

1 2

ND (1)

BBD (0)

BC (1)

2 29

ND (17)

BBD (9)

BC (3)

3 9

ND (0)

BBD (9)

BC (0)

4 96

ND (0)

BBD (68)

BC (28)

5 71

ND (0)

BBD (3)

BC (68)

Diagnosis

ND: No Evidence of Breast Disease 18

(Prior BC) (1)

(Incomplete SPB Data) (1)

BBD: Benign Breast Disease 92

(Incomplete SPB Data) (5)

BC: Breast Cancer 100

(Incomplete SPB Data) (11)

doi:10.1371/journal.pone.0157692.t001
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range were re-tested. If the re-tested values also deviated from the standard curve, the specimen
was excluded from SPB analysis.

Tumor-Associated Autoantibody (TAAb) Measurements
Tumor associated autoantibodies selected for evaluation were previously identified as potential
BC discriminators in published studies [22,23]. Target proteins were produced using a one-
step human coupled in vitro transcription translation (IVTT) kit (Thermo; Rockford, IL). All
target cDNA sequences were previously inserted in the pANT7-cGST vector [23]. The target
protein was purified using glutathione columns (GE Healthcare; Pittsburgh, PA) and quanti-
fied using the Qubit protein assay (Life Technologies; Grand Island, NY). A total of 40 ng of
target protein was spotted onto MSD multiplex plate, and each multiplex contained a Glutathi-
one Sepharose Transferase (GST) spot as a negative control. Assay workflow followed a stan-
dard indirect ELISA protocol. In brief, samples and plates were first blocked using Milk
Diluent/Blocking Concentrate (KPL, Inc.; Gaithersburg, MD). Blocked samples were added to
the plate in duplicate wells and incubated with shaking. Diluted anti-human CH2 (Pierce;
Rockford, IL) was added to each well, followed by diluted SULFO tagged anti-mouse antibody
(MSD). All plates were analyzed using a MSD S-600 imager. To be deemed valid for TAAb
assessment, a sample had to have a duplicate CV value below 20%. Any samples with duplicate
measurements outside of this range were re-tested. If the re-tested values deviated, the sample
was excluded from TAAb analysis.

Statistical Analysis
All analyses were conducted using SAS version 9.4 (SAS, Cary, NC). All provided p-values
were two-sided and were considered significant at p< 0.05. Analyses were not adjusted for
multiple comparisons due to the impact on univariate associations. Descriptive statistics were
evaluated for all clinical variables between groups. For continuous variables, mean, standard
deviation, median, minimum, and maximum were summarized, and statistical significance was
evaluated using t-tests or Wilcoxon Rank Sum tests where applicable. For categorical variables,
counts and percentages were analyzed for group differences using chi-square tests.

Autoantibody mean fluorescence intensity (MFI) was normalized using sample background
MFI obtained from the GST spots. Univariable logistic regressions were used to assess the rela-
tionship between all SPB, clinical variables, and TAAb with the clinical outcome. Summaries of
sensitivity, specificity, NPV, and PPV were conducted for all SPB and TAAb. All predictors
that were statistically significant (univariably) were selected for inclusion into the final adjusted
model. Tests for co-linearity were conducted to remove extraneous variables. An adjusted
model using a combination of predictor types was selected using backward selection and an
alpha = 0.15 threshold. All models were assessed using AUROC as well as evaluated for clinical
sensitivity, clinical specificity, negative predictive value (NPV) and positive predictive value
(PPV) using biopsy-confirmed BC or BBD as the comparator. AUC comparisons were per-
formed using a nonparametric approach [35].

Results

Patient Characteristics and Biomarker Selection
The characteristics for the patients that provided pre-biopsy serum specimens for this study
are provided in Table 1. There were 18 specimens collected from women with no evidence of
breast disease on imaging (ND), 92 specimens collected from women diagnosed with BBD
using biopsy, and 100 specimens collected from women diagnosed with BC using biopsy.
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BI-RADS status was collected for study participants; there was representation across all BI-R-
ADS categories in this study. One of the patients originally assigned to the ND group was sub-
sequently determined to have had a prior BC diagnosis; the serum obtained from this patient
was excluded from testing.

A list of SPB and TAAb used in this study are provided in Table 2. Of the 209 samples tested
for SPB, 17 did not have valid measurements for one or more SPB; these samples were omitted
from SPB modeling (Table 1).

Univariate and Multivariate Analyses of Serum Protein Biomarkers
(SPB)
All 22 SPB were analyzed using an ECL-based ELISA as described in the Materials andMethods.
Individual patient characteristics (including but not limited to age and family history) and clini-
cal outcomes were extracted from each de-identified patient record. Univariate analyses were
completed to determine whether SPB differed between women diagnosed with BC and women
diagnosed with BBD, both of which were diagnosed using biopsy. Several SPB (OPN, FasL,
TNFα, CEA, IL-12, HGF, and VEGF-D) were found to be differentially expressed at statistically
significant levels (p<0.05, Table 2). Representative SPB scatterplots are provided (Fig 1).

