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Structure of silent transcription intervals and noise
characteristics of mammalian genes
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Abstract

Mammalian transcription occurs stochastically in short bursts
interspersed by silent intervals showing a refractory period.
However, the underlying processes and consequences on fluctua-
tions in gene products are poorly understood. Here, we use single
allele time-lapse recordings in mouse cells to identify minimal
models of promoter cycles, which inform on the number and dura-
tions of rate-limiting steps responsible for refractory periods. The
structure of promoter cycles is gene specific and independent of
genomic location. Typically, five rate-limiting steps underlie the
silent periods of endogenous promoters, while minimal synthetic
promoters exhibit only one. Strikingly, endogenous or synthetic
promoters with TATA boxes show simplified two-state promoter
cycles. Since transcriptional bursting constrains intrinsic noise
depending on the number of promoter steps, this explains why
TATA box genes display increased intrinsic noise genome-wide in
mammals, as revealed by single-cell RNA-seq. These findings have
implications for basic transcription biology and shed light on inter-
preting single-cell RNA-counting experiments.
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Introduction

Gene expression is intrinsically dynamic and varies greatly from cell

to cell (Raj & van Oudenaarden, 2008). In isogenic cell populations,

such variability arises naturally from randomness in the processes

governing gene expression. Typically, low numbers of molecules

are involved in transcription, leading to unavoidable stochasticity in

both mRNA and protein levels (Elowitz et al, 2002; Paulsson, 2004).

In fact, fluctuations in mRNA numbers can significantly exceed

what constitutive expression predicts (Poisson statistics) (Blake

et al, 2003; Raser & O’Shea, 2004), and it was proposed that this

originates in short and intermittent activations of the genes called

transcriptional bursts. Transcriptional bursting was formalized as a

telegraph model (Peccoud & Ycart, 1995), in which a promoter

toggles between transcriptionally active (on) and inactive (off)

states. The size of the bursts (b) represents the average number of

transcripts produced during the active period. Recent assays in

single cells confirmed transcriptional bursting in many organisms

(Golding et al, 2005; Chubb et al, 2006; Raj et al, 2006; Zenklusen

et al, 2008). Although not all genes are transcribed in bursts

(Zenklusen et al, 2008), bursting appears predominant in mammals

(Suter et al, 2011; Dar et al, 2012; Bahar Halpern et al, 2015). The

mechanisms causing bursts in eukaryotes are still elusive but most

likely involve the interplay between transcription factors (Larson

et al, 2013; Senecal et al, 2014), chromatin remodelers (Coulon

et al, 2013; Voss & Hager, 2013), the formation of gene loops and

pre-initiation complexes (Blake et al, 2003; Zenklusen et al, 2008),

and transcription initiation and elongation (Jonkers et al, 2014;

Stasevich et al, 2014).

Recent time-lapse imaging to monitor bursting of endogenous

mammalian genes (Harper et al, 2011; Suter et al, 2011) reported

peaked silent transcriptional intervals, suggesting a refractory period

lasting about 1 h preceding transcription reactivation. Similarly,

promoter refractoriness to reactivation was reported in Neurospora,

indicating a form of molecular memory (Cesbron et al, 2015).

Refractory periods support a model of promoter progression (Hager

et al, 2006; Métivier et al, 2006) in which sequential metastable

changes in the local chromatin template underlie a multi-step

progression toward transcription activation (Coulon et al, 2013). In

first approximation, this promoter progression can be considered as

an irreversible cycle (Zhang et al, 2012), whose rate-limiting steps

need to be estimated, which we address here.

Detailed knowledge on the transcriptional kinetics also allows

better understanding of noise in gene expression (Ozbudak et al,

2002; Swain et al, 2002; Paulsson, 2004; Sanchez & Kondev, 2008),

which is relevant notably in the context of RNA-counting experi-

ments in developmental (Little et al, 2013; Bothma et al, 2014) or

cell differentiation systems (Chang et al, 2008; Abranches et al,

2014; Ochiai et al, 2014). Importantly, the structure and kinetics of

the promoter cycles will also impact the noise in gene expression

since it determines the statistics of the off intervals (Pedraza &

Paulsson, 2008). Indeed, in addition to the standard transcriptional

parameters (burst size, activation frequency), the number of rate-

limiting steps also tunes noise levels (Zhang et al, 2012).

Here, we combined temporal single-cell measurements of short-

lived and highly sensitive luciferase reporters with mathematical
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modeling to characterize silent transcriptional intervals. In particular,

by modeling promoters as an irreversible cycle, we estimated the

number and durations of the rate-limiting steps responsible for refrac-

tory periods in mammalian gene reactivation. We found gene-specific

structure and kinetics of the promoter cycle. Typically, endogenous

promoters showed five sequential inactive steps, while minimal

synthetic promoters exhibited only one. Two groups of promoter

architecture showed distinct transcriptional kinetics; notably, TATA

box promoters had only few inactive steps, independently of their

genomic location. Moreover, intrinsic noise in our clones was

constrained due to transcriptional bursting, and buffered by addi-

tional inactive promoter steps. Finally, we analyzed single-cell RNA-

seq in mouse embryonic stem cells (mESCs) to validate genome-wide

the prediction that TATA box promoters, owing to their reduced

number of promoter steps, showed increased intrinsic noise.

Results

Refractory period in gene reactivation modeled by a
promoter cycle

The two-state promoter cycle (telegraph model) predicts exponen-

tially distributed transcriptionally silent periods, yet evidence points

toward peaked (non-exponential) durations (Harper et al, 2011;

Suter et al, 2011), which implies out of equilibrium dynamics and

irreversibility in the underlying processes (Tu, 2008). A simple yet

still sufficiently general model compatible with this constraint is an

irreversible N + 1-state promoter cycle (Zhang et al, 2012), consist-

ing of one transcriptionally active state (on) and N sequential inac-

tive states (off), modeling the scenario of promoter progression

(Hager et al, 2006; Métivier et al, 2006). Both the number of states

N and their durations (not necessarily equal) are not known

and will be estimated from data. The resulting stochastic gene

expression model (Appendix Supplementary Methods) consists in a

two-layered cascade of birth and death processes, describing the

production and degradation of mRNAs and proteins (Fig 1A).

Although this model is a coarse-grained description of gene expres-

sion, it accommodates for the observed refractory periods while

remaining sufficiently parsimonious to allow inference.

To illustrate the behavior of the model, we compared two realis-

tic simulations differing only in the partitioning of the silent period

T. A unique step (N = 1) yielded exponentially distributed off-times

(Fig 1B), while partitioning T in six subintervals of equal average

duration (N = 6) followed a peaked (Gamma) distribution. For

N = 1, we observed large variability in the silent periods. Due to the

short active periods, the mRNA and protein time traces were irregu-

lar (Fig 1B). By contrast, the profiles for N = 6 were more regular
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Figure 1. The promoter cycle as a generic stochastic gene expression model to analyze time-lapse imaging data in single mammalian cells.

A The stochastic model describes gene activation, transcription, translation, and degradation of mRNA and proteins. The promoter state follows an irreversible cycle
composed of one transcriptionally active state and multiple (N) sequential inactive states describing the promoter progression toward activation. Gene-specific rates
for the different processes are indicated.

B Stochastic simulation of protein numbers, mRNA numbers, and gene activity with N = 1 inactive state. Here, the duration of silent intervals is exponentially
distributed (left) and the gene expression traces are irregular.

