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DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair
mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide
excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA
repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well
as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA
repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.

1. Introduction

It is essential for all living organisms to warrant accurate
functioning and propagation of their genetic information.
However, the genome is constantly exposed to various
environmental and endogenous agents, which produce a
large variety of DNA lesions (Figure 1) [1, 2]. Environmental
damage can be induced by several chemical reactive species
and physical agents. Endogenous damages occur sponta-
neously and continuously even under normal physiologic
conditions through intrinsic instability of chemical bonds
in DNA structure. The biological consequences of these
damages usually depend on the chemical nature of the lesion.
Most of these lesions affect the fidelity of DNA replication,
which leads to mutations. Some of human genetic diseases
are associated to defects in DNA repair (Table 1).

To cope with these DNA damages, all organisms have
developed a complex network of DNA repair mechanisms
[1, 3]. A variety of different DNA repair pathways have been
reported: direct reversal, base excision repair, nucleotide

excision repair, mismatch repair, and recombination repair
pathways. Most of these pathways require functional interac-
tions between multiple proteins. Furthermore, recent studies
have revealed inter- and intra-pathway complementation.

Although there are a number of model organisms
representing different kingdoms, such as Escherichia coli,
Saccharomyces cerevisiae, Arabidopsis thaliana, and Mus
musculus (Table 1), we selected the bacterial species Thermus
thermophilus HB8 for use in our studies of basic and essential
biological processes. T. thermophilus is a Gram-negative
eubacterium that can grow at temperatures over 75◦C [4].
T. thermophilus HB8 was chosen for several reasons: (i) it
has a smaller genome size than other model organisms;
(ii) proteins from T. thermophilus HB8 are very stable
suitable for in vitro analyses of molecular function; and
(iii) the crystallization efficiency of the proteins is higher
than for those of other organisms [5]. Moreover, since each
biological system in T. thermophilus is only constituted of
fundamentally necessary enzymes, in vitro reconstitution of a
particular system should be easier and more understandable.
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Our group has constructed overexpression plasmids for
most T. thermophilus HB8 ORFs [6], and those plasmids
are available from The DNA Bank, RIKEN Bioresource Cen-
ter (Tsukuba, Japan) (http://www.brc.riken.jp/lab/dna/en/
thermus en.html). Approximately 80% of the ORFs have
been completely cloned into the overexpression vectors
pET-11a, pET-11b, pET-3a, and/or pET-HisTEV. Fur-
thermore, plasmids for gene disruption are also avail-
able from the Structural-Biological Whole Cell Project
(http://www.thermus.org/). Protein purification profiles and
gene disruption methods can be downloaded from the
RIKEN Bioresource Center. Therefore, it is a relatively simple
matter to initiate an analysis of proteins of interest in this
species.

T. thermophilus HB8 has all of the fundamental enzymes
known to be essential for DNA repair, and most of these show
homology to human enzymes. Biological and structural
analyses of DNA repair in T. thermophilus will therefore
provide a better understanding of DNA repair pathways
in general. Moreover, these analyses are aided by the high
efficiency of protein crystallization and stability of purified
proteins in this species. In this paper we give a broad
overview of the whole DNA repair system and focus on the
molecular basis of the repair machineries, especially in T.
thermophilus HB8.

2. Direct Reversal of DNA Damage

UV-induced pyrimidine dimers and alkylation adducts can
be directly repaired by DNA photolyases and alkyl trans-
ferases, respectively. These repair systems are not followed by
incision or resynthesis of DNA.

2.1. Photolyases. UV-induced pyrimidine dimers, such as
cyclobutane pyrimidine dimers (CPDs) and (6-4) photo-
products, disturb DNA replication and transcription. Some
species make use of DNA photolyases to repair these lesions
(Figure 2(a)). The FADH− in the photolyase donates an
electron to the CPD, which induces the breakage of the
cyclobutane bond [7].

CPD photolyases repair UV-induced CPDs utilizing
photon energy from blue or near-UV light [8]. To absorb
light, CPD photolyases have two different chromophoric
cofactors. One of these, FAD, acts as the photochem-
ical reaction center in the repair process. An electron
is transferred from an exogenous photoreductor to FAD,
which is changed to the fully reduced, active form FADH−

[9]. Although only this chromophore is necessary for
the reaction, photolyases have a second chromophore as
an auxiliary antenna to harvest light energy, which is
transferred to the reaction center. The identity of the
second chromophore differs among species. To date, reduced
folate (5,10-methenyl-tetrahydrofolate, MTHF), 8-hydroxy-
5-deazaflavin (8-HDF), FMN, and riboflavin have been
identified as secondary chromophores.

