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Abstract: In this study, the reactivity of organochalcogen compounds toward a representative alkyl-
lead bond compound under light was investigated in detail. Under light irradiation, the Cy-Pb
bond of Cy6Pb2 (Cy = cyclohexyl) undergoes homolytic cleavage to generate a cyclohexyl radical
(Cy•). This radical can be successfully captured by diphenyl diselenide, which exhibits excellent
carbon-radical-capturing ability. In the case of (PhS)2 and (PhTe)2, the yields of the corresponding
cyclohexyl sulfides and tellurides were lower than that of (PhSe)2. This probably occurred due to
the low carbon-radical-capturing ability of (PhS)2 and the high photosensitivity of the cyclohexyl-
tellurium bond.

Keywords: diaryl dichalcogenides; hexacyclohexyldilead; photoirradiation; homolytic substitution

1. Introduction

Organochalcogen compounds are widely used as functional materials and phar-
maceuticals [1,2]. These functional molecules are mainly synthesized using ionic and
metal-assisted reactions [3–17]. To develop new functional molecules that will support
future society, conventional synthetic methods alone are insufficient. Therefore, the de-
velopment of innovative molecular transformation methods based on the elucidation of
unexplored elemental properties is essential. By focusing on the radical reaction proper-
ties of organochalcogen compounds, we successfully developed a series of new addition
reactions based on radical mechanisms [18–24]. These reactions can be induced by light
irradiation and exhibit high functional group selectivity, which is a characteristic of radical
reactions. During the course of this study, we found that selenium and tellurium com-
pounds have excellent carbon-radical-trapping abilities. This observation prompted us
to investigate the radical reactions of heavier elements in groups 14 and 15. For instance,
triarylbismuthine (Ar3Bi) can generate aryl radicals upon photoirradiation. Moreover, we
conveniently synthesized aromatic monoselenides by trapping the generated aryl radicals
with diselenides [25]. To further elucidate the photoreactivity of organic dichalcogenides
toward the bonds between heavier elements and alkyl carbons, we next investigated the
photoinduced reactions of organic dichalcogenides with alkyl-heavier-element compounds.
Most compounds containing heavier-element-aliphatic carbon bonds are unstable, and
those that can be isolated are limited. In this study, hexacyclohexyldilead (Cy3Pb-PbCy3)
was selected as a model compound, and its reaction with organic dichalcogenides was
investigated in detail.

Among the organic compounds containing heavier group elements, the synthetic
applications of organolead compounds have been limited due to the widespread belief
that their high toxicity causes serious harm to the environment as well as to human health.
However, lead does not exhibit intense acute toxicity. The Library of Chemical Safety
Data suggests that lead is approximately one-tenth as toxic as palladium [26]. However,
chemists should be careful of the chronic toxicity caused by these compounds. Aromatic
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lead compounds can be used as arylating agents for various organic molecules [26–28]. On
the contrary, alkyl-lead compounds are very limited, partly because they are less stable
than aromatic lead compounds. In most organolead compounds [29,30], the stable valency
of Pb is +4. Moreover, the stability of these compounds varies with the type of organic
groups. For tetraalkylleads (R4Pb), organolead compounds with secondary alkyl groups
are typically less stable than the corresponding compounds with primary alkyl groups.
This difference in stability is caused by the steric hindrance of the secondary alkyl groups.
Organolead compounds with tertiary alkyl groups have not yet been synthesized. These
isolable alkyllead compounds are generally insoluble in aqueous solvents. However, they
are relatively stable in dilute acids or bases. When dissolved in organic solvents, they
often undergo reactions involving carbon–lead bond cleavage. Tetraethyllead is usually
added to gasoline as an antiknock agent. As alkyl–lead bonds are generally weak, they
undergo homolysis upon photoirradiation or heating. Hence, the generated alkyl radicals
contribute to the antiknock effect. Hexaalkyldileads (R6Pb2), which are less common than
tetraalkylleads, generally exist in the form of liquids and are often difficult to synthesize
in the pure form. In contrast, hexacyclohexyldilead (1, Cy6Pb2) [31] is an air-stable and
nonpyrophoric solid. It was reported that 1 can be prepared by the reaction of PbCl2
with cyclohexylmagnesium bromide; moreover, 1 was found to be very sensitive to light.
However, only a few studies have discussed the reactivity of 1 under light in detail. Hence,
we selected 1 as a model compound and reported the reactions of organic dichalcogenides,
such as (PhS)2, (PhSe)2, and (PhTe)2, with hexacyclohexyldilead 1 under light.