To determine a panel of SPB that best differentiates BC from non-BC, a logistic regression
model was created using backwards selection and an alpha = 0.15 threshold. The optimal inde-
pendent SPB model demonstrated a clinical sensitivity of 74.7% and a clinical specificity of
77.0% (Table 3). The AUC for this model was 0.79 (Fig 2). It should be noted that future
marker sets will need to limit the intended use population to further refine the ability of this
test to distinguish cancer from non-cancer (BBD) in a controlled population.

Univariate and Multivariate Analyses of Tumor-associated
Autoantibodies (TAAb)
Tumor associated autoantibody expression was measured for all targets using ECL indirect
ELISA, as described in the Materials and Methods. Univariate analyses were completed to
determine whether TAAb differed between women diagnosed with BC and women diagnosed
with BBD, both of which were diagnosed using biopsy. There were two TAAb target ratios that
were statistically significant (SF3A1 and SOX2, Table 2). It should be noted that sample back-
ground levels (represented by GST MFI) in this study were significantly (p<0.01) higher in
specimens from non-BC patients as compared to BC patients. Median sample background was
1,679 for BC samples and 2,302 for non-BC samples (data not shown). High sample back-
ground tends to result in lower TAAb ratios because ratios are normalized to sample back-
ground MFI, thus it is possible that a subset of non-BC sample TAAb ratios were aberrantly
low. This background could be due to the IVTT platform used to evaluate TAAb expression in
this study. Representative TAAb scatterplots are provided (Fig 3).

To determine a panel of TAAb that best differentiates BC from non-BC, a logistic regression
model was created using backwards selection and an alpha = 0.15 threshold. The optimal inde-
pendent TAAb model demonstrated a clinical sensitivity of 72.2% and a clinical specificity of
70.8% (Table 3). The AUC for this model was 0.77 (Fig 2), which was comparable to the inde-
pendent SPB model performance.

Multivariate Analysis of Combination of SPB and TAAb
The performances of models involving SPB or TAAb alone were modest (AUC of 0.79 and
0.77, respectively). It was hypothesized that test performance may be improved by combining
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Table 2. Serum Protein Biomarkers and Tumor associated autoantibodies evaluated. P-values are provided for each analyte in comparing non-BC
(ND and BBD) to BC (two-tailed T-test assuming heteroscedastic variance). Glutathione S-transferase (GST) was used to normalize the TAAb ratio; the p-
value in parentheses refers to the mean GSTMFI across all plates.

