
EBioMedicine 74 (2021) 103739

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Review
Reagents and models for detecting endogenous GLP1R and GIPR
Julia Asta,b, Johannes Broichhagenc,*, David J. Hodsona,b,*
a Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
b Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
c Leibniz-Forschungsinstitut f€ur Molekulare Pharmakologie, Berlin, Germany
A R T I C L E I N F O

Article History:
Received 4 October 2021
Revised 12 November 2021
Accepted 23 November 2021
Available online xxx
* Corresponding author at: Institute of Metabolism a
University of Birmingham, Centre of Membrane Protein
Birmingham, United Kingdom

E-mail addresses: broichhagen@fmp-berlin.de (J. Broi
uk (D.J. Hodson).

https://doi.org/10.1016/j.ebiom.2021.103739
2352-3964/© 2021 The Authors. Published by Elsevier B.
A B S T R A C T

Glucagon-like peptide-1 receptor (GLP1R) agonists target the GLP1R, whereas dual GLP1R/ gastric inhibitory
polypeptide receptor (GIPR) agonists target both the GLP1R and GIPR. Despite the importance of these drug
classes for the treatment of diabetes and obesity, still very little is known about the localization of GLP1R and
GIPR themselves. Complicating matters is the low abundance of GLP1R and GIPR mRNA/protein, as well as a
lack of specific and validated reagents for their detection. Without knowing where GLP1R and GIPR are
located, it is difficult to propose mechanisms of action in the various target organs, and whether this is indi-
rect or direct. In the current review, we will explain the steps needed to properly validate reagents for endog-
enous GLP1R/GIPR detection, describe the available approaches to visualize GLP1R/GIPR, and provide an
update on the state-of-art. The overall aim is to provide a reference resource for researchers interested in
GLP1R and GIPR signaling.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

The glucagon-like peptide-1 receptor (GLP1R) and gastric inhibi-
tory polypeptide receptor (GIPR) are G protein-coupled receptors
belonging to the secretin receptor super-family, also known as class
B [1, 2]. Classically, GLP1R and GIPR are considered to mediate the
‘incretin effect’, whereby glucose leads to a larger rise in insulin
secretion when administered orally versus intravenously due to
release of glucagon-like peptide-1 (GLP1) and gastric inhibitory pep-
tide (GIP) from gut enteroendocrine cells [3�5]. These clinical obser-
vations, together with efforts to clone the receptors [6, 7] and
identify their stabilized ligands, led to development of the GLP1R
agonist class of drugs (or incretin-mimetics) [8]. GLP1R agonists are
now a mainstay of type 2 diabetes (T2D) therapy, with the latest drug
generation inducing 20-30% weight loss in obese patients [9]. More-
over, placebo-controlled trials have shown potential for GLP1R ago-
nists in the treatment of NAFLD/NASH [10, 11], as well as (possibly)
Parkinson’s Disease [12], pointing to wider metabolic and neurologi-
cal actions above and beyond effects on insulin release. Discovery
science studies have now shown wide-ranging actions of GLP1R,
including on immune cells, neurons, cartilage, lung, adipose tissue
and stomach, suggesting future therapeutic targets (reviewed in [13,
14]).

By contrast to GLP1R, the related GIPR has gained much less atten-
tion. Part of the reason for this is that infusion of GIP has no effect on
insulin secretion in T2D patients, is unable to influence food intake,
may be obesogenic, and GIPR is downregulated during T2D/obesity
(reviewed in [15]). However, recent studies have shown that GIPR-
GLP1R co-agonists or GIPR-GLP1R unimolecular agonists are unex-
pectedly more effective anti-hyperglycemic and anti-obesity agents
compared to GLP1R agonist control [16, 17]. Further complicating the
picture, co-administration of a GLP1R agonist and GIPR antagonist,
either alone or as a conjugate, demonstrated equally impressive
reduction in weight loss in mice and non-human primates [18, 19].
How such synergistic effects occur are poorly characterized, but
might include higher potency at the GLP1R, alterations to GLP1R/
GIPR internalization or restoration of GIPR signaling following
GLP1R-mediated metabolic normalization [15, 20].

Despite the apparently pleiotropic effects of GLP1R agonists, and
the impressive performance of GIPR-GLP1R co-agonists in clinical tri-
als, a major problem continues to stalk the field: lack of reliable and
validated reagents for detecting GLP1R and GIPR. Despite evidence to
the contrary [21�23], a cursory glance of the literature will reveal
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that hepatocytes express GLP1R, and that GLP1R/GIPR in their non-
stimulated state are predominantly in the cell cytoplasm. Why is this
relevant when efficacious GLP1R agonists and dual agonists already
exist? Firstly, if we are unable to accurately and specifically localize
GLP1R/GIPR, then it is impossible to infer cellular substrates for their
effects, preventing discovery of new mechanisms. Secondly, follow-
ing up spurious mechanisms wastes precious research time and
resources. Thirdly, GLP1 can be derived from the gut and brain, yet
how the different pools access different body sites remains incom-
pletely understood. Fourthly, how GIP agonists/antagonists/co-ago-
nists access the different brain regions is poorly defined. The aim of
the current review is to therefore discuss: 1) the pitfalls of detecting
GLP1R/GIPR and how to properly validate reagent specificity; 2)
methods to detect GLP1R/GIPR, including antibodies, ligands,
reporter mice, with advantages and disadvantages therein; and 3)
latest innovations in GLP1R/GIPR detection, including enzyme self-
labels, super-resolution imaging and electron microscopy (EM). Ulti-
mately, we hope that the review article will provide a useful update
for anyone intending to detect and visualize GLP1R/GIPR in their cell/
tissue system of choice.