C With N = 6 states, the duration of silent intervals is now peaked and the expression pattern more regular. Parameters reflect a realistic situation, that is, the average
duration of the total silent period T is identical in both simulations and set to T = 90 min, sa = 8 min and km = 5 mRNA per minutes.
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and the fluctuations in mRNA and protein numbers were reduced

(Fig 1C), which follows from the more evenly spaced activation

events (Pedraza & Paulsson, 2008).

Identification of optimal promoter cycles

To characterize the promoter cycles in a set of NIH3T3 cell lines

expressing a single allele of a short-lived luciferase reporter driven

by different promoters, we extended our computational approach

for estimating transcriptional parameters from time-lapse recordings

(the transcription rate km, the active period sa, and the total silent

period T) (Suter et al, 2011; Molina et al, 2013) to identify the

number N and durations si of transcriptionally inactive states. The

translation rate kp and the degradation rates of both the protein cp
and mRNA cm were measured (Table EV1) and therefore did not

need to be inferred. Briefly, we followed a Bayesian approach to

estimate the joint posterior probabilities on N and the kinetic rates

using a reversible jump Markov chain Monte Carlo (RJ-MCMC)

algorithm (Green & Hastie, 2009) (Materials and Methods). RJ-

MCMC is a model selection method in which more complex models

(larger cycles) are naturally penalized, thus avoiding over-fitting.

Implementing this scheme requires computing the likelihood of each

bioluminescence time trace under a model (specified by N and all

kinetic rates). For the likelihood, we used calibrated luminescence

signals (Suter et al, 2011; Molina et al, 2013) (Appendix Supple-

mentary Methods) and the transition probabilities between

promoter states, mRNA and protein numbers over the 5-min

sampling interval, as dictated by the master equation for the

promoter cycle. For the RJ-MCMC sampling, we implemented

model-crossing jumps by adding or removing inactive states while

keeping T constant (Fig 2A).

To validate the method, we simulated bioluminescence time

traces that mimicked our experiments in terms of the number of

cells, length of time traces, measurement noise, and sampling rate

(Appendix Supplementary Methods), and tested whether N, km, sa,
and T ¼ RN

i¼1si could be recovered. For simplicity, we assumed that

the kinetic rates were constant and equal for all cells from the same

clone. We estimated posterior distributions of the parameters from

four populations sharing identical parameters except T, which was

partitioned into N = 1, 2, 4 and 6 intervals. As exemplified for

N = 6, we recovered these parameters with good accuracy, albeit

with small biases (< 8%) (Fig 2B and Table EV2). Similarly, the

posterior probability on N bracketed the true number, with a

tendency to overestimate the most likely value by one (Fig 2B and C).

To test whether low expression would deteriorate performance,

we explored how the mean number of mRNAs and active period sa
affect the inference. We generated synthetic populations spanning

a realistic range in mRNA expressions (Fig 2D) and varied the

expression either by changing the transcription rate km or by

changing both km and sa (Appendix Supplementary Methods).

Remarkably, the recovered parameters were close to the input

values even for sa smaller than the 5-min sampling interval and for

the lowest expressions (Fig 2D and Table EV2). Finally, we tested

whether heterogeneous kinetic parameters would affect our esti-

mates. Although inter-cell variability may shorten sa and increase

km, the burst sizes b, N, and T were not subject to similar biases

(Appendix Fig S1). Thus, considering that we used a limited

amount of data to mimic the bioluminescence signal and that some

parameters describe processes that are filtered at the level of the

measured protein expression, we concluded that the inference

method performs remarkably well.

Two groups of gene-specific promoter cycles

We then applied the method to characterize promoter cycles in 16

mouse fibroblasts cell lines (NIH3T3 cells) stably driving a short-

lived luciferase reporter from a single allele (Suter et al, 2011).

These included reporter lines driven by two distinct insertions of the

Bmal1 promoter (B clones); seven clones obtained by lentiviral trap-

ping (gene trap, GT) of endogenous promoters (gene names in

Table EV1); and five clones that used the FRT/Flp system to insert

into a common location single copies of either the Dbp gene (includ-

ing its promoter) or minimal synthetic promoters combining a TATA

box and one (H1) or two (H2) CCAAT boxes with multiple muta-

tions. Additionally, we generated two more H1 clones that used new

FRT sites in different genomic locations (Appendix Supplementary

Methods). Importantly, to minimize transcriptional disturbances

during the cell cycle, non-dividing (highly confluent) cells were

continuously recorded over approximately 2 days (Chassot et al,

2008). We then estimated the transcriptional kinetics from temporal

traces in single cells for each clone.

The clones spanned a wide range of burst sizes b (from 1 to

80), independent of the fraction of time spent in the active state,

which remained under 10% (Fig 3A). The infrequent promoter acti-

vations clearly indicated that transcription occurs in bursts. More-

over, b depended predominantly on the promoter and, to a lesser

extent, on the genomic locus, as exemplified by multiple Bmal1

and H1 clones. The average duration of the silent period T exhib-

ited a smaller dynamic range (from 30 min to 3 h) than the burst

sizes, which was the most varying kinetic parameter among the

clones (Fig 3B). Notably, b and T appeared largely uncorrelated

among the clones. Overall, the extended model yielded kinetic

parameters that were largely consistent with previous estimates

(Suter et al, 2011) (Table EV3). Clearly, the short activation times

and large burst sizes implied that transcription in this set of clones

is highly discontinuous.

Examining the structure of the promoter cycles (Fig 3C and D),

we found that the number of inactive steps N differed between the

clones (N = 1–7). Although it is difficult to gain further insights on

the nature of these rate-limiting steps, their timescales of 10 min

were more consistent with the dynamics of histone modifications

than the interactions of transcription factor with DNA (Discussion).

Supporting this, for the Bmal1 promoter treated with the histone

deacetylation inhibitor (TSA), which renders the chromatin more

permissive for transcription, N reduced from 7 to 3 and T reduced

from 60 to 40 min (Fig 3C and D). The durations of the sub-

intervals si in the endogenous promoters were fairly homogenous,

with intervals between 6 and 14 min, whereas synthetic promoters

showed one dominating interval. This implied that the silent periods

of endogenous promoters should display peaked distributions,

whereas the silent periods of synthetic promoters should approxi-

mate exponential distributions. To assess the consistency of the

inferred promoter cycles with the data, we compared the distribu-

tions of silent and active periods from the optimal model with the

one obtained using Gibbs sampling (Appendix Figs S2 and S3).

Gibbs sampling reconstructs mRNA and gene activity trajectories
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conditioned on the data in each individual cell using the optimal

model as a prior (Appendix Supplementary Methods). It appeared

that, for most genes, both the modeled and Gibbs distributions

matched closely, confirming the previously observed peaked silent

distributions, as well as the aforementioned difference between

endogenous and synthetic promoters (Suter et al, 2011). Moreover,
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Figure 2. Model selection and parameters estimation based on reversible jump Markov chain Monte Carlo (RJ-MCMC) sampling.

A The number of inactive states in the promoter cycle defines a class of nested models. To sample the different models, we implemented moves (jumps) between
models differing by one inactive state.

B Typical MCMC run, here on simulated data (64 individual traces of 48 h each) generated with N = 6 inactive steps. Kinetic parameters and number of inactive states
N are sampled invariably. Left: MCMC traces, note the short burn in period. Right: Histograms reflecting the estimated posterior distributions, these are centered on
the mean values (dashed line), and N is between 6 and 9 (most probable is N = 7).