Biomarker Name Biomarker Type P-value

Cancer antigen 15.3 (CA15.3) SPB 0.07

Cancer antigen 125 (CA-125) SPB 0.88

Osteopontin (OPN) SPB 0.02

Fas Ligand (FasL) SPB <0.01

Tumor necrosis factor alpha (TNFα) SPB 0.04

Human epidermal growth factor receptor 2 (ErbB2) SPB 0.06

Interleukin-6 (IL-6) SPB 0.12

Interferon gamma (IFNγ) SPB 0.17

Interleukin 10 (IL-10) SPB 0.25

Interleukin 1-beta (IL-1b) SPB 0.52

Interleukin 2 (IL-2) SPB 0.41

Interleukin 8 (IL-8) SPB 0.38

Carcinoembryonic antigen (CEA) SPB 0.03

Interleukin 12 (IL-12) SPB 0.03

Hepatocyte growth factor (HGF) SPB 0.04

Vascular endothelial growth factor (VEGF) SPB 0.68

Vascular endothelial growth factor subtype C (VEGF-C) SPB 0.24

Vascular endothelial growth factor subtype D (VEGF-D) SPB 0.01

Basic fibroblast growth factor (bFGF) SPB 0.16

Placental Growth Factor (PIGF) SPB 0.43

Vascular endothelial growth factor receptor 1 (FLT-1) SPB 0.71

Angiopoietin-1 receptor (TIE-2) SPB 0.50

Alpha-1,2-Glucosyltransferase (ALG10) TAAb 0.55

Activating Transcription Factor 3 (ATF3) TAAb 0.09

ATPase, H+ Transporting, Lysosomal Accessory Protein 1 (ATP6AP1) TAAb 0.10

HLA-B-Associated Transcript 4 (BAT4) TAAb 0.35

Brain-Derived Neurotrophic Factor (BDNF) TAAb 0.20

BTK-Like On X Chromosome1 (BMX) TAAb 0.94

Normal Mucosa Of Esophagus Specific (NMES1) TAAb 0.70

Casein Kinase 1, Epsilon (CSNK1E) TAAb 0.43

C-Terminal Binding Protein 1 (CTBP1) TAAb 0.47

Dihydrolipoamide Branched Chain Transacylase E2 (DBT) TAAb 0.44

Eukaryotic Translation Initiation Factor 3, Subunit E (EIF3E) TAAb 0.35

Fibroblast Growth Factor Receptor Substrate 3 (FRS3) TAAb 0.78

G Protein-Coupled Receptor 157 (GPR157) TAAb 0.65

Homeobox D1 (HOXD1) TAAb 0.80

Myozenin 2 (MYOZ2) TAAb 0.83

Tumor Protein 53 (p53) TAAb 0.40

Programmed Cell Death 6 Interacting Protein (PDCD6IP) TAAb 0.39

RAS-Associated Protein RAB5A (RAB5A) TAAb 0.19

Ras-Related C3 Botulinum Toxin Substrate 3 (RAC3) TAAb 0.13

Selectin L (SELL) TAAb 0.41

Collagen Binding Protein 1 (SERPINH1) TAAb 0.23

Splicing Factor 3a, Subunit 1 (SF3A1) TAAb 0.02

Solute Carrier Family 33 (Acetyl-CoA Transporter), Member 1 (SLC33A1) TAAb 0.98

Sex Determining Region Y-Box 2 (SOX2) TAAb 0.01

(Continued)
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TAAb and SPB into a single model, i.e., applying a combinatorial approach. To determine a
combination of SPB and TAAb that best differentiates BC from non-BC, all possible markers
were included in a logistic regression model and the strategy of using backwards selection and
a threshold of 0.15 was applied to identify a combinatorial model. The combination of SPB and

Table 2. (Continued)

Biomarker Name Biomarker Type P-value

Transcription Factor CP2 (TFCP2) TAAb 0.73

Tripartite Motif Containing 32 (TRIM32) TAAb 0.45

Ubiquitin Associated Protein 1 (UBAP1) TAAb 0.78

Zinc Finger, MYM-Type 6 (ZMYM6) TAAb 0.88

Zinc Finger Protein 510 (ZNF510) TAAb 0.06

Glutathione S-Transferase (GST) TAAb Control (<0.01)

doi:10.1371/journal.pone.0157692.t002

Fig 1. SPB Expression across Patient Groups. Shown is the comparison of no disease (ND), benign breast disease (BBD), and breast cancer (BC)
samples. Graphs may be shown with y-axis represented as concentration (in pg/mL) or Log 10 concentration in order to better view analytes with wide
distributions in the study population.

doi:10.1371/journal.pone.0157692.g001
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TAAb improved clinical sensitivity and clinical specificity to 81.0% and 78.8%, respectively
(Table 3), which were both superior to that of the independent SPB and TAAbmodels. Further-
more, NPV and PPVwere highest for this combined model. The AUC of this combined model was
0.89 (Fig 2), a significant improvement over AUCs for TAAb alone (p<0.0001) and SPB alone
(p = 0.0012). These results suggest that application of a model that combines SPB and TAAb data
can identify the presence of BC from a pre-biopsy serum sample with high sensitivity and specificity.

Samples from participants who were assessed as BI-RADS 5 were included to provide a greater
number of subjects diagnosed with breast cancer. However, a biomarker test would not greatly
impact SOC in these patients, who would be recommended for biopsy regardless of biomarker
testing. Table 4/93 breaks down the performance of each model based on subject BI-RADS.
While sensitivity and PPV in the BI-RADS 5 population were generally better than that seen in
indeterminate subjects (BI-RADS 3/4), this is likely due to the reduced breast cancer prevalence
in the BI-RADS 3/4 population relative to the BI-RADS 5 population. Conversely, specificity and
NPV in the BI-RADS 3/4 population were generally better than that seen in the BI-RADS 5 popu-
lation, which is likely due to the larger number of BBD subjects in the BI-RADS 3/4 population
(only 3 participants in the BI-RADS 5 category were diagnosed as BBD). Overall, the data shown
in Table 4 support the conclusion that a model combining SPB and TAAb is superior to models
that utilize only SPB or TAAb in detecting breast cancer. It should be noted, however, that this is
a test population and these values could vary in different intended use populations.

Independent models were created to be inclusive of covariables, such as age and BI-RADS
(S1 Table, S1 Fig). These models did demonstrate a slight improvement in performance, but
also may have been more vulnerable to confounding factors relating to subject demographics.
Importantly, the age & BI-RADS-inclusive models also demonstrate improved performance in
the combined model compared to SPB or TAAb alone models.