2. GLP1R/GIPR detection pitfalls

In the pancreatic islets—one of the best validated models for
GLP1R/GIPR signaling—GLP1R/GIPR transcript abundance in sorted
beta cell fractions is »1000-fold lower than INS and »5-fold lower
than PDX1, a beta cell-specific transcription factor [24]. In keeping
with other membrane receptors (e.g. Sstr1-5, Ghsr1a, Avpr1b) expres-
sion of Glp1r/Gipr is relatively low [25, 26], meaning that interpreta-
tion of scRNA-seq datasets should proceed with caution: the high
drop-out rate of these transcripts gives rise to heterogeneous expres-
sion, which is not borne out at the protein level when enriched frac-
tions are carefully examined [27]. Such low expression levels are
perhaps to be expected given the highly-amplified nature of GPCR
signaling.

Transcriptomic analyses are even more problematic in tissues
comprised of diverse, overlapping and fragile cell populations (e.g.
brain) where purification is difficult and alternatives such as scNuc-
seq or RNAScope are needed [28]. Thus, given the low abundance of
GLP1R/Glp1r and GIPR/Gipr transcripts, gold-standard detection of
GLP1R/GIPR protein expression is likely to be challenging. It stands to
reason therefore that controls are paramount when detecting GLP1R/
GIPR protein. However, what should these controls look like?

Positive controls should include the pancreas—specifically the
pancreatic islets—where GLP1R is localized predominantly to beta
cells, and GIPR to alpha and beta cells [27, 29-32]. Negative controls
will depend on species, but when using a reagent for the first time, or
attempting to detect GLP1R/GIPR in a new cell type/tissue, knockout
tissue should be used to confirm lack of expression. Thoroughly vali-
dated Glpr�/� and Gipr�/� knockout (KO) mice have been reported
and are available from donating investigators or repositories subject
to material transfer agreement [29, 33-35]. Glp1r-flox’d and Gipr-
flox’d mice also exist [36, 37], affording conditional and tissue-spe-
cific deletion of Glp1r/Gipr. While studies in cell lines heterologously-
expressing GLP1R/GIPR can be useful, we note that staining/labeling
can be cell- and tissue-dependent, and receptor expression levels
tend to be much higher in stable/transient transfection systems. A
CRISPR-deleted rat INS1 832/3 GLP1R�/� beta cell line has been
described [38], and could serve as a useful control, since native
INS1 832/3 cells endogenously express the receptor albeit at rela-
tively low levels versus primary beta cells [22].

Reagent validation in human tissue is more challenging given the
lack of specific GLP1R/GIPR KO tissue. In general, reagents should be
tested in human-derived cell lines transfected with and without
(human) GLP1R/GIPR, or graded expression of GLP1R/GIPR (i.e. low
and high) [21, 39, 40]. Going forward, availability of EndoC-bH
human beta cell lines [41] will enable CRISPR deletion or stable lenti-
viral shRNA knockdown of GLP1R/GIPR, although we note that
EndoC-bH1 cells express some key human beta cell genes at low lev-
els, including DLK1, RGS16, IAPP and HDAC9 [42]. While EndoC-bH1
cells mount insulin secretory responses to GLP1R agonist [42],[43],
and GLP1R mRNA can be knocked down [42], we (unpublished data)
and others [42] were unable to detect GLP1R protein using antibodies
or probes. However, EndoC-bH3 have increased potential for clonal
expansion [44], which should allow GLP1R-null lines to be produced
in the future. While GLP1R/GIPR knockdown is more difficult in pri-
mary human tissue, recent reports have shown that re-aggregated
human islets are amenable to CRISPR-deletion [45], which could
allow confirmation of reagent specificity in GLP1R/GIPR�/� islets.

In addition to the above, there are a few general guidelines/cav-
eats which should be acknowledged when attempting to detect
GLP1R/GIPR: 1) protein abundance in primary tissue is likely to be
too low to detect using western blot without a prior immunoprecipi-
tation step; 2) GLP1R/GIPR are 7 transmembrane proteins present at
the cell surface in their unstimulated state, so immunostaining/label-
ing should be observed primarily in this location (with the caveat
that constitutive internalization is theoretically possible); and 3) do
not rely on specificity of commercial reagents unless they have been
thoroughly tested in KO tissue or heterologous cell systems.

Table 1 lists reagents/tools that have been validated using anti-
body co-localization, known tissue localization/reporters, RNA confir-
mation, pharmacology or Glp1r�/� and Gipr�/� tissue/cells.

Table 2 lists the tissues in which the various antibodies/probes
have been validated.

Current validated methods to detect GLP1R/GIPR
3. GLP1R/GIPR mRNA quantification and hybridization

Due to drop-out rate of lowly expressed genes when using single
cell transcriptomics, alternative approaches should also be used to
confirm absence or presence of GLP1R and GIPR at the transcript/
mRNA level. One possibility is to use conventional PCR analyses on
purified cell fractions, with primers spanning the GLP1R/Glp1r and
GIPR/Gipr open reading frames (ORFs), and positive controls such as
Brunner’s gland (GLP1R) or islets (GLP1R/GIPR) [21, 36]. Another pos-
sibility is to use bulk RNA-seq on sorted cell fractions, which has
shown the utility to identify GPCRs expressed in specific islet cell
populations (e.g. ghrelin receptor expressed in delta cells) [25, 26].
These approaches are less amenable to the brain, since neurons are
difficult to dissociate and purify. snRNA-seq has proved more fruitful
in this tissue, with a number of labs showing Glp1r and Gipr expres-
sion in various neuronal (sub)populations [46, 47]. However, results
should ideally be confirmed using in situ hybridization [32], since
neurons may be falsely assigned as Glp1r-/Gipr- given the high tran-
script drop-out rate. In particular, RNAscope or single molecule FISH
have the added advantage of providing spatial information, can be
multiplexed for assessment of cell state, and allow single molecule
quantification. While measurement of Glp1r and Gipr at the mRNA
level usually maps onto protein expression, it is worth noting that
there can be discordance between the two levels, with a study show-
ing that isolated pancreatic delta cells express Glp1r mRNA but unde-
tectable protein [27].
4. GLP1R/GIPR antibodies