C Posterior distribution for N, inferred from synthetic data as in (B) (with 48 cells per condition), with N = 1, 2, and 4, respectively, keeping identical mean silent period T.
D Performance of the inference on individual transcriptional parameters in function of the simulated mean mRNA numbers (48 cells per mean mRNA). The dashed lines

represent the expected values. To vary the mean, either only the transcription rate is increased (blue) or both the on-time and the transcription rate (green) are
increased. Crosses show the posterior mean and error bars the 5th and 95th percentiles.

Molecular Systems Biology 11: 823 | 2015 ª 2015 The Authors

Molecular Systems Biology Promoter cycles of mammalian genes Benjamin Zoller et al

4



we did not observe refractory active periods on the scale of the

sampling times (Appendix Fig S3).

Intriguingly, the relationship between N and T suggested two

groups, namely promoter cycles with few steps (Group I: N ~ 1–2)

and ones with markedly more steps (Group II: N ~ 6) (Fig 3C). In

addition, in the first group, all synthetic promoters (six) as well as

Dbp had long cycles (130 min), while the endogenous promoters

(Ctgf, Prl2C2) had shorter cycles (50 min). Moreover, all promoters

with large N were endogenous. As shown for representative cells for

the H1 (Group I synthetic), Prl2C2 (Group I endogenous), and Gls

promoters (Group II), the distinct kinetics are visible in individual

cells, based on the raw signals as well as the mRNA counts and gene

activities (Fig 4A–C).

In summary, the analyzed promoter cycles suggested two

distinct groups, simple promoter cycles and complex promoter

cycles (Fig 4D). Simple promoter cycles (Group I) caused nearly

refractory-less and irregular activations, although the irregularity

in the endogenous promoters (Ctgf and Prl2C2) was alleviated by

more frequent activations. Complex promoter cycles (Group II)

involved several transitions and short silent periods, thus leading

to more regular activation patterns constrained by a refractory

period.
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Figure 3. Structure and kinetics of the promoter cycles for the NIH3T3 clones.

A Burst size vs. the fraction of time the gene is active. Each clone is represented by a 95% confidence ellipse from the posterior distribution. All the analyzed clones
burst, characterized by small activity fractions. Burst sizes show a large dynamic range across clones (~80-fold). Inset: Magnification of the lower left corner.

B Burst size vs. the total silent period T. Elongated confidence ellipses reflect the dependence between those two quantities and the mean mRNA. Although the
dynamic range of the silent period (~6-fold) is smaller than for the burst size, it is also gene specific. The synthetic (warm colors) and endogenous (cold colors)
promoters cluster in distinct regions.

C Number of inactive states vs. T, crosses indicate mean and error bars stand for the 5th and 95th percentiles of the posterior. Endogenous promoters tend to show more
inactive steps and shorter cycle times (cluster around N~6 and T~60 min) compared to synthetic promoters (cluster around N~1–2 and T~130 min).

D Partitioning of the silent period for the optimal models. The light and dark bars show the mean durations of each sub-step. Partitions in endogenous promoters tend
to be more uniform compared to the synthetic promoters. Average inactive times for endogenous promoter are around 10 min, whereas synthetic promoters have
average inactive times close to 100 min (~115 min for the first and ~25 min for the subsequent intervals).
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Promoter architecture influences the promoter cycles

Since all the synthetic promoters from the original library (H1a, H2,

H2 1M, H2 2M) were inserted into the same genomic location, the

low number of states and long promoter cycle observed might

reflect a property of the insertion site, for example, the chromatin

state, rather than the promoter architecture. We therefore generated

additional clones (H1b, H1c) by integrating the minimal promoter
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H1 at distinct genomic locations. Remarkably, the three H1 inser-

tions retained very similar promoter cycles (Fig 3C and D). While

endogenous promoters with similar cycles (Group II) were inher-

ently located in different genomic loci, the two Bmal1 clones

(Bmal1a, Bmal1b) in two distinct locations also showed very similar

cycles (Fig 3D), further supporting that the structure of the cycles is

primarily a property of the promoters.

Interestingly, the synthetic (Group I) and the two endogenous

promoters with small N (Group I with the exception of Dbp)

contained a canonical TATA box element (Dreos et al, 2013), which

was absent from other endogenous promoters (Group II) with

larger N. Although the numbers were low, the presence of TATA

boxes in promoters with small N (in mouse, only < 15% of pro-

moters contain TATA boxes) was non-random (P < 0.01, binomial

sampling). Promoter architecture and, in particular, the presence of

TATA boxes seemed to influence the promoter cycles. Further

evidence that this holds genome-wide is presented below.

Intrinsic transcriptional noise dominates in non-dividing
mammalian cells

We next studied the implications of promoter cycles and transcrip-

tional kinetics on population noise in mRNA numbers, defined as

the variance over the mean squared g2m ¼ r2=\m[ 2 (total noise).

Since a fraction of the total noise is expectedly due to extrinsic

variability, we split the total noise as g2m ¼ g2 þ g2e . Although this

separation can be subtle (Swain et al, 2002; Hilfinger & Paulsson,

2011) (Materials and Methods), g2 (intrinsic noise) arises from

gene-specific fluctuations whereas g2e (extrinsic noise) reflects other

sources of heterogeneity. To estimate both components for each

clone, we used Gibbs sampling to reconstruct the empirical distri-

butions of mRNA numbers in each individual cell (Materials and

Methods and Appendix Fig S4). Simulations with heterogeneous cell

populations showed that Gibbs sampling accurately recovered the

simulated mRNA distributions in each individual cell (and also in

the cell population), providing an excellent proxy for g2m (Appendix

Fig S5). In the clones, the empirical population distributions tended

to be more dispersed than the fitted model (Fig 5A). Indeed for

some clones, for example, NcKap1 or Ctgf (Appendix Fig S4B), the

model did not capture enrichment at low transcript numbers or

longer tails in the empirical distributions. These deviations likely

originated from extrinsic noise, such as kinetic parameters differing

between cells or over time. Consistent with this interpretation, the

circadianly transcribed Bmal1 promoter showed the largest devia-

tion (Appendix Fig S4B).

The mRNA distributions in individual cells allow splitting of the

total variance into the mean variance (proxy for intrinsic variance)
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Figure 5. Separating intrinsic and extrinsic noise.

A mRNA distribution (Gibbs, light green) and steady-state distribution of the
optimal promoter cycle (dark green). Differences, also reflected in the noise
values, originate from extrinsic variability.

B Separation of the total noise in intrinsic and extrinsic components. For the
majority of clones, intrinsic noise dominates.

C The modeled noise corresponds to 83% of the estimated intrinsic noise on
average.

Data information: In (B, C), the error bars stand for the 5th and 95th percentiles
of the estimate (parametric bootstrap).

ª 2015 The Authors Molecular Systems Biology 11: 823 | 2015

Benjamin Zoller et al Promoter cycles of mammalian genes Molecular Systems Biology

7



plus the variance in the means across cells (extrinsic variance)

(Swain et al, 2002; Hilfinger & Paulsson, 2011). As verified by simu-

lations (Appendix Fig S5), this split captures g2 and g2e for static

cellular heterogeneity (i.e., parameters in each cell remain constant

during the recording). Importantly, the recordings were performed

in non-dividing cells, removing one important source of temporal

heterogeneity (Zopf et al, 2013). Since the Bmal1 and Dbp clones

are sensitive to circadian oscillations, we restricted our noise analy-

sis to the other clones, except for Bmal1 treated with TSA, which

abolishes circadian oscillations while maintaining transcriptional

bursting (Suter et al, 2011). In most clones, g2 exceeded g2e (Fig 5B),

and g (coefficient of variation CV) was on the order of 100%

(g2 between 0.3 and 2.1), independent of expression levels. As

shown below, this a direct consequence of transcriptional bursting.