Discussion
In clinical practice, pathological confirmation (biopsy) is necessary to determine whether an
abnormality noted on imaging is benign or malignant. The limited ability of an image to

Table 3. Summary of Model Performance. The biomarkers relevant to each model are given, along with model performance parameters.

Model Biomarkers Sensitivity Specificity NPV PPV AUC

Independent SPB CEA, FASL, OPN, VEGFC, VEGFD, HGF 74.7% 77.0% 81.3% 69.4% 0.79

Independent TAAb FRS3, RAC3, HOXD1, GPR157, ZMYM6, EIF3E, CSNK1E, ZNF510, BMX,
SF3A1, SOX2

72.2% 70.8% 78.4% 63.3% 0.77

Combined SPB and
TAAb

FASL, IL6, IL8, OPN, VEGFD, HGF, FRS3, MYOZ2, RAC3GPR157, ZMYM6,
EIF3E, CSNK1E, ZNF510, BMXSF3A1, SOX2

81.0% 78.8% 85.6% 72.7% 0.89

doi:10.1371/journal.pone.0157692.t003

Fig 2. ROC curves for Models. Area under the curve (AUC) shown for each model in the inset.

doi:10.1371/journal.pone.0157692.g002
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inform diagnosis of tissue without a physical tissue specimen is the impetus for developing a
serum-based assay that detects the biochemical cues of the presence of BC to further elucidate
the nature of an abnormality noted on an image.

In this study, independent SPB and TAAb models demonstrated clinical sensitivities of
74.7% and 72.2%, respectively, and clinical specificities of 77.0% and 70.8%, respectively
(Table 3). The clinical sensitivity and clinical specificity of the combinatorial model was 81.0%
and 78.8%, respectively (Table 3), which was superior to either independent model. The overall
performance of the combinatorial model was superior to either independent model; the AUCs
were comparable for SPB and TAAb independent models (0.79 and 0.77, respectively), whereas
the AUC for the combinatorial model was 0.89 (Fig 2). These data support utilizing a combined
SPB and TAAb approach to identify BC in women with suspicious imaging findings. It is criti-
cal to note, however, that these are proof-of-concept studies and the application to a specific
intended use population may yield different results.

The high NPV (85.6%, Table 3) in such a high prevalence population indicates that, clini-
cally, a negative serum assay result may guide close observation of many of the abnormalities
noted on imaging that otherwise would have been biopsied. While these data are promising, it
should be noted all samples in this study were collected from a single source, which can result
in a geographical bias; however, the benefit of this study design is that it enables the direct
assessment of the contribution of SPB and TAAb to diagnostic identification of BC in a defined
patient cohort where pre-analytical variables and clinical outcome data collection differences

Fig 3. TAAb Expression across Patient Groups. Shown is comparison of no disease (ND), benign breast disease (BBD), breast cancer (BC).
Graphs are shown with y-axis represented as normalized TAAb ratio, wherein the target signal is normalized against sample background.

doi:10.1371/journal.pone.0157692.g003

Table 4. Summary of Model Performance based on subject BI-RADS. Model performance is shown for subjects categorized as BI-RADS 3 or 4 and
BI-RADS 5. BC prevalence is shown to indicate the number of subjects diagnosed with breast cancer as a percentage of the total for each BI-RADS popula-
tion. Some samples that were excluded from SPB and Combined model building due to incomplete SPB data.

Independent TAAb BC Prevalence Sensitivity Specificity NPV PPV

BI-RADS 3/4 26.67% 57.14% 68.83% 81.54% 40.00%

BI-RADS 5 95.77% 67.65% 0.00% 0.00% 93.88%

Independent SPB BC Prevalence Sensitivity Specificity NPV PPV

BI-RADS 3/4 25.51% 64.00% 82.19% 86.96% 55.17%

BI-RADS 5 95.24% 75.00% 100.00% 16.67% 100.00%

Combined SPB/TAAb BC Prevalence Sensitivity Specificity NPV PPV

BI-RADS 3/4 25.51% 72.00% 86.30% 90.00% 64.29%

BI-RADS 5 95.24% 80.00% 33.33% 7.69% 96.00%

doi:10.1371/journal.pone.0157692.t004
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should be minimized, allowing an accurate assessment of the true contribution of these bio-
markers as independent and combined entities. Different blood collection techniques, serum
isolation procedures, and storage at multiple sites could affect the expression of these biomark-
ers, confounding results. Large prospective, randomized, multi-site blinded clinical trials are
currently underway to further understand the contribution of SPB and TAAb tests to identify-
ing BC, specifically in the BI-RADS 3 and/or 4 patient populations. The results of these trials
will further elucidate the clinical utility of SPB and TAAb combinatorial protein biomarker
assays to aid in the detection of early BC and to guide decisions between imaging and tissue
biopsy.
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