2. Results and Discussion

Hexacyclohexyldilead (1) was synthesized by the reaction of PbCl2 with excess
amounts of cyclohexylmagnesium bromide in diethyl ether and was isolated as a pale-
yellow solid [31].

As 1 was reported to be light-sensitive, we first measured its UV–visible spectrum
(dark blue line in Figure 1). A dilute solution of 1 (0.02 M in CHCl3) exhibited absorption
in the UV and near-UV regions, with a cutoff wavelength of 365 nm. Accordingly, upon
irradiation with UV or near-UV light, 1 decomposed to generate a cyclohexyl radical.
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Figure 1. UV–visible spectra of hexacyclohexyldileads 1, (PhS)2 2a, (PhSe)2 4a, and (PhTe)2 6a (0.02 M
in CHCl3).

On the other hand, organic dichalcogenides such as (PhS)2 2a, (PhSe)2 4a, and (PhTe)2
6a exhibited absorption maxima at 250, 340, and 406 nm, respectively. Therefore, when
irradiated with light from these regions, the chalcogen-chalcogen single-bond in these
compounds underwent homolytic cleavage to generate the corresponding chalcogen-
centered radicals. In the absence of substrates, these radicals easily recombine at the rate of
diffusion control to re-form the starting dichalcogenides. In addition, the carbon-radical-
capturing abilities of (PhS)2, (PhSe)2, and (PhTe)2 were reported to be 7.6 × 104, 1.2 × 107,
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and 4.8 × 107 Mol−1s−1, respectively [32]. With these kinetic data in mind, we examined
the photoinduced reactions of 1 with diphenyl dichalcogenides such as (PhS)2 (2a), (PhSe)2
(4a), and (PhTe)2 (6a) (Table 1).

Table 1. Reaction of diphenyl dichalcogenides with hexacyclohexyldilead 1 1.
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Entry X Light
Source Solvent Temp., ◦C Time, h Yield, % 2

1 S white LED CHCl3 r.t. 24 26
2 S xenon CHCl3 r.t. 4 42
3 S dark toluene 100 12 trace

4 3 S dark toluene 100 12 13
5 Se white LED CHCl3 r.t. 24 82
6 Se blue LED CHCl3 r.t. 24 80

7 Se
high-

pressure
Hg

CHCl3 r.t. 4 71

8 Se xenon CHCl3 r.t. 4 93(87)
9 Se xenon C6H6 r.t. 4 88

10 Se xenon MeCN r.t. 4 69
11 Te white LED CHCl3 r.t. 24 37

1 Reaction conditions: [(C6H11)3Pb]2 (1; 0.05 mmol), (PhX)2 (2a (X = S), 4a (X = Se), 6a (X = Te); 0.3 mmol) and
solvent (4 mL). 2 Determined by 1H NMR spectroscopy (isolated yield indicated in parentheses). 3 Benzoyl
peroxide (0.5 equiv.) was added.

The reaction of 1 with 2a under a white LED lamp through Pyrex for 24 h afforded
cyclohexyl phenyl sulfide (3a) in 26% yield (entry 1). When a xenon lamp was used as
the light source, the yield of 3a increased (42%) after 4 h of irradiation (entry 2). Upon
heating the reaction mixture at 100 ◦C in toluene in the dark, the reaction of 1 and 2a barely
proceeded (entry 3). In the dark, the addition of benzoyl peroxide caused the formation
of 3a, but the yield was lower (entry 4). Under the same conditions as entry 1, (PhSe)2
4a reacted more efficiently with 1 to afford the corresponding selenide 5a in 82% yield
(entry 5). Using other light sources, the desired reaction proceeded efficiently to afford
5a in good yields (entries 6–8). Notably, the use of a xenon lamp successfully resulted
in an excellent yield of 5a (entry 8). Using benzene or acetonitrile as the solvent slightly
decreased the yield of 5a (entries 9–10). CHCl3 was found to be the most suitable solvent
for this reaction. When MeCN was utilized as the solvent, the yield of 5a decreased due
to the low solubility of 1 in MeCN (entry 10). The reactions of 1 with 4a afforded higher
product yields than those with 2a; this was due to the higher carbon-radical-capturing
ability of 4a (the rate constants of the SH2 reaction of alkyl radicals with 4a are known to be
much higher than those with 2a by a factor of ca. 160) [32]. The photoinduced reaction of 1
with 6a afforded the corresponding telluride 7a (entry 11). The relatively low yield of 7a
can be explained by the instability of 7a under light. As a result, the conditions described
in entry 8 were chosen as the optimized reaction conditions for trapping the cyclohexyl
radical with dichalcogenide (i.e., (PhSe)2).