In comparison, ge was in the range of 70% (g2e between 0.1 and 1.2)

for a majority of clones. Among the few clones dominated by extrin-

sic noise, Ctgf is known to be highly sensitive to stimulations

(Molina et al, 2013). Importantly, in both the clones and the simula-

tions (Fig 5C and Appendix Fig S5D), a high portion of the esti-

mated intrinsic noise (83% on average) was captured by the

optimal model (Fig 5C), which allows us to study how the noise

depends on transcriptional parameters (Fig 6).

Transcriptional bursting and promoter cycles constrain noise of
mammalian genes

We next investigated how the promoter cycles, in particular the

number of steps N, affect intrinsic noise g2 in our clones. Theoretical

studies of similar models (Pedraza & Paulsson, 2008; Sanchez &

Kondev, 2008; Zhang et al, 2012) showed that g2 separates as

g2 ¼ g2p þ g2c , where g2p ¼ 1=\m[ is the Poisson noise (p refers to

Poisson), which sets a lower bound on intrinsic noise, and g2c
(c refers to “cycle”) corresponds to the promoter noise. In the

clones, g2 was larger than g2p (reflected by the large Fano factors

F ¼ r2=\m[ ¼ 1þ g2c=g
2
p) and exhibited only moderate variation

(0.34–1.73) over a 100-fold range in mRNA expression (Fig 6A).

This follows simply from the property that the burst size b (from 1

to 80) explains most of the variation in expression (Appendix Fig

S6A and B). Indeed, since b and T are largely independent parame-

ters (Fig 3B), the noise in the promoter cycle model is conveniently

expressed as g2 ¼ fð1b þ CÞ with g2p ¼ f=b; and g2c ¼ f �C. Here, the

fraction f = (sa + T)/sm is the duration of the promoter cycle, or

intervals between bursts, normalized by the lifetime of the transcript

sm, and sets the scale of the intrinsic noise. The coefficient C, origi-

nating from promoter fluctuations, approaches zero in a constitutive

N
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Figure 6. Relationship between mRNA noise and promoter cycles.

A Intrinsic noise g2 (modeled noise) for the different clones in function of the
mean mRNA expression <m > (number of copies). The Poisson component
g2p ¼ 1=\m[ sets a lower bound on intrinsic noise (lower dashed line).
Thus, the promoter noise g2c dominates for most genes, as reflected by Fano
factors F ¼ 1þ g2c=g

2
p much larger than 2 (thin dotted lines).

B Promoter noise g2c ¼ f �C is bounded between f = (sa + T)/sm and f/2.
C The promoter-cycle noise coefficient C decreases as the number of inactive

states N increase and is well approximated by CðNÞ ¼ 1
2 ð1þ 1

NÞ, the minimal
value for fixed N when sa � T (bursting).

Data information: The error bars stand for the 5th and 95th percentiles of the
posterior distribution.
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regime (sa ≫ T) and is always between 1/2 (large N) and 1 (N = 1)

in a bursting regime (sa � T). This shows that g2c exceeds g2p for

b > 2, which is the case for most clones (Fig 3). Thus, fluctuations

of the promoter cycle dominated intrinsic noise from a single allele

for most promoters.

Since C is constrained, f explains most of the variance in

promoter noise (Fig 6B). However, C can decrease in two ways,

either by changing from a bursting to a constitutive regime (increas-

ing sa), or by increasing N. Although C is a complicated function in

general (Appendix Supplementary Methods), it reduces to

CðNÞ ¼ 1
2 1þ 1

N

� �
in a bursting regime (sa � T), when the inactive

sub-steps have equal durations (si = T/N) and T � sm. This limit

links with noise g2T in the cycle duration C ¼ 1
2 ð1þ g2TÞ (Pedraza &

Paulsson, 2008) because g2T ¼ 1=N for Gamma distributions. More-

over, this limit coincides with the lowest possible value for a given

N (optimal noise reduction). It turns out that the different clones are

well approximated by C(N) (Fig 6C), with a few clones slightly devi-

ating from the approximation (the ones above the dash line), mainly

due to asymmetric partition of the silent period, which is suboptimal

in terms of noise reduction (Zhang et al, 2012). Overall, the struc-

ture of the cycle reduced intrinsic noise in mRNA levels by up to

30% (Appendix Fig S7), which occurred for genes strongly domi-

nated by promoter noise and with large N.

Thus, we showed that since mammalian genes are typically tran-

scribed as short and large bursts, the intrinsic mRNA noise was on

the order of the normalized promoter cycle duration.

TATA box promoters exhibit larger intrinsic mRNA noise
genome-wide

The grouping of promoters according to N (Figs 3 and 4) predicts

that TATA box promoters in general should exhibit increased

intrinsic mRNA noise due to a simplified promoter cycle (N = 1).

In yeast, TATA box promoters are known to exhibit increased noise

(Blake et al, 2006; Newman et al, 2006; Hornung et al, 2012),

presumably due to distinct nucleosome organization (Raser &

O’Shea, 2004; Field et al, 2008; Tirosh & Barkai, 2008). Although

similar mechanisms should be expected in higher eukaryotes, the

role of TATA boxes on mRNA noise in mammals is less studied

(Miller-Jensen et al, 2013). To test our prediction, we analyzed

single-cell RNA-seq data from mouse embryonic stem cells (mESCs)

(Grün et al, 2014) generated with unique molecular identifiers to

reliably count mRNAs. An important parameter required for noise

analysis in RNA-seq is the recovery rate q (sensitivity), estimated

to be around 10%. Indeed, at low counts, non-biological sampling

noise (showing Poisson statistics) dominated in both the split

controls and the single cells (Fig 7A and B), whereas for large

counts, the noise plateau was higher in the cells, reflecting addi-

tional promoter and extrinsic noise compared to the controls.

However, despite the artificially large noise range (two logs) due to

low sensitivity, TATA box-containing promoters (Dreos et al, 2013)

as a group showed subtle but increased noise in the cells, which

was most visible in the range of 1–100 measured mRNA counts

(Fig 7B), and absent in the control (Fig 7A). Correcting for the

sampling noise showed that TATA promoters, on average, exhib-

ited excess in biological noise of 0.1–0.2 in both 2i and serum

conditions, across a significant range in expression (Fig 7C and D).

For the control, we recovered noise that scaled inversely with the

mean, although with a slightly higher magnitude than the expected

Poisson noise arising from the re-splitting of mRNAs from pooled

cells. A parsimonious explanation is that the higher intrinsic noise

in the TATA promoters reflects the promoter switching kinetics. Of

note, comparing genes on the X (one allele) with genes on autosomal

chromosomes (two alleles), where the effective promoter noise from

the two alleles is predicted to be lower, showed a similar difference

(Appendix Fig S8A and B). Quantitatively, the promoter cycle model

predicts that in bulk (taking an average f), the difference in promoter

noise between TATA (N = 1, C = 1) and TATA-less promoters

(N large, C ~ 1/2) amounts to f/4 (due to the two alleles). The same

quantitative difference is predicted for genes on the autosomal vs.