A CPD photolyase (ORF ID, TTB102) of T. thermophilus
(ttPhr) was identified as the first thermostable photolyase
in 1997 [10]. The crystal structures of photolyases from E.

coli and Aspergillus nidulans were reported in 1995 and 1997,
respectively [11, 12]. Those of ttPhr and the complex it forms
with thymine, a part of its substrate, were reported in 2001
[13]. NMR analysis showed that the CPD is flipped out
from the double-stranded DNA (dsDNA) into a cavity in
ttPhr [14]. Likewise, the thymine dimer interacts with the
active site in the crystal structure of A. nidulans photolyase
complexed with substrate dsDNA [15]. NMR analysis also
showed the distance between FAD and CPD, which is
important for understanding the CPD repair reaction by
ttPhr [16]. In 2005, an overexpression analysis using E.
coli identified the second chromophore of ttPhr as FMN
[17]. Photolyases usually have a specific binding site for
cofactors, but the second chromophore, FMN, of ttPhr shows
promiscuous binding with riboflavin or 8-HDF [18].

Placental mammals lack photoreactivation activity, but
they do have nucleotide excision repair (NER) systems for
repairing CPDs [21]. NER has two sub-pathways: global
genomic repair (GGR) and transcription-coupled repair
(TCR) [3]. These sub-pathways are versatile repair systems
and are highly conserved across species. Thus, the absence
of photoreactivation activity would not have a significant
effect on DNA repair efficiency in placental mammals. The
mechanisms of NER are detailed in the later section. It should
be noted that mammals, birds, and plants have photolyase-
like proteins, the so-called cryptochromes, which have no
ability to repair damaged DNA but function as blue-light
photoreceptors [22].

2.2. Reversal of O6-Alkylguanine-DNA. O6-alkylguanine is
one of the most harmful alkylation adducts and can induce
mutation and apoptosis [23–25]. Almost all species possess
mechanisms to repair this adduct (Figures 2(b) and 2(c)).
O6-alkylguanine-DNA alkyltransferase (AGT) accepts an
alkyl group on a cysteine residue at its active site (PCHR) in
a stoichiometric fashion, and this alkylated AGT is inactive
(Figure 2(b)) [26–28]. AGT acts as a monomer and transfers
the alkyl group from DNA without a cofactor [29–31]. The
structure of human AGT, MGMT, indicates that a helix-turn-
helix motif mediates binding to the minor groove of DNA
and that O6-methylguanine (O6-meG) is flipped out from
the base stack into this active site [32, 33]. Tyrosine and
arginine residues in the active site of the enzyme mediate
nucleotide flipping.

The cysteine residue in the active site (PCHR) of AGT is
necessary for the methyltransferase activity. Some AGT-like
proteins lack cysteine residues in their active sites (PXHR)
[34–40]. Alkyltransferase-like (ATL) proteins are a type of
AGT homologue and are present in all three domains of
life. ATL proteins from E. coli, Schizosaccharomyces pombe,
and T. thermophilus can bind to DNA and show preferential
binding to O6-meG-containing DNA, but they are unable to
transfer a methyl group from the modified DNA [37–39].
This binding activity inhibits AGT activity in a competitive
manner [38]. E. coli has three AGT homologues, AGT, Ada,
and the ATL protein, but S. pombe and T. thermophilus have
only the ATL protein. Therefore, S. pombe or T. thermophilus
are particularly suitable for studies of ATL proteins.

http://www.brc.riken.jp/lab/dna/en/thermus_en.html
http://www.brc.riken.jp/lab/dna/en/thermus_en.html
http://www.thermus.org/
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Figure 1: Different repair systems for the principal types of DNA lesion produced by a wide range of factors. UV-light induces cyclobutane
pyrimidine dimers or (6-4) photoproducts that are repaired by nucleotide excision repair and direct reversal systems. Alkylating agents
can modify all of the bases and the phosphates of the DNA, and some repair proteins remove these alkyl adducts in a direct manner.
Oxygen radicals modify DNA, and the base excision repair system acts to reverse these changes. The main cause of spontaneous mutation
is deamination, and base excision repair and alternative repair systems remove the lesions. Other bulky adducts or interstrand cross-links
are repaired by the nucleotide excision repair system. The mismatch repair pathway repairs replication errors. Double-strand breaks and
four-way junctions are induced by X-rays and are repaired by recombinational repair.

The tyrosine and arginine residues involved in base
flipping are also conserved in ATL proteins. A fluorescence
assay of the T. thermophilus ATL protein (TTHA1564)
suggested that it can also recognize O6-meG and flips out
the target residue into its active site (Figure 2(c)) [37]. The
crystal and NMR structures of ATL proteins indicate that the
O6-meG residue is flipped out from the base stacks into the
active site [34, 40]. Mutational analysis demonstrated that
the tyrosine and arginine residues of ATL proteins are also
involved in base flipping [34].

A comparison of their 3D structures showed that the
lesion-binding pocket of ATL proteins is approximately three
times larger than that of AGTs [34, 40]. The S. pombe ATL
protein (Atl1) can bind to the bulky O6-adduct, O6-4-(3-
pyridyl)-4-oxobutylguanine (O6-pobG), with higher affinity
than to O6-meG [34]. Additionally, AGT repairs O6-pobG
with lower efficiency than O6-meG. In species that have both

AGT and ATL protein, for example, E. coli, it is possible that
AGT repairsO6-meG while the ATL protein is involved in the
repair of bulky O6-adducts such as O6-pobG.

It is known that the action of ATL proteins is linked
with the NER pathway (Figure 2