Next, we examined the substrate scope for the reaction of various diaryl diselenides
(4) with 1 (Scheme 1). The reaction tolerated a wide range of electron-deficient diselenides
(4b–4g). The reaction with p-substituted diaryl diselenides (4b–4d) afforded selenides
5b–5d in moderate to excellent yields. m-Substituted diselenides 4e–4g also afforded
aryl cyclohexyl selenides 5e–5g in good yields. In contrast, o-substituted diselenides 4h
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and 4i afforded 5h and 5i, respectively, in low yields. This probably occurred due to the
steric hindrance caused by the ortho-substituents. The reactions of 1 with bifunctionalized
diselenides 4j and 4k also afforded selenides 5j and 5k, respectively, in high yields.
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Scheme 1. Substrate scope for the reaction of diaryl diselenides (4) with 1.

During the selenide synthesis, all cyclohexyl groups of 1 were used for the preparation
of aryl cyclohexyl selenide 5. This can be clearly observed from the reaction of 1 with
4b. Moreover, the presence of near-UV irradiation is the driving force of this reaction.
This reaction does not require heating at high temperatures, the use of additives, or long
reaction times.

Several mechanistic experiments were carried out to understand the reaction path-
way as shown in Scheme 2 (Equation (1)–(6)). It was reported that the homolysis of
(PhSe)2 4a occurred upon heating at 80 ◦C [33]. Hence, we examined the thermal reac-
tion between 4a and 1. Under heating conditions, cyclohexyl phenyl selenide (5a) was
formed in 32% yield (Equation (1)). In addition, 1 was stable at the temperature in the
dark (vide post). These results suggest that the thermal reaction might be initiated by the
phenylseleno-radical (Equation (1)). Moreover, the addition of a radical-trapping reagent
((2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) prevented the formation of the product
(Equation (2)). Therefore, we can conclude that the thermal reaction between 1 and 4a (Equa-
tion (1)) proceeds via a radical pathway. The thermal reaction of 1 with TEMPO suggests
that cyclohexyl radicals were not generated by 1 under heating conditions (Equation (3)).
Under light, the cyclohexyl radical generated by 1 was successfully trapped by TEMPO,
and Cy-TEMPO was formed in good yield as the sole product (Equation (4)). When TEMPO
was added to the standard reaction of 4a and 1, Cy-TEMPO was formed instead of the
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selenide adduct (Equation (5)). This result strongly suggests that the formation of aryl
cyclohexyl selenide might proceed via a radical reaction pathway. In addition, the reactions
of alkyl halides, such as cyclohexyl bromide and iodide, with diphenyl diselenide did not
produce 5a (Equation (6)).
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Scheme 2. Mechanistic experiments.

Scheme 3 describes possible pathways for the photoinduced reaction of diaryl dis-
elenide 4 with 1. Irradiation with near-UV light causes the cleavage of the Se-Se bond
of 4 and the C-Pb bond of 1, generating the arylseleno radical (ArSe•) and cyclohexyl
radical (Cy•), respectively. Most of the arylseleno radicals easily recombine with each other
to re-form (ArSe)2 at the rate of diffusion control. It is possible that ArSe• induces the
generation of Cy• from 1; however, this might not be the major reaction in this pathway to
afford Cy-SeAr. The Cy• radical undergoes an SH2 reaction with 4 to afford aryl cyclohexyl
selenide (5).
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In recent years, several photochemical C-Se bond formation reactions have been
reported [34–40]. The use of photocatalysts is one of the effective methods to achieve this
type of transformation under visible light irradiation [34,35]. Photocatalyst-free C-Se bond
formation reactions under UVA [38] or visible light [36,37,39] irradiation have also been
reported, but an oxidant (O2) or a base is often needed. The present reaction provides a
new and simple photochemical C-Se bond formation reaction without a photocatalyst or
a base.
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3. Materials and Methods
3.1. General Information