X chromosomes (assuming C ~ 1/2 for endogenous genes). Gene-

specific values of f are not known but estimated between 0.01 and

0.5, based on promoter cycle times in the range of 1–2 h (Fig 3) and

half-lives in the range of 1–20 h (Sharova et al, 2009), which is at

least consistent with the observed difference of 0.1–0.2. Notably,

transcript half-lives are not significantly different for TATA and

TATA-less promoters (Sharova et al, 2009) (not shown). The

common noise plateau for TATA and TATA-less promoters (Fig 7C

and D), which is also observed for X vs. autosomal genes (Appendix

Fig S8A and B), suggested that the promoter noise is negligible at

high expression. A plausible explanation could be that C goes to zero

at high expression due to constitutive expression (Sanchez et al,

2013). This would imply that extrinsic noise for highly expressed

genes in the mESCs averages about 0.25 (CV = 50%) in the 2i condi-

tions and 0.35 (CV = 60%) in serum, consistent with the higher

phenotypic heterogeneity in serum. Incidentally, these values were

of the same order as the extrinsic noise estimated for our 3T3 clones

(Fig 5) using a radically different approach.

Discussion

How mammalian transcription in single cells performs complex

regulatory tasks reliably given the nano-scale machineries involved

is tantalizing. Recently, real-time monitoring of transcriptional fluc-

tuations provided new dynamical insights into the underlying

molecular processes, while also revealing physical limits on the

expected precision. From time-lapse transcriptional recordings of

endogenous and synthetic mouse promoters, we identified minimal

models of promoter cycles, estimated the durations of rate-limiting

steps underlying refractory periods, and studied the consequences

on expression noise.

Modeling promoter cycles

The recent possibility to quantitatively model transcriptional record-

ings in single mammalian cells revealed that transcriptional kinetics

bears the signature of refractory promoter states (Harper et al, 2011;

Suter et al, 2011; Molina et al, 2013). Here, we developed a model

selection approach on a class of promoter cycles to further charac-

terize the number and durations of rate-limiting steps underlying

the refractory state. As these properties are essentially reflected in

the distributions of silent transcriptional periods, time-lapse

approaches (destabilized reporters, MS2-GFP) offer significant

advantages over static methods (FACS, RNA-FISH, RNA-seq)

(Stinchcombe et al, 2012), since both the size and temporal
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correlations of the transcriptional fluctuations are available. Indeed,

explicitly modeling bioluminescence time traces enabled us to

resolve the kinetic structure of the cycle on relatively short time-

scales compared to the sampling time (Fig 2D). While the biolumi-

nescence approach offers several advantages (e.g. sensitivity and

long term recordings), one limitation is that promoters kinetics

are inferred from protein time series, which entails additional

assumptions compared to more direct methods such as MS2-GFP

(Yunger et al, 2010; Larson et al, 2013). Namely, to perform the

inference, we assumed minimal models of gene expression, in

which the promoter dynamics is described by transitions between

discrete, transcriptionally active and inactive, promoter states. In

addition, the promoter dynamics follow a promoter progression

(Larson, 2011; Coulon et al, 2013). In this scenario, interactions of

transcriptional regulators and various cofactors with DNA induce a

temporally ordered sequence of modifications in the chromatin

template, eventually leading to a transcriptionally active state,

whose lifetime is finite. The resulting promoter reaction scheme

consistent with sequential and time-ordered transitions takes the

form of an irreversible cycle (Zhang et al, 2012). Moreover, down-

stream of transcription, we did not explicitly model fast processes,

such as mRNA and protein maturation, nuclear and cytoplasmic

transport. Such a coarse-grained description remains valid as long as

the omitted processes are rapid compared to the explicitly modeled

reactions. Although identifying which processes may be rate-limiting

is a priori challenging (Pedraza & Paulsson, 2008), confronting these

models with real data using the developed framework provides a

constructive approach to eventually refine the models.
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Nature of the rate-limiting steps

Since the timescales of the rate-limiting steps involved in promoter

cycles were on the order of ten minutes, these do not likely reflect

transcription factor–DNA interactions. Indeed, such dynamics in

mammals is often faster, with mean search and residence times in

the range of a few seconds to one minute (Mazza et al, 2012;

Gebhardt et al, 2013; Izeddin et al, 2014). On the other hand,

histones can carry longer lasting metastable modifications, which

could provide a basis for a slow multistep process (Coulon et al,

2013; Voss & Hager, 2013). Consistent with the implication of histone

modifications, Bmal1 treated with TSA exhibited a reduced number

of steps and shorter silent period. The distinct promoter dynamics

shown by the two groups of clones might reflect promoter-specific

chromatin properties, such as nucleosome organization, and related

changes in chromatin conformation required for initiation (Sanchez

et al, 2013). In mammals, TATA box promoters have precisely

defined TSSs usually covered by a nucleosome (Lenhard et al, 2012).

Competition between the nucleosome and the TATA-binding protein

could function as a simple switch (Hapala & Trifonov, 2013; Hieb

et al, 2014), as shown in yeast (Field et al, 2008; Tirosh & Barkai,

2008), and might explain the single rate-limiting step. In general,

nucleosomes at active yeast and mammalian promoters undergo

frequent turnover (Raser & O’Shea, 2004; Dion et al, 2007; Huang

et al, 2013; Kraushaar et al, 2013) with timescales of 25 min, which

is compatible with the inferred steps. Refractory periods in mamma-

lian gene reactivation imply non-equilibrium dynamics (Tu, 2008)

and energy consumption, consistent with sequentially regulated and

ATP-dependent chromatin transitions (Coulon et al, 2013). In princi-

ple, this energy consumption could be estimated directly from the

kinetic structure of promoter cycles (Schnakenberg, 1976), provided

that the cycle incorporates both forward and backward reactions.

This might, however, be difficult in practice using our approach due

to additional parameters in the models.

mRNA and protein noise

A central question in stochastic gene expression is to understand

how the underlying molecular events influence the coefficient of

variation (or noise), either across cells or over time (Thattai & van

Oudenaarden, 2001; Paulsson, 2004). In particular, how noise

depends on the mean mRNA and protein levels has attracted signifi-

cant attention (reviewed in Sanchez et al, 2013). In general, noise

decreases with increasing expression, but how exactly it scales with

expression, and over which range, is to a large extent encoded in

the way that expression levels are changed. This can occur at many

levels, for example by changing either the burst frequencies or burst

sizes. Interestingly, it appears that different organisms use different

strategies. Namely, in yeast, burst sizes seem fairly constrained and

mostly independent of the mean expression (Hornung et al, 2012;

Carey et al, 2013; Sanchez & Golding, 2013), which explains why

expression noise is inversely proportional to the mean expression

over most of the range (Bar-Even et al, 2006; Newman et al, 2006).

By contrast, in mammals, it was shown for the HIV promoter inte-

grated at different genomic loci in human cells that increased

expression reflects increased burst frequency up to intermediate

levels, followed by an increase in burst sizes at high levels

(Dar et al, 2012). Using our reporters, we showed that burst sizes in

mouse are highly correlated with expression (Suter et al, 2011; Dar

et al, 2012), which we consolidate in this study (Appendix Fig S6A).

This implies that noise in mammalian genes does not scale inversely

with expression over the entire range, but in fact flattens out starting

at relatively low expression, namely above about 10 mRNA copies,

as found both from the time-lapse analysis (Fig 6A) and from RNA-

seq (Fig 7C and D). While such a plateau could also reflect extrinsic

noise (Bar-Even et al, 2006), we here argued that this residual noise

(CVs between 0.5 and 1.3) originates from promoter fluctuations.