GLP1R: Dozens of GLP1R antibodies are commercially available. To
date, only four antibodies have been shown to be specific for detec-
tion of GLP1R in mouse, rat, nonhuman primate and human tissue (to
the best of our knowledge). Glp1R0017 is a monoclonal antagonistic
antibody derived from naïve phage display as a single-chain variable



Table 1
Validated reagents for detection of GLP1R and GIPR in cells and tissue. GLP1R/GIPR antisera, fluorescent agonists/antagonists and mouse models validated according to
known cell localizations, enzyme self-labels, pharmacology, Glp1r/Gipr expression in enriched fractions, Glp1r�/� tissue, Glp1r�/� cells or GLP1R/GIPR-transfected cells.

Reagent Name Source Reported cross-reactivity Validation

GLP1R antibody [39] Mab 3F52 Iowa DSHB Human, primate GL1PR_BHK cells (and wild-type
cells)

GLP1R antibody [50] Mab 7F38 Iowa DSHB Human, Mouse, Rabbit, Rat Glp1r�/� mice
GLP1R antagonistic antibody [27,

48]
Glp1R0017, GLP1R-APC University of Cambridge, Duke

University
Mouse Glp1r�/� mice, pharmacology,

antibody co-localization
GLP1R antibody [53] ab218532 Abcam Mouse, Rat Glp1r�/� mice
GLP1R antibody* [18] MAB2814 RnD Systems Human SNAP_hGLP1R-U2OS (and

wild-type cells)
GLP1R agonist [57, 58, 60, 61] E4K12-Fl, E4£12-VT750, EP12-TR,

EP12-BTMR, EP12-BTMR-X,
EP40-BF, EP40-TR

Harvard University Mouse, human GLP1R_HEK293 cells, MIN6,
insulin reporter/staining,
pharmacology

GLP1R agonist [59] E4x12-Cy7 Memorial Sloan Kettering Cancer
Center

Mouse, human GLP1R_HEK293, insulin reporter,
pharmacology

GLP1R agonist [97] Ex4-Cy3, Ex4-Cy5 Novo Nordisk Mouse Glp1r�/� mice
GLP1R agonist [65, 66] Liraglutide594$, Liraglutide750$,

SemaglutideVT750$
Novo Nordisk Mouse, rat Glp1r�/� mice

GLP1R agonist [62�64] Ex4-FITC, Ex4-TMR,
lixisenatide�FITC

Imperial College London Human SNAP_GLPR-HEK293, INS-
1 832/3 SNAP_GLP1R,
pharmacology

GLP1R antagonist [66] exendin(9-39)594$ Novo Nordisk Mouse, rat Glp1r�/� mice
GLP1R antagonist [22, 29] LUXendin492, LUXendin551,

LUXendin555, LUXendin615,
LUXendin645, LUXendin651,
LUXendin762

University of Birmingham Mouse/hESC Glp1r�/� mice, INS1 832/3
GLP1R�/� cells, GLP1R
antibody co-localization,
pharmacology

GLP1R antagonist [67, 68] exendin(9-39)-FITC Imperial College London Human SNAP_GLPR-HEK293,
pharmacology

Reporter mouse [30] Glp1rCre (transgenic) University of Cambridge n/a Glp1r expression, FACS + QPCR
Reporter mouse [55] Glp1rCre (knock-in) Harvard University n/a GLP1R antibody (GLP1R-APC)

co-localization [27]
Reporter mouse [31] Glp1rCre (knock-in) University of Copenhagen n/a GLP1R antibody (Mab 7F38) and

in situ hybridization
Reporter mouse [32] Gipr-Cre (knock-in) University of Cambridge n/a Gipr expression (RNAScope)
GIPR antagonistic antibody* [19] muGIPR Amgen mouse Pharmacology (not tested for

detection)
GIPR antibody* [18] hGIPR-Ab Amgen human Pharmacology (not tested for

detection)
GIPR antibody* [18] MAB8210 RnD systems human SNAP_hGIPR-U2OS (and

0wild-type cells)

* independent verification needed. $Chemical characterization not reported, structures undisclosed.
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fragment, followed by human IgG1 conversion [48]. Glp1R0017 was
found to be a specific GLP1R antagonist using cAMP assays in CHO
cells expressing mouse, human, rat, cynomolgus monkey and dog
GLP1R [48]. Notably, Glp1R0017 staining co-localized with a
GLP1RCre;R26-tdRFP reporter, and was completely absent in Glp1r�/

� tissue [48]. Further confirming the specificity of Glp1R0017, an
APC-conjugated version (GLP1R-APC) was shown to enrich islet cells
according to their Glp1r expression and was unable to label beta cells
conditionally deleted for Glp1r [27]. Mab 7F38 is another monoclonal
antibody, first reported in 2015, and produced by immunizing
Glp1r�/� mice with mGLP1R_BHK cells, before hybridoma production
of antibodies. Specificity of the antibody was subsequently validated
using renal vasculature, brain and islets derived from Glp1r�/� mice
[29, 49-51]. We note that, while this antibody works for fluorescent
Table 2
Tissues in which each antibody and probe have been validated. Only reagents shown to sta