Unless otherwise stated, all starting materials were purchased from commercial
sources and used without further purification. All solvents were distilled before use.
1H NMR spectra were recorded in CDCl3 using the JEOL JNM-ECX400 (400 MHz) FT
NMR and JEOL JNM-ECS400 (400 MHz) FT NMR systems (Tokyo, Japan) with Me4Si
as the internal standard. 13C{1H} NMR spectra were recorded in CDCl3 using the JEOL
JNM-ECX400 (100 MHz) FT NMR and JEOL JNM-ECS400 (100 MHz) FT NMR systems
(Tokyo, Japan) with Me4Si as the internal standard. 19F{1H} NMR spectra were recorded
using a JEOL JNM-ECS400 (373 MHz) FT NMR system (Tokyo, Japan) in CDCl3 with CFCl3
as the internal standard. 77Se{1H} NMR spectra were recorded on the JEOL JNM-ECX400P
(76 MHz) FT NMR system (Tokyo, Japan) in CDCl3 with (PhSe)2 (463 ppm) as the exter-
nal standard. IR spectra were reported in wave numbers (cm−1). GC–MS spectra were
obtained using a Shimadzu GCMS-QP5000 instrument (Kyoto, Japan). High-performance
liquid chromatography (HPLC) (recycle GPC) was performed on a Japan Analytical In-
dustry LC-908 (Tokyo, Japan) with JAIGEL-2HH (polystyrene-based column) for isolating
the products.

3.2. Procedure for Synthesis of Hexacyclohexyldilead 1

To a solution of cyclohexylmagnesium bromide, which was prepared by the reaction
of cyclohexyl bromide (10 mmol) and magnesium (10 mmol) in diethyl ether (20 mL), PbCl2
(5 mmol) and benzene (10 mL) were added. The mixture was then stirred and refluxed at
80 ◦C for 4 h. After quenching the resulting mixture with 3 M aq. HCl (15 mL) at room
temperature, the precipitated black solid was removed by filtration. The resulting filtrate
was extracted with Et2O (5 mL × 3). Slow evaporation of the organic layers resulted in the
precipitation of pale-yellow solids. The product was collected by filtration and washed
with isohexane to afford Cy6Pb2 1 (1.22 g, 1.3 mmol, 53% yield). 1H and 13C{1H} NMR
spectra of 1 are included in the Supplementary Materials.

Hexacyclohexyldilead (1) (CAS: 6713-82-2) [41]. Yellow solid, mp >250 ◦C; 1H NMR
(400 MHz, CDCl3): δ 2.95–2.89 (m, 6H, 6 × CH); 2.44–1.32 (m, 60H, 30 × CH2); 13C{1H}
NMR (100 MHz, CDCl3): δ 34.1 (CH), 33.7 (CH2), 30.2 (CH2), 26.5 (CH2).

3.3. General Procedure for Synthesis of Diaryl Diselenides

Diselenides 4b–4k were prepared according to the literature [42,43]. To a 100 mL
three-necked flask, 30 mmol of Mg powder (0.48 g), a stirring bar, and a small piece of I2
were added. The flask was then fitted with a condenser and was charged with N2. Under
N2 atmosphere, 10 mL of anhydrous ether was added to the flask. Subsequently, a small
amount of aryl bromide was added. After initiation, the rest of the aryl bromide (20 mmol)
in anhydrous ether (10 mL) was slowly added to the reaction mixture with ice-water bath
cooling. After the preparation of the Grignard reagent, 1.6 g of selenium powder (20 mmol)
was added slowly. After stirring for 1 h, the mixture was poured into 40 mL of 2 M HCl
solution with ice. The mixture was extracted with ether (50 mL) three times, and the
combined organic layer was dehydrated using anhydrous Na2SO4. The solution was then
charged with O2 for 24 h. Distillation of the solvent afforded crude diselenide, which was
purified by column chromatography (eluent: hexane).