Moreover, it depends on the kinetics of the promoter cycle and life-

time of transcripts, but not on the transcription rate, and is reduced

by two-fold at most when the number of promoter steps is high

(Fig 6C). Interestingly, we found that mammalian TATA box genes

exhibited a single rate-limiting step in promoter reactivation, and

thus higher promoter noise than TATA-less genes by virtue of the

promoter coefficient C. A similar difference in noise between

promoter architectures has been extensively studied in yeast (New-

man et al, 2006; Hornung et al, 2012; Sharon et al, 2014), although

there, the increased noise in TATA-containing genes has been attrib-

uted to increased burst size rather than via the coefficient C reflect-

ing promoter switching dynamics.

Both the mRNA and protein in our single allele reporters were

destabilized; however, we can estimate how typical endogenous

half-lives (Sharova et al, 2009; Schwanhäusser et al, 2011) would

affect noise. Although the longer endogenous half-lives lead to

higher expression and thereby buffer mRNA noise by virtue of the

factor f, the fraction of intrinsic noise from the promoter (equivalent

to the Fano factor minus one) would be nearly insensitive. More-

over, the reduction of noise from a larger number of rate-limiting

steps in the promoter cycle would be close to optimal for long-lived

transcripts (Appendix Supplementary Methods). Also, for endoge-

nous genes on autosomal chromosomes, the presence of two uncor-

related alleles (Hocine et al, 2013; Deng et al, 2014) would reduce

the promoter noise by another factor of two (Raj et al, 2006).

Finally, since mRNA noise is propagated almost linearly to the

proteins for realistic parameters (Appendix Fig S9A) (Pedraza &

Paulsson, 2008), the noise reduction by the promoter cycles trans-

poses to the protein level (Appendix Fig S9B).

Signatures of promoter fluctuations in single-cell RNA-seq

Our time-lapse analysis predicted that TATA box promoters would

exhibit higher promoter noise due to their low number of promoter

steps. To test this genome-wide, we analyzed single-cell RNA-seq in

mESCs. Surprisingly, despite a number of confounding factors such

as technical variability in the library preparations, sampling bias,

and extrinsic noise, which could have masked the promoter effects,

we found that RNA-seq experiments (Grün et al, 2014) revealed

signatures that were consistent with intrinsic biological noise. In

particular, the presence of TATA box promoters or gene dosage

(Halpern et al, 2015) affected promoter noise, with effect sizes that

were in the expected range (Fig 7). This may explain how tissue-

specific mammalian genes, which are often linked with TATA boxes

(Lenhard et al, 2012), showed increased mRNA noise (Padovan-

Merhar et al, 2015). While the interpretation in terms of intrinsic

noise is the most parsimonious, we cannot entirely exclude that

differential susceptibility of TATA box genes to extrinsic fluctuations

may also contribute. While increased noisiness in TATA box
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promoter has been widely studied in synthetic and endogenous

genes in yeast (Sanchez et al, 2013), our results generalize this to

mammalian genes, identifies its origin in the promoter noise, and

provides a simple explanation in the structure of the promoter cycle.

Conclusion

We combined time-lapse transcriptional measurement in single

mammalian genes with mathematical modeling to estimate the

durations of rate-limiting promoter steps underlying promoter

refractoriness. This analysis further indicated that the transcrip-

tional and noise properties of the promoters are encoded primarily

in cis, with promoter architecture playing a key role in shaping gene

expression noise.

Materials and Methods

Single-cell time-lapse data

Single-cell time-lapse recordings of single-copy destabilized luci-

ferase reporters in NIH3T3 fibroblasts were taken from a previous

set of stable clones (Suter et al, 2011), complemented by two newly

generated H1 clones inserted in new FRT sites (Table EV1 shows

the full list of analyzed promoters, measured translation, and degra-

dation rates). For the new H1 clone generation and microscopy

settings, see Appendix Supplementary Methods. All single-cell time

traces analyzed in this study are provided in Dataset EV1.

Likelihood calculation

To perform inference, we computed the exact likelihood that biolu-

minescence time traces were generated by a stochastic gene

expression model describing the promoter progression toward acti-

vation, followed by synthesis and degradation of mRNAs and

proteins. The promoter cycle constituted of N sequential inactive

states and a unique active state in which mRNA transcription may

occur. The likelihood of a single luminescent time trace of length

Lþ 1; D ¼ ðs0; s1; . . .; sLÞ, given N inactive states and kinetic

parameters hN, is

LðDjN; hNÞ ¼
X

fKg
YL

ði¼1Þ
PeðsijpiÞPtðpimigijpi�1mi�1gi�1;N; hNÞ

P0ðs0p0m0g0Þ;

where Pe(s|p) stands for the probability to measure s gray levels

given p protein copies and follows from our previous microscope

calibration (Suter et al, 2011). The transition probabilities Pt(pmg|

p’m’g’,N,hN) are derived from the master equation, where the

discrete state pmg stands for the protein (p), mRNA (m) copy

numbers, and the state of the promoter g. P0(s0p0m0g0) corre-

sponds to the stationary distribution, and the sum runs over all

possible state trajectories Λ = {pmg}.

Model selection and parameters estimation

Using the likelihood, the optimal model was inferred from the joint

posterior distribution P(N,hN|D),

PðN; hN jDÞ ¼ LðDjN; hNÞPðN; hNÞP
N

R LðDjN; hNÞPðN; hNÞdhN ;

where P(N,hN) is the prior distribution and LðDjN; hNÞ ¼QNcell

j¼1 LðDjjN; hNÞ the likelihood for an ensemble of cells. To keep

the number of parameters manageable, we used global kinetic

parameters for all cells in one clone. We sampled P(N,hN|D) using

a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm

(Green & Hastie, 2009) that extends standard Metropolis–Hastings

sampling to parameter spaces of varying dimension. To sample the

nested class of promoter cycles, we designed trans-model moves

by either removing the shortest step or randomly adding a short

step. At each iteration, new parameters are proposed according to

trans-model or within-model moves, and the chain is updated

following an acceptance–rejection scheme characteristic of the

MCMC approach, which guaranteed detailed balance. The optimal

model is selected from the marginal distribution P(N|D), and the

kinetic parameters are estimated from the marginal P(h|D).

Deconvolution of time traces

From the optimal model and kinetic parameters, the bioluminescent

time traces are deconvolved using Gibbs sampling (Gelfand & Smith,

1990) to reconstruct the mRNAs and gene activity time traces. This

approach reconstructs probable state trajectories Λ given the data D,

using the optimal model as a prior P(Λ|N, hN). Thus, we sampled

from P(Λ|D, N, hN). given by

PðKjD;N; hNÞ ¼ PðDjK;N; hNÞPðKjN; hNÞ
LðDjN; hNÞ �

P
fKg PðDjK;N; hNÞPðKjN; hNÞ :

The empirical distribution of silent periods and the mRNA

steady-state distribution can be estimated directly from P(Λ|D,N,
hN), while the modeled distributions can be analytically calculated

from the promoter cycle model P(Λ|N,hN). All details on the model-

ing are given in Appendix Supplementary Methods.