Reagent Name

GLP1R antibody [39] Mab 3F52
GLP1R antibody [50] Mab 7F38
GLP1R antagonistic antibody [27, 48] Glp1R0017, GLP1R-APC
GLP1R antibody [53] ab218532
GLP1R agonist [97] Ex4-Cy3, Ex4-Cy5
GLP1R agonist [65, 66] Liraglutide594, Liraglutide750, SemaglutideVT750

GLP1R antagonist [22, 29, 66] LUXendin492, LUXendin551, LUXendin555, LUXe
din651, LUXendin762, exendin(9-39)594
immunostaining in islets, there are anecdotal reports that it is less
effective in the adult mouse brain, limiting co-localization with neu-
ral/glial markers. However, Mab 7F38 has been shown to be effective
in mouse and rat brain using non-fluorescent staining [50, 52]. A sim-
ilar antibody, Mab 3F52, was produced against the human GLP1R
extracellular domain and validated in BHK cells with low and high
human GLP1R levels [39], subsequently confirmed by a second inde-
pendent group [21]. Mab 3F52 has been shown to stain primate and
human islets, kidney, sinoatrial node, GI tract and thyroid [21, 39].
One of the newest antibodies, Abcam ab218532, shows clear mem-
brane-localized labeling using fluorescent and non-fluorescent
immunohistochemistry of pancreatic islets, and was shown to stain
wild-type but not Glp1r�/� tissue [53]. A final antibody, Novus
19400002 was shown to detect human GLP1R in hGLP1R_BHK cells
in/label primary tissues are included.

Tissues stained or labeled

Pancreas, kidney, lung, heart, GI tract
Pancreas, kidney, lung, brain (non-fluorescent)
Pancreas
Pancreas, kidney, brain
Pancreas
Pancreas, brain

ndin615, LUXendin645, LUXen- Pancreas, brain
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using western blot, but was unable to detect GLP1R in Brunner’s
gland or pancreas, questioning its sensitivity [21]. Mab 7F38 and Mab
3F52 are freely available on a non-profit basis from Iowa Develop-
mental Studies Hybridoma Bank. A range of other commercial anti-
bodies, widely used in the literature, and some still available to
purchase, have been dismissed as non-specific [40].

GIPR: Compared to GLP1R, antibody detection of GIPR is even
more challenging. In general, GIPR is expressed at lower levels than
GLP1R. Analysis of a published dataset reveals that enriched human
beta cell fractions express » 2-fold lower GIPR versus GLP1R (30.99
§ 20.35 TPM versus 64.57 § 19.16 for GIPR and GLP1R, respectively;
mean § SD) [24]. Moreover, GIPR has not been the same focus of
industry/academic efforts to produce antibodies, since GIPR ago-
nism/antagonism has only just emerged as a viable option for diabe-
tes/obesity therapy. Nonetheless, the specificity of a number of
commercially-available reagents has already been questioned: three
antibodies were found to stain HEK cells transfected with empty
vector, as well as FLAG-GIPR, despite an anti-FLAG antibody only
recognizing the latter [54]. An antagonistic antibody was recently
described, termed muGIPR, produced by immunizing mice with
plasmid encoding full length mouse GIPR before hybridoma genera-
tion. muGIPR antagonized GIPR-mediated cAMP generation, as well
as prevented responses to DA-GIP challenge in vivo [19]. The same
authors subsequently produced hGIPR-Ab, which displays similar
specificity to muGIPR [18]. However, neither of these antibodies
was used in the cell or tissue setting to detect GIPR and for the
moment remain as tools to modulate GIPR signaling. The same
authors did however use two new commercial antibodies against
human GLP1R (RnD Systems MAB2814) and human GIPR (RnD Sys-
tems MAB8210), showing no detectable staining in non-transfected
U2OS cells, but staining in SNAP_hGLP1R-U2OS and SNAP_hGIPR-
U2OS, with signals overlapping with SNAP label, thus demonstrat-
ing specificity [18]. It will however be important to repeat experi-
ments using U2OS with lower levels of hGLP1R and hGIPR, as well
as using human tissue in which known cell-type distributions can
be assessed. Going forwards, more GIPR antibodies are likely to
become available due to the renewed clinical/discovery science
interest associated with development of GLP1R/GIPR co-agonists.
Lessons should be learnt from efforts to validate GLP1R antibodies
and the same stringent standards applied.

5. Reporter animals

GLP1R: The first Glp1rCremice were produced by inserting an iCre
flanked by 5’ and 3’ Glp1r gene sequences into a murine-based bacte-
rial artificial chromosome (BAC), followed by pronuclear injection of
BAC-DNA and random integration into the genome. These mice
express Cre-recombinase under the Glp1r promoter [30] (MGI ID:
5755096). Two knock-in Glp1rCre models exist with IRES-Cre
knocked-in downstream of the Glp1r gene (i.e. after the stop codon)
[31, 55] (JAX stock no. 029283). Following breeding with animals
possessing LoxP-flanked reporter alleles (e.g. tdTomato, tdRFP, YFP),
Cre-mediated recombination leads to reporter expression only in
GLP1R+ cells or their progeny [30, 55]. Since reporter allele expres-
sion is usually driven from the Rosa26 locus with a powerful CAG
promoter, approaches using Glp1rCre animals circumvent the low
expression levels of Glp1r. Thus, even cell populations with low levels
of Glp1r expression are likely to be marked with high fidelity, making
Glp1rCre a useful tool for understanding the localization of GLP1R+
cells/neurons. Moreover, Glp1rCre allows GLP1R+ cells to be lineage
or fate-mapped, opening up questions such as: do GLP1R+ cells
remain GLP1R+ or can they de-differentiate or trans-differentiate to
other lineages?