3.4. General Procedure for the Reaction of Diaryl Diselenides with Hexacyclohexyldilead

To a sealed Pylex glass tube was added 1 (45.6 mg, 0.05 mmol), 4 (0.3 mmol), and
CHCl3 (4 mL) under inert atmosphere. The mixture was irradiated using a xenon (500 W)
lamp from a distance of 15 cm. After 4 h, the reaction mixture was run through a short bed
of silica gel with EtOAc as the eluent. After the evaporation of the solvent, product 5 was
obtained by gel permeation chromatography (eluent: CHCl3) or preparative TLC (eluent:
EtOAc/hexane). 1H and 13C{1H} NMR spectra of isolated products 5 are included in the
Supplementary Materials.
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Cyclohexyl(phenyl)selane (5a) (CAS: 22233-91-6) [44]. Pale-yellow liquid, 62.4 mg,
87%; 1H NMR (400 MHz, CDCl3): δ 7.56–7.53 (m, 2H, 2 × CHarom); 7.28–7.25 (m, 3H,
3 × CHarom), 3.29–3.22 (m, 1H, CH), 2.04–1.20 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz,
CDCl3): δ 134.7 (CHarom), 129.3 (Carom), 128.8 (CHarom), 127.2 (CHarom), 43.2 (CH), 34.2
(CH2), 26.9 (CH2), 25.7 (CH2); MS (EI) [M]+ m/z = 240.

(4-Chlorophenyl)(cyclohexyl)selane (5b). Pale-yellow liquid, 83.9 mg, 98%; 1H NMR
(400 MHz, CDCl3): δ 7.48–7.44 (m, 2H, 2 × CHarom); 7.24–7.20 (m, 2H, 2 × CHarom),
3.25–3.18 (m, 1H, CH), 2.03–1.20 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz, CDCl3):
δ 136.1 (CHarom), 133.5 (Carom), 129.0 (CHarom), 127.4 (Carom), 43.6 (CH), 34.1 (CH2), 26.8
(CH2), 25.6 (CH2); 77Se{1H} NMR (76 MHz, CDCl3): δ 399 (br) [45]; IR (NaCl, ν/cm−1):
730, 815, 1011, 1090, 1447, 1457, 1472, 1506, 1558, 2850, 2928; HRMS (EI) m/z calcd for
C12H15ClSe [M]+: 274.0025, found: 274.0023.

Cyclohexyl(4-fluorophenyl)selane (5c). Colorless liquid, 38.7 mg, 50%; 1H NMR
(400 MHz, CDCl3): δ 7.55–7.50 (m, 2H, 2 × CHarom); 6.99–6.93 (m, 2H, 2 × CHarom), 3.20–
3.13 (m, 1H, CH), 2.01–1.19 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz, CDCl3): δ 162.6 (d,
JC-F = 247.3 Hz, Carom), 137.3 (d, JC-F = 7.7 Hz, CHarom), 123.5 (d, JC-F = 3.8 Hz, Carom), 116.0
(d, JC-F = 22.0 Hz, CHarom), 43.7 (CH), 34.1 (CH2), 26.8 (CH2), 25.7 (CH2); 19F{1H} NMR
(373 MHz, CDCl3): δ −114.5; IR (NaCl, ν/cm−1): 593, 811, 826, 1155, 1228, 1447, 1486, 1506,
1583, 2852, 2929.

Cyclohexyl(4-(trifluoromethyl)phenyl)selane (5d). Colorless liquid, 63.4 mg, 69%; 1H
NMR (400 MHz, CDCl3): δ 7.61–7.59 (m, 2H, 2 × CHarom); 7.50–7.48 (m, 2H, 2 × CHarom),
3.41–3.34 (m, 1H, CH), 2.07–1.24 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz, CDCl3): δ
135.1 (Carom), 133.5 (CHarom), 128.9 (q, JC-F = 32.6 Hz, Carom), 125.5 (q, JC-F = 2.9 Hz, CHarom),
124.2 (q, JC-F = 271.6 Hz, CF3), 43.3 (CH), 34.1 (CH2), 26.8 (CH2), 25.7 (CH2); 19F{1H} NMR
(373 MHz, CDCl3): δ −62.5; IR (NaCl, ν/cm−1): 687, 774, 821, 992, 1014, 1058, 1078, 1326,
1602, 2933; HRMS (EI) m/z calcd for C12H15ClSe [M]+: 274.0025, found: 274.0031.