Transcriptional noise

The total mRNA noise is defined as g2m ¼ r2m=\m[ 2. In a static

cellular environment (static heterogeneity), the total variance can

be split as follows:

r2m ¼ \r2mji [|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r2

þr2\mji[|fflfflfflffl{zfflfflfflffl}
r2e

;

where \r2mji [ is the average variance over the cell population,

and r2\mji[ is the variance of the mean expression <m|i> in cell i

across the population. r2e defines the extrinsic variance, while the

remaining r2 approximates the intrinsic variance of an idealized

cell with parameters close to the population mean (Appendix Fig

S5, Appendix Supplementary Methods). Both terms can be readily

estimated by Gibbs sampling, allowing separation of transcriptional

noise g2m ¼ g2 þ g2e .
The intrinsic noise can be further separated as g2 ¼ g2p þ g2c ,

where g2p ¼ 1=\m[ corresponds to the Poisson fluctuations from

the stochastic production and degradation of mRNAs, and g2c stands

for the fluctuations in the promoter cycle
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g2c ¼
ðT � smÞ

QN
i¼1ðsm þ siÞ þ sNþ1

m

ðsa þ smÞ
QN

i¼1ðsm þ siÞ � sNþ1
m

;

with N the number of inactive states, sa ¼ k�1
1 the average active

time, si ¼ k�1
iþ1 the average time spent in the ith inactive state (with

kN+1 � ka), T ¼ P
si the total silent period, and sm ¼ c�1

m the

mRNA lifetime.

Noise analysis of single-cell RNA-seq

Considering that the recovery rate q varies from cell to cell, the

expected population noise g2n on the counted mRNAs (n) relates to

the total biological noise g2m as g2n ¼ ð 1
\q[ � g2q � 1Þ 1

\m[ þ
ðg2q þ 1Þg2m þ g2q, with <q> and g2q the mean and noise (CV squared)

on q, respectively. For low q, the first term (non-biological sampling

noise) typically dominates over the biological noise (Fig 7A and B).

Expressed in function of the number of counts and taking

g2m ¼ 1
\m[ þ g2c

2 þ g2e (the 2 arise from the two alleles, which does

not reduce extrinsic noise), the sampling and Poisson terms

combine, and we find g2n ¼ 1
\n[ þ ð1þ g2qÞðg

2
c

2 þ g2eÞ þ g2q for the

single cells, and g2n ¼ 1
\n[ þ g2q for the splitting controls. Knowing

<q> and g2q (Grün et al, 2014), these expression allow us to extract

the expected biological noise (Fig 7C and D, Appendix Supplemen-

tary Methods). MATLAB scripts to reproduce Fig 7 are provided as

Code EV1.

Expanded View for this article is available online:

http://msb.embopress.org

Acknowledgements
We thank David Suter for insightful discussions, Thierry Schupbach for help on

code optimization, and Jake Yeung for proofreading. This work was supported

by Swiss National Science Foundation Grant 31-130714 and European

Research Council Grant ERC-2010-StG-260667, and by the Ecole Polytechnique

de Lausanne. F.N. also received funding from StoNets, a grant from the Swiss

SystemsX.ch (www.systemsx.ch) initiative evaluated by the Swiss National

Science Foundation (SNSF). Computations were performed at Vital-IT

(http://www.vital-it.ch).

Author contributions
BZ, NM, and FN designed the study, performed analysis, and wrote the manu-

script. DN performed experiments.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Abranches E, Guedes AMV, Moravec M, Maamar H, Svoboda P, Raj A,

Henrique D (2014) Stochastic NANOG fluctuations allow mouse embryonic

stem cells to explore pluripotency. Development 141: 2770 – 2779

Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg

A, Itzkovitz S (2015) Bursty gene expression in the intact Mammalian liver.

Mol Cell 58: 147 – 156

Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, Barkai N

(2006) Noise in protein expression scales with natural protein abundance.

Nat Genet 38: 636 – 643

Blake WJ, Kærn M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene

expression. Nature 422: 633 – 637

Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR,

Walt DR, Collins JJ (2006) Phenotypic consequences of promoter-mediated

transcriptional noise. Mol Cell 24: 853 – 865

Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M (2014)

Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts

in living Drosophila embryos. Proc Natl Acad Sci USA 111: 10598 – 10603

Carey LB, van Dijk D, Sloot PM, Kaandorp JA, Segal E (2013) Promoter

sequence determines the relationship between expression level and noise.

PLoS Biol 11: e1001528

Cesbron F, Oehler M, Ha N, Sancar G, Brunner M (2015) Transcriptional

refractoriness is dependent on core promoter architecture. Nat Commun 6:

6753

Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008)

Transcriptome-wide noise controls lineage choice in mammalian

progenitor cells. Nature 453: 544 – 547

Chassot A-A, Lossaint G, Turchi L, Meneguzzi G, Fisher D, Ponzio G, Dulic V

(2008) Confluence-induced cell cycle exit involves pre-mitotic CDK

inhibition by p27(Kip1) and cyclin D1 downregulation. Cell Cycle

(Georgetown, Tex) 7: 2038 – 2046

Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a

developmental gene. Curr Biol 16: 1018 – 1025

Coulon A, Chow CC, Singer RH, Larson DR (2013) Eukaryotic transcriptional

dynamics: from single molecules to cell populations. Nat Rev Genet 14:

572 – 584

Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM, Cox CD, Simpson

ML, Weinberger LS (2012) Transcriptional burst frequency and burst size

are equally modulated across the human genome. Proc Natl Acad Sci USA

109: 17454 – 17459

Deng Q, Ramskold D, Reinius B, Sandberg R (2014) Single-cell RNA-seq

reveals dynamic, random monoallelic gene expression in mammalian cells.

Science 343: 193 – 196

Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007)

Dynamics of replication-independent histone turnover in budding yeast.

Science 315: 1405 – 1408

Dreos R, Ambrosini G, Cavin Périer R, Bucher P (2013) EPD and EPDnew,

high-quality promoter resources in the next-generation sequencing era.

Nucleic Acids Res 41: D157 –D164

Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression

in a single cell. Science 297: 1183 – 1186

Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y,

Widom J, Segal E (2008) Distinct modes of regulation by chromatin

encoded through nucleosome positioning signals. PLoS Comput Biol 4:

e1000216

Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T,

Xie XS (2013) Single-molecule imaging of transcription factor binding to

DNA in live mammalian cells. Nat Methods 10: 421 – 426

Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating

marginal densities. J Am Stat Assoc 85: 398 – 409

Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene

activity in individual bacteria. Cell 123: 1025 – 1036

Green PJ, Hastie DI (2009) Reversible jump MCMC. Genetics 155: 1391 – 1403

Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for

single-cell transcriptomics. Nat Methods 11: 637 – 640

Hager GL, Elbi C, Johnson TA, Voss T, Nagaich AK, Schiltz RL, Qiu Y, John S

(2006) Chromatin dynamics and the evolution of alternate promoter

states. Chromosome Res 14: 107 – 116

ª 2015 The Authors Molecular Systems Biology 11: 823 | 2015

Benjamin Zoller et al Promoter cycles of mammalian genes Molecular Systems Biology

13

http://www.systemsx.ch
http://www.vital-it.ch


Hapala J, Trifonov EN (2013) Nucleosomal TATA-switch: competing

orientations of TATA on the nucleosome. Gene 527: 339 – 343

Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L,

Spiller DG, Mullins JJ, Rand DA, Davis JRE, White MRH (2011) Dynamic

analysis of stochastic transcription cycles. PLoS Biol 9: e1000607

Hieb AR, Gansen A, Böhm V, Langowski J (2014) The conformational state of

the nucleosome entry-exit site modulates TATA box-specific TBP binding.