Inherent problems with reporter approaches are: 1) readout of
Glp1r promoter activity rather than the protein itself; 2) inability to
know whether the reporter-positive cell is in fact GLP1R+, or is the
progeny of a GLP1R+ cell that has adopted another fate; and 3) lack
of information regarding endogenous GLP1R expression levels, as
well as orthosteric binding capacity. It is worth noting however that
studies have shown excellent overlap between Glp1rCre;reporter
animals and antibody/probe labeling, meaning that GLP1R+ cell pop-
ulations are unlikely to be highly plastic during development [27,
30, 31]. While the transgenic model failed to label acinar cells in the
pancreas [30], in contrast to one of the knock-in models [31], this
might reflect the very low reported GLP1R/Glp1r expression levels in
exocrine tissue [39, 56]. Nonetheless, Glp1rCre;reporter animals are
arguably the highest fidelity model available for detection of GLP1R,
allowing resolution of small cell subpopulations which would be dif-
ficult to identify with antibody approaches (e.g. pancreatic duct
cells).

GIPR: Gipr-Cremice have been recently reported in which the Gipr
coding sequence was replaced by iCre in a BAC, following CRISPR-
Cas9-mediated homologous recombination in one-stage fertilized
embryos using sgRNAs targeting the wild-type Gipr gene [32]. Analy-
sis of these animals showed that animals with a single Cre allele (i.e.
heterozygous, missing a single Gipr allele) displayed normal body
weight gain and fat mass [32]. Moreover, EYFP reporter expression
showed overlap between Cre expression and known Gipr-expressing
sites based upon mRNA expression (e.g. pancreatic alpha and beta
cells, adipose tissue) [32]. While the animals are currently less well-
validated than Glp1rCre animals, it can be assumed that some of the
same advantages (e.g. fidelity, lineage tracing) and disadvantages
(e.g. lack of information on protein levels) apply. An additional
advantage of Gipr-Cre mice is that they can be bred as homozygotes
to produce KO controls. The different Glp1rCre and Gipr-Cre mouse
models are summarized in Fig. 1.

For all of the reporter mouse models mentioned, there is a need to
more fully characterize Cre-recombination efficiency as well as
expression patterns across the various tissues. This is particularly the
case in the brain, where robust counter-staining methods (antibody,
probe) work less effectively and RNAscope or similar approaches are
needed.

6. Fluorescent agonist/antagonist probes

Current GLP1R antibodies have variable specificity and, except for
the monoclonal antagonistic antibody, can only be used in fixed tis-
sue. On the other hand, Cre reporter approaches allow labeling of
Gipr- and Glp1r-expressing cells in live and fixed tissue, but do not
report expression of the protein itself. Neither approach is able to
provide information regarding how ligands access and then bind to
GIPR/GLPR, which is important from a therapeutic standpoint.
Another alternative for visualization of GLP1R/GIPR is thus the use of
chemical probes, usually based upon orthosteric ligands furnished
with a fluorophore for light-microscopy.

GLP1R: In their early iterations, fluorophore probes were gener-
ated by modifying the potent agonist Exendin4 (Ex4) at position K12
with VT680-NHS-ester, a near infrared fluorophore [57]. The probe,
termed E4K12-Fl, was able to label GLP1R_HEK293 cells, MIN6 beta
cells and pancreatic islets in vivo, overlapping with an insulin
reporter or insulin protein [57]. The same authors used click chemis-
try on a K12-substituted Ex4 to install an azide-functionalized VT750
or Cy7 fluorophores, showing utility for estimating in vivo beta cell
mass in NOD type 1 diabetes and insulinoma xenograft models [58,
59]. Demonstrating the importance of modification site, an Exendin4
(Ex4)-like neopeptide was substituted (or added) at positions 12, 27
and 40, before reaction with various NHS-fluorophores spanning
green through near-infrared wavelengths [60, 61]. These studies
showed that substitution/addition at position 12 and 40 were well-
tolerated, that potency of the agonist depended on the fluorophore
used as well as presence/absence of a C-terminal lysine, and that fluo-
rescent probes can be used to purify pancreatic beta cells for

mgi:5755096


Fig. 1. GLP1R and GIPR reporter mouse models. Glp1rCre and Gipr-Cremouse models allow conditional labeling of Glp1r- and Gipr-expressing cells following Cre-dependent recom-
bination of a fluorescent reporter allele. The different characteristics of the various models are detailed.

J. Ast et al. / EBioMedicine 74 (2021) 103739 5
sequencing [60, 61]. Subsequent studies reacted exendin4-Cys-amide
with maleimide-Cy3 to generate Ex4-Cy3 [51]. This probe was able to
label wild-type islets, co-localized with beta cells, but not alpha and
delta cells, and a Cy5 version was found to be useful for whole pan-
creas optoacoustic imaging [51]. Notably, the authors showed that
Ex4-Cy3-labeling was completely absent in Glp1r�/� islets, demon-
strating target specificity [51]. Ex4-FITC, Ex4-TMR (both K12-substi-
tuted) and lixisenatide�FITC probes have also been described and
were tested using pharmacology and SNAP_GLP1R binding [62�64].
Lastly, fluorescent congeners have recently been produced for other
GLP1R agonists, including liraglutide594, liraglutide750 and semagluti-
deVT750 [65, 66], all validated in Glp1r�/� tissue.