(3-Chlorophenyl)(cyclohexyl)selane (5e). Colorless liquid, 46.8 mg, 57%; 1H NMR
(400 MHz, CDCl3): δ 7.53 (t, J = 1.8 Hz, 1H, CHarom); 7.40 (dt, J = 7.3, 1.4 Hz, 1H, CHarom),
7.26–7.15 (m, 2H, 2 × CHarom), 3.32–3.25 (m, 1H, CH), 2.05–1.22 (m, 10H, 5 × CH2); 13C{1H}
NMR (100 MHz, CDCl3): δ 134.3 (Carom), 133.9 (CHarom), 132.4 (CHarom), 131.1 (Carom),
129.8 (CHarom), 127.3 (CHarom), 43.6 (CH), 34.1 (CH2), 26.8 (CH2), 25.7 (CH2); IR (NaCl,
ν/cm−1): 679, 754, 776, 992, 1447, 1458, 1570, 2851, 2928.

Cyclohexyl(3-fluorophenyl)selane (5f). Colorless liquid, 71.2 mg, 92%; 1H NMR
(400 MHz, CDCl3): δ 7.30–7.17 (m, 3H, 3 × CHarom); 6.97–6.92 (m, 1H, CHarom), 3.33–3.26
(m, 1H, CH), 2.05–1.22 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz, CDCl3): δ 162.4 (d, JC-F
= 249.2 Hz, Carom), 131.3 (d, JC-F = 6.7 Hz, Carom), 130.0 (d, JC-F = 8.6 Hz, CHarom), 129.7 (d,
JC-F = 2.9 Hz, CHarom), 120.8 (d, JC-F = 21.1 Hz, CHarom), 114.1 (d, JC-F = 21.1 Hz, CHarom),
43.5 (CH), 34.1 (CH2), 26.8 (CH2), 25.7 (CH2); 19F{1H} (373 MHz, CDCl3): δ −112.6; IR
(NaCl, ν/cm−1): 777, 860, 1210, 1259, 1470, 1573, 2929.

(2-Chlorophenyl)(cyclohexyl)selane (5h). Pale-yellow liquid, 30.4 mg, 37%; 1H NMR
(400 MHz, CDCl3): δ 7.49–7.45 (m, 1H, CHarom); 7.40–7.36 (m, 1H, CHarom), 7.19–7.14
(m, 2H, 2 × CHarom), 3.48–3.41 (m, 1H, CH), 2.08–1.25 (m, 10H, 5 × CH2); 13C{1H} NMR
(100 MHz, CDCl3): δ 136.5 (Carom), 133.4 (CHarom), 130.8 (Carom), 129.6 (CHarom), 127.7
(CHarom), 127.0 (CHarom), 42.2 (CH), 33.8 (CH2), 26.8 (CH2), 25.8 (CH2); IR (NaCl, ν/cm−1):
744, 1024, 1447, 1634, 2851, 2929, 3390.

Cyclohexyl(2,3-dichlorophenyl)selane (5i). Yellow liquid, 43.4 mg, 47%; 1H NMR
(400 MHz, CDCl3): δ 7.32 (dt, J = 1.4, 7.8 Hz, 2H, 2 × CHarom), 7.09 (t, J = 7.8 Hz, 1H,
CHarom), 3.48–3.41 (m, 1H, CH), 2.08–1.25 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz,
CDCl3): δ 133.7 (Carom), 133.3 (Carom), 131.4 (Carom), 130.3 (CHarom), 128.1 (CHarom), 127.4
(CHarom), 42.6 (CH), 33.6 (CH2), 26.7 (CH2), 25.7 (CH2); IR (NaCl, ν/cm−1): 765, 1181, 1257,
1391, 1432, 1558, 2331, 2851, 2929.