Nucleic Acids Res 42: 7561 – 7576

Hilfinger A, Paulsson J (2011) Separating intrinsic from extrinsic fluctuations

in dynamic biological systems. Proc Natl Acad Sci USA 108: 12167 – 12172

Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-

molecule analysis of gene expression using two-color RNA labeling in live

yeast. Nat Methods 10: 119 – 121

Hornung G, Bar-Ziv R, Rosin D, Tokuriki N, Tawfik DS, Oren M, Barkai N

(2012) Noise-mean relationship in mutated promoters. Genome Res 22:

2409 – 2417

Huang C, Zhang Z, Xu M, Li Y, Li Z, Ma Y, Cai T, Zhu B (2013) H3.3-H4

tetramer splitting events feature cell-type specific enhancers. PLoS Genet

9: e1003558

Izeddin I, Recamier V, Bosanac L, Cisse II, Boudarene L, Dugast-Darzacq C,

Proux F, Benichou O, Voituriez R, Bensaude O, Dahan M, Darzacq X (2014)

Single-molecule tracking in live cells reveals distinct target-search

strategies of transcription factors in the nucleus. eLife 3: e02230

Jonkers I, Kwak H, Lis JT (2014) Genome-wide dynamics of Pol II elongation

and its interplay with promoter proximal pausing, chromatin, and exons.

eLife 3: e02407 .

Kraushaar DC, Jin W, Maunakea A, Abraham B, Ha M, Zhao K (2013) Genome-

wide incorporation dynamics reveal distinct categories of turnover for the

histone variant H3.3. Genome Biol 14: R121

Larson DR (2011) What do expression dynamics tell us about the mechanism

of transcription? Curr Opin Genet Dev 21: 591 – 599

Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH (2013) Direct

observation of frequency modulated transcription in single cells using

light activation. eLife 2: e00750

Lenhard B, Sandelin A, Carninci P (2012) Regulatory elements: metazoan

promoters: emerging characteristics and insights into transcriptional

regulation. Nat Rev Genet 13: 233 – 245

Little SC, Tikhonov M, Gregor T (2013) Precise developmental gene expression

arises from globally stochastic transcriptional activity. Cell 154: 789 – 800

Mazza D, Abernathy A, Golob N, Morisaki T, McNally JG (2012) A benchmark

for chromatin binding measurements in live cells. Nucleic Acids Res

40: e119

Métivier R, Reid G, Gannon F (2006) Transcription in four dimensions:

nuclear receptor-directed initiation of gene expression. EMBO Rep 7:

161 – 167

Miller-Jensen K, Skupsky R, Shah PS, Arkin AP, Schaffer DV (2013) Genetic

selection for context-dependent stochastic phenotypes: Sp1 and TATA

mutations increase phenotypic noise in HIV-1 gene expression. PLoS

Comput Biol 9: e1003135

Molina N, Suter DM, Cannavo R, Zoller B, Gotic I, Naef F (2013) Stimulus-

induced modulation of transcriptional bursting in a single mammalian

gene. Proc Natl Acad Sci USA 110: 20563 – 20568

Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL,

Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals

the architecture of biological noise. Nature 441: 840 – 846

Ochiai H, Sugawara T, Sakuma T, Yamamoto T (2014) Stochastic promoter

activation affects Nanog expression variability in mouse embryonic stem

cells. Sci Rep 4: 7125

Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)

Regulation of noise in the expression of a single gene. Nat Genet 31:

69 – 73

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu

AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells

compensate for differences in cellular volume and DNA copy number

through independent global transcriptional mechanisms. Mol Cell 58:

339 – 352

Paulsson J (2004) Summing up the noise in gene networks. Nature 427:

415 – 418

Peccoud J, Ycart B (1995) Markovian modeling of gene-product synthesis.

Theor Popul Biol 48: 222 – 234

Pedraza JM, Paulsson J (2008) Effects of molecular memory and bursting on

fluctuations in gene expression. Science 319: 339 – 343

Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA

synthesis in mammalian cells. PLoS Biol 4: e309

Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene

expression and its consequences. Cell 135: 216 – 226

Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene

expression. Science 304: 1811 – 1814

Sanchez A, Kondev J (2008) Transcriptional control of noise in gene

expression. Proc Natl Acad Sci USA 105: 5081 – 5086

Sanchez A, Choubey S, Kondev J (2013) Regulation of noise in gene

expression. Annu Rev Biophys 42: 469 –491

Sanchez A, Golding I (2013) Genetic determinants and cellular constraints in

noisy gene expression. Science 342: 1188 – 1193

Schnakenberg J (1976) Network theory of microscopic and macroscopic

behavior of master equation systems. Rev Mod Phys 48: 571

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W,

Selbach M (2011) Global quantification of mammalian gene expression

control. Nature 473: 337 – 342

Senecal A, Munsky B, Proux F, Ly N, Braye FE, Zimmer C, Mueller F, Darzacq

X (2014) Transcription factors modulate c-Fos transcriptional bursts. Cell

Rep 8: 75 – 83

Sharon E, van Dijk D, Kalma Y, Keren L, Manor O, Yakhini Z, Segal E (2014)

Probing the effect of promoters on noise in gene expression using

thousands of designed sequences. Genome Res 24: 1698 – 1706

Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS (2009) Database

for mRNA half-life of 19 977 genes obtained by DNA microarray analysis

of pluripotent and differentiating mouse embryonic stem cells. DNA Res

16: 45 – 58

Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata-

Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG, Kimura H (2014)

Regulation of RNA polymerase II activation by histone acetylation in

single living cells. Nature 516: 272 – 275

Stinchcombe A, Peskin C, Tranchina D (2012) Population density approach for

discrete mRNA distributions in generalized switching models for

stochastic gene expression. Phys Rev E 85: 061919

Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011)

Mammalian genes are transcribed with widely different bursting kinetics.

Science 332: 472 –474

Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions

to stochasticity in gene expression. Proc Natl Acad Sci USA 99:

12795 – 12800

Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory

networks. Proc Natl Acad Sci USA 98: 8614 – 8619

Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter

nucleosomes. Genome Res 18: 1084 – 1091

Molecular Systems Biology 11: 823 | 2015 ª 2015 The Authors

Molecular Systems Biology Promoter cycles of mammalian genes Benjamin Zoller et al

14



Tu Y (2008) The nonequilibrium mechanism for ultrasensitivity in a biological

switch: sensing by Maxwell’s demons. Proc Natl Acad Sci USA 105:

11737 – 11741

Voss TC, Hager GL (2013) Dynamic regulation of transcriptional states by

chromatin and transcription factors. Nat Rev Genet 15: 69 – 81

Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y (2010) Single-allele analysis

of transcription kinetics in living mammalian cells. Nat Methods 7:

631 – 633

Zenklusen D, Larson DR, Singer RH (2008) Single-RNA counting reveals

alternative modes of gene expression in yeast. Nature Structural & #38.

Mol Biol 15: 1263 – 1271

Zhang J, Chen L, Zhou T (2012) Analytical distribution and tunability of noise

in a model of promoter progress. Biophys J 102: 1247 – 1257

Zopf CJ, Quinn K, Zeidman J, Maheshri N (2013) Cell-cycle dependence of

transcription dominates noise in gene expression. PLoS Comput Biol 9:

e1003161

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

ª 2015 The Authors Molecular Systems Biology 11: 823 | 2015

Benjamin Zoller et al Promoter cycles of mammalian genes Molecular Systems Biology

15