The major advantage of such probes is that they allow one-step
intense staining of live islets, free from background introduced by
chemical fixation methods. An inherent disadvantage of these probes,
however, is that fluorescent agonist probes by their nature strongly
bind, activate and internalize GLP1R, and this can confound some
experiments (e.g. those enriching GLP1R+ cells for transcriptomic
analysis). To circumvent this issue and to more widely open up
super-resolution imaging of endogenous GLP1R, we recently pro-
duced the LUXendins, which are based on the potent GLP1R antago-
nist Exendin9 (Ex9) [29]. By substituting the C-terminal (position 39)
serine for a cysteine, a range of maleimide-fluorophores can be
installed without any appreciable loss of potency versus native antag-
onist [29]. LUXendins endowed with tetramethylrhodamines (TMR),
blinking cyanine5 (Cy5) and fluorogenic silicon rhodamine (SiR)
allow a range of experiments, including widefield, confocal, intravital
and stimulated emission depletion (STED) microscopy of GLP1R
applied to both live and fixed islets (vide infra). Notably, LUXendins
stain GLP1R at the cell surface, leading to clean membrane-bound sig-
nal. Using a novel CRISPR-deleted Glp1r�/� mouse line, as well as vali-
dated antibodies, LUXendins were shown to be highly specific for
GLP1R [29]. No signal could be detected in Glp1r�/- islets suggesting
that LUXendins do not promiscuously bind the glucagon receptor or
GIPR [29]. The LUXendin family has now been expanded to encom-
pass 7 different colors, spanning green to near-infrared wavelengths
(CF488A, Cy3, TMR, CPY, Cy5, SiR and Cy7) [22]. A related antagonist
probe also exists, exendin(9-39)Alexa Fluor 594, which has been vali-
dated in Glp1r�/� tissue and which also displays clean membrane
labeling when viewed at high, but not low, resolutions [66]. Exendin
(9-39)-FITC has also been described, which labels HEK293-SNAP-
GLP1R cells and out-competes unmodified Ex4 in equilibrium binding
assays [67, 68].

It is worth noting that simply bolting fluorophores onto agonist or
antagonist does not guarantee success. Different fluorophores pos-
sess different properties, which can influence pharmacology. Also,
fluorophore properties can change in the tissue environment such
that the best performing dye on paper or in vitro does not necessarily
lead to the best or most specific signal. Thus, for any new compound,
chemical characterization should be reported (HRMS), purity checked
(HPLC), structures disclosed, and pharmacology and target specificity
determined. Nonetheless, fluorescent GLP1R agonists and antagonists
provide non-genetic, useful and specific tools for GLP1R visualization
alongside reporter mice and antibodies.

GIPR: development of GIPR fluorescent probes is still a work in
progress, hampered by the historical lack of potent and stabilized
GIPR agonists that can be used in vitro. Moreover, GIPR peptide antag-
onists demonstrate poor IC50s for cAMP inhibition and are largely
unsuitable for installation of fluorophores. However, Aib2-stablized
GIP analogs represent strong candidates for fluorophore installation
[16, 69], as well as recently reported short (GIP-532) and long (GIP-
085) acting GIPR agonists [46], although any compound should be
carefully validated using Gipr-Cre reporter and Gipr�/� mice.

GLP1R agonist and antagonist probes are summarized in Fig. 2.

7. Fluorescent tags

Recombinant genetics has allowed fluorescent proteins to be
incorporated into proteins, allowing their visualization using light
microscopy [70]. A number of mutant GLP1R and GIPR constructs
have been reported, which express GFP on the C-terminal end, thus
allowing the receptor to be tracked during imaging experiments
(Fig. 3). GLP1R_GFP and GIPR_GFP constructs have been used to
understand trafficking and internalization in heterologous cell sys-
tems (e.g. HEK293 and adipocytes) [71�74]. While GLP1R_GFP/
GIPR_GFP fusion proteins are reported to traffic to and from the
membrane normally, efforts should be made to titrate the plasmid
and phenotype the cell system, since high levels of GFP have been
shown to lead to NADH-dependent superoxide (O2

��) and peroxide
generation, as well as HIF1a stabilization [75]. Moreover, compari-
sons should be made with wild-type (but immunostained) and
SNAP-tagged receptors in case of effects of fluorophore on trafficking



Fig. 2. Agonist and antagonist chemical probes for GLP1R detection. Chemical probes based upon the agonists Exendin4(1-39) (Ex4)/lixisenatide/liraglutide (Lg)/semaglutide (Sg),
or the antagonist Exendin9 (Exendin4(9-39); Ex9), can be used to visualize GLP1R in live and fixed tissue. The different fluorophore labeling strategies are shown and known chemi-
cal probes listed. Fluorophore position is not shown where compound characterization is not fully reported.
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dynamics. Another issue with GFP is that, by modern standards, it has
poor quantum yield and brightness. However, newer, brighter and
smaller fluorescent proteins exist (e.g. mNeon Green—3x brighter
than GFP), which should allow improved GLP1R/GIPR detection.
While their use is declining in favor of enzyme self-labels, fluores-
cently-tagged GLP1R/GIPR constructs are a mainstay of photoacti-
vated localization microscopy (PALM), a super-resolution imaging
modality which relies on photoconversion of fluorescent proteins
(e.g. mEos4) or “caged” secondary antibody (e.g. anti-FLAG CAGE 500
[76]) between two states.

Latest innovation for GLP1R/GIPR detection

8. Enzyme self-labels

For most imaging applications, fluorescently-tagged constructs
have been largely superseded by enzyme self-labels. The basic princi-
ple of enzyme self-labels is that they recognize and bind to a specific
substrate, forming an irreversible covalent bond. So far, three major
players have emerged: SNAP-tag, HaloTag and CLIP-tag. The SNAP-
tag is an evolved O6-alkylguanine-DNA alkyltransferase mutant,
which reacts with its substrate O6-benzylguanine, forming a covalent
bond and liberating guanine [77]. CLIP-tag is an engineered version
of SNAP-tag, which instead reacts with O2-benzylcytosine [78]. By
contrast, the HaloTag is a haloalkane dehalogenase, which reacts
with a chloroalkane to form a covalent alkyl-HaloTag product [79].
The three enzyme self-labels are largely orthogonal and can be used
in the same experiment to identify multiple proteins (Fig. 3) [80].