(3-Chloro-4-fluorophenyl)(cyclohexyl)selane (5j). Colorless liquid, 62.2 mg, 71%; 1H
NMR (400 MHz, CDCl3): δ 7.60 (dd, J = 2.0, 7.1 Hz, 1H, CHarom); 7.42–7.39 (m, 1H, CHarom),
7.03 (t, J = 8.9 Hz, 1H, CHarom), 3.34–3.17 (m, 1H, CH), 2.02–1.20 (m, 10H, 5 × CH2); 13C{1H}
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NMR (100 MHz, CDCl3): δ 157.8 (d, JC-F = 249.2 Hz, Carom), 137.0 (CHarom), 135.1 (d, JC-F
= 6.7 Hz, CHarom), 124.6 (d, JC-F = 3.8 Hz, Carom), 121.1 (d, JC-F = 18.2 Hz, Carom), 116.9 (d,
JC-F = 21.1 Hz, CHarom), 44.1 (CH), 34.1 (CH2), 26.8 (CH2), 25.6 (CH2); 19F{1H} NMR (373
MHz, CDCl3): δ −116.7; IR (NaCl, ν/cm−1): 511, 706, 816, 1258, 1447, 1479, 2851, 2928.

Cyclohexyl(3,4-difluorophenyl)selane (5k). Colorless liquid, 74.5 mg, 90%; 1H NMR
(400 MHz, CDCl3): δ 7.39–7.34 (m, 1H, CHarom); 7.28–7.24 (m, 1H, CHarom), 7.09–7.02 (m,
1H, CHarom), 3.34–3.17 (m, 1H, CH), 2.01–1.20 (m, 10H, 5 × CH2); 13C{1H} NMR (100 MHz,
CDCl3): δ 151.3 (dd, JC-F = 12.4, 20.0 Hz, Carom), 148.7 (dd, JC-F = 12.9, 22.4 Hz, Carom),
131.4 (dd, JC-F = 3.8, 5.7 Hz, CHarom), 124.3 (t, JC-F = 4.8 Hz, Carom), 123.9 (d, JC-F = 16.2 Hz,
CHarom), 117.6 (d, JC-F = 17.2 Hz, CHarom), 44.0 (CH), 34.1 (CH2), 26.8 (CH2), 25.6 (CH2).
19F{1H} NMR (373 MHz, CDCl3): δ −112.6; IR (NaCl, ν/cm−1): 626, 769, 812, 887, 1115,
1199, 1272, 1497, 1596, 2930, 3415.

4. Conclusions

In this paper, we report the novel organic reactions of diaryl dichalcogenides with hex-
acyclohexyldilead under photoirradiation to produce aryl cyclohexyl monochalcogenides.
(PhSe)2 showed a high carbon-radical-capturing ability toward the cyclohexyl radicals
generated from heavier-element compounds. Moreover, the aryl cyclohexyl selenides were
formed in good yields. If the carbon-radical-capturing ability of (PhSe)2 was low, the
disproportionation and dimerization of cyclohexyl radicals may have proceeded, resulting
in the formation of cyclohexane, cyclohexene, and bicyclohexane. However, the high yields
of aryl cyclohexyl selenides clearly indicate that (PhSe)2 acts as an excellent carbon-radical-
trapping agent for alkyl radicals generated from heavier-element compounds.

In this reaction, hexacyclohexyldilead generates cyclohexyl radicals; however, to
the best of our knowledge, radical initiators generating secondary alkyl radical are less
common than those generating primary alkyl radicals (e.g., triethylborane and diethylzinc)
and tertiary alkyl radicals (e.g., AIBN and V-40). In addition, compounds that behave as
radical initiators at room temperature (e.g., V-70) typically need to be stored in a freezer. In
contrast, hexacyclohexyldilead is stable at room temperature in the dark and efficiently
generates cyclohexyl radicals upon photoirradiation. Therefore, hexacyclohexyldilead can
be used as a novel and useful photochemical initiator. Further studies on radical chain
reactions using hexacyclohexyldilead are currently in progress.

Supplementary Materials: The following are available online, Copies of 1H and 13C{1H} NMR spectra.
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