Enzyme self-labels have a number of advantages as genetically-
encoded tools versus fluorescent proteins: 1) they are small (SNAP
and CLIP: »20 kDa; Halo: »30 kDa; GFP: »27 kDa) and interfere min-
imally with protein function; 2) they are highly flexible, permitting
protein visualization with different fluorophores; 3) labeling is irre-
versible; 4) multicolor pulse-chasing experiments can be performed
(e.g. to visualize old versus new receptor populations); and 5)
experiments can be performed by labeling with versatile chemical
compounds (e.g. biotin or tethered drugs [81, 82]). For these and
other reasons, enzyme self-labels, in particular SNAP-tag and Halo-
Tag, have gained traction for the study of GPCR signaling and traffick-
ing. SNAP_GLP1R and SNAP_GIPR both exist and are well-
characterized in heterologous cell systems [76, 81, 83, 84]. A number
of complementary fluorescent SNAP-tag and HaloTag labels exist,
spanning most colors in the visible range, as well as different imaging
modalities. Most recently, we have developed a number of SNAP-tag
and HaloTag fluorescent labels, which allow surface GLP1R popula-
tions to be selectively visualized using conventionally cell permeable
dyes [85, 86]. Before this, surface labeling depended on the chemical
properties of the dye itself, limiting the number of colors that could
be used [86].

To date, enzyme self-labels remain largely restricted to cell lines
where SNAP-, Halo- and CLIP-tagged GLP1R and GIPR are widely
used, particularly for pharmacological assays (kinetics, coupling and
potency) or single molecule imaging (dynamics and internalization).
While SNAP-tags have been used to conditionally label cells, this was
achieved using Rosa26SNAPCaaX reporter mice rather than labeling
the endogenous protein itself [87]. However, CRISPR-Cas9 knock-in
approaches open up the possibility to SNAP/CLIP/Halo-tag the endog-
enous Glp1r/Gipr loci in zebrafish, mouse and rat, and we expect
these models to become available in the near future. The major
advantage of using enzyme self-labels is that surface or total receptor
pools can be visualized in live and fixed tissue at a chosen timepoint
without interfering with orthosteric or allosteric binding modes.
However, one has to keep in mind that an exogenous chemical (e.g.
fluorophore) needs to be delivered.

Super-resolution imaging of GLP1R/GIPR
Due to their abundance and size, GPCRs are ideal candidates for

detection using nanoscopic or super-resolution imaging. Three prin-
cipal types of super-resolution microscopy exist, which are able to
visualize fluorophores in the 40-70 nm range: stochastic optical



Fig. 3. Fluorescent tagging and enzyme self-labeling strategies for GLP1R and GIPR. Fluorescent proteins (e.g. GFP) may be fused to the receptor of interest. Fluorescent proteins are
bright and some can be photoconverted, which is useful for PALM microscopy. However, this approach is inherently less flexible than enzyme self-labeling. SNAP-, CLIP- and Halo-
tags react with O6-benzylguanine- (BG-), O2-benzylcytosine- (BC-) and chloroalkane- (CA) linked substrates, respectively. Binding is covalent and a range of substrates can be flexi-
bly attached to the receptor of interest, including fluorophores, metal ions or biotins. Advantageously, different receptor pools can be studied. pdb: 7lck (GLP1R); 5n9o (GFP); 3kzz
(SNAP and CLIP); 6u32 (Halo).
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reconstruction microscopy (STORM), PALM and STED microscopy.
STORM and PALM depend upon stochastic single-molecule localiza-
tion to surpass the diffraction limit of light, whereas STED relies on
excitation and parallel de-excitation of fluorophores just outside of
the focal spot with a donut beam. Each method is highly dependent
upon specific fluorophores, which not only display high quantum
yields, sufficient Stokes shifts and robustness towards bleaching, but
come with unique properties. Thus, PALM requires photoconvertible
proteins or caged antibodies [76], STORM needs blinking fluoro-
phores, while STED depends upon robust dyes with good depletion
performance.

While super-resolution understanding of GLP1R/GIPR is still in its
infancy, early studies have already provided insight into the higher-
order organization of the receptors. Initial PALM-total internal reflec-
tion fluorescence (TIRF) studies of the GLP1R revealed ligand-induced
clustering at the membrane [76]. Subsequent studies used STED to
look at endogenous GLP1R, revealing the existence of membrane
nanodomains in the unstimulated state [29]. Single molecule-locali-
zation microscopy showed that, even in their non-stimulated state,
GLP1R are mobile at the membrane and can be classed according
their diffusion rate [29, 76]. In the future, it will be interesting to
understand more about how GLP1R higher organization influences
ligand stimulation and signaling, and how this might change during
disease as well as within the tissue context. Moreover, SNAP-GIPR
and fluorescent GIPR agonists should allow the first super-resolution
snapshots of GIPR. GLP1R/GIPR higher organization is summarized in
Fig. 4.
9. Electron Microscopy of GLP1R/GIPR

While super-resolution fluorescence microscopy allows high-defi-
nition snapshots of fluorophores beyond Abbe’s diffraction limit,
electron microscopy is capable of magnifying ultrafine structures
down to the single-digit nanometer level. Such approaches are only
applicable in fixed cells, which are heavily processed before imaging
and need to be sliced into sub-micron sections. To obtain contrast,
heavy atoms are required as a stain, and are usually in the form of
specific antibody-nanoparticle conjugates. Given the lack of specific
antibodies, this is challenging and is further complicated by the anti-
body itself, which at »15 nm can interfere with nanometer scale
structural measurements. To get around this obstacle, investigators
have employed BG-SS-PEG4-biotin labeled SNAP_GLP1R constructs,
which can be visualized following addition of gold-streptavidin. Such
studies showed that distances between the gold particles, and hence
SNAP_GLP1R, decreases with ligand-stimulation [76]. In a more
recent iteration of this method, a genetically encoded tag has been
described that allows the direct synthesis of gold nanoparticles by
chemical treatment for electron microscopy [88]. Another method
involves cloning an APEX2 tag, a peroxidase, onto the protein of
interest, which generates an electron-dense osmiophilic polymer fol-
lowing application of diaminobenzidine and peroxide [89, 90]. Fur-
ther tools are warranted to be able to use the power that
contemporary techniques, including correlative light and electron
microscopy (CLEM) and focused ion beam scanning electron micros-
copy (FIB-SEM), offer. First stabs into the direction of beta cell struc-
tures have been made with CLEM to visualize insulin granules with
dual colors [91], the reconstruction of complete beta cells to highlight
microtubule-organelle interactions and insulin granule distributions
by FIB-SEM [92], as well as soft x-ray tomography [93]. Going for-
wards, cryo-CLEM and cryo-FIB-SEM should allow imaging of GLP1R/
GIPR in samples without the need for dehydration (which can intro-
duce artefacts) and resin-embedding (not suitable for some samples)
[94, 95]. Due to the resolutions achieved, electron microscopy allows
quantification of GLP1R/GIPR numbers, as well as their localization
within the cell (membrane, endosome, cytosol).

https://doi.org/10.2210/pdb7lck/pdb
https://doi.org/10.2210/pdb5N9O/pdb
https://doi.org/10.2210/pdb3KZZ/pdb
https://doi.org/10.1038/s41589-021-00775-w


Fig. 4. Super-resolution visualization of GLP1R/GIPR reveals new facets of their organization. By visualizing GLP1R/GIPR with validated super-resolution compatible reagents,
higher organization can be appreciated, including clustering into membrane nanodomains, dynamic internalization and trafficking, and diffusion at the membrane (in their non-
stimulated and stimulated states).
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10. Outstanding questions

Detecting and visualizing GLP1R and GIPR remains a challenge, as
for most GPCRs. Despite the translational importance of GLP1 and
GIP biology [15, 96], the development of specific reagents for GLP1R/
GIPR detection has not kept pace with drug development. Without
being able to accurately detect GLP1R/GIPR in time and space, we are
missing critical information pertaining to the impact of their signal-
ing on cell function. It should be clear that an abundance of caution is
required when using new reagents, particularly antibodies from com-
mercial sources. Any new reagent should be extensively validated
and characterized, and the models to do this now exist, including
GLP1R/GIPR knockout animals and beta cell lines. Alongside conven-
tional reagents, a number of new innovations are available/under
development, including reporter animals, SNAP/Halo-tagged recep-
tors and novel fluorescent probes. Moreover, recent developments in
imaging are beginning to provide unprecedented insight into the
high-resolution biology of GLP1R/GIPR distribution and signaling.
Nonetheless, a number of pertinent questions remain to be
addressed. Firstly, what is the exact localization of GLP1R and partic-
ularly GIPR in target tissues? Secondly, if GLP1R and GIPR are not
localized in a ‘target’ tissue such as the liver, how are they able to
exert indirect influence over this tissue (e.g. via effects on immune
cells, for example CD8+ and gdTCR located in the liver [23])? Thirdly,
do different populations of GLP1R and GIPR signal similarly in differ-
ent tissues? Fourthly, what is the relevance of the higher-order orga-
nization of GLP1R and GIPR and is this influenced differentially by the
various agonists? We predict that, with the right tools and techniques
in place, the GLP1/GIP field will be able to address such questions and
in doing so define novel mechanisms of action, with translational
impact across metabolic, inflammatory and neurological disease.

11. Guidance on best practice for detection of GLP1R and GIPR

Any new reagent should be treated as non-specific until properly
validated. Reagent validation will depend upon cell type, tissue and
species:

1) For studies in heterologous cell systems, the reagent should be
tested in cells expressing SNAP-, Halo- or CLIP-GLP1R/GIPR,
orthogonally labeled using fluorophore. No signal should be
detected in cells without the SNAP/Halo/CLIP_GLP1R/GIPR con-
struct. Agonist/Antagonists should show similar EC50/IC50 to
unmodified ligand.

2) For rodent tissue, GLP1R/GIPR�/� tissue or GLP1R/GIPR�/� beta
cell lines should be used, showing absence of staining/labeling.
Antibodies can be further cross-validated using fluorescent ago-
nist or antagonist probes with known specificity (and vice versa)
and/or Glp1rCre reporter animals. While there is high homology
between mouse and rat GLP1R/GIPR, reagents intended for
experiments in rat should ideally be tested against overexpressed
rat GLP1R/GIPR and/or rat INS1 832/3 GLP1R/GIPR�/� cells.

3) For human tissue, reagents should be tested in cells transfected
with mock or hGLP1R/hGIPR, with absence of staining in mock
cells. Alternatively, signal should co-localize with labeled SNAP-,
Halo- or CLIP-hGLP1R/hGIPR. Antibodies can be further cross-vali-
dated using fluorescent agonist or antagonist probes with known
specificity (and vice versa). Further confidence is gained by
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purifying the ‘labeled’ cell type and amplifying GLP1R/GIPR using
primers against the ORFs versus known positive controls (Brun-
ner’s gland, islets).
12. Search strategy and selection criteria

Information for the current review article was derived from the
authors’ combined expertise and knowledge of the field, together
with targeted interrogation of PubMed using GLP1R and GIPR as pri-
mary search terms. Other experts in the field were also consulted as
part of our efforts to identify specific reagents for detecting GLP1R
and GIPR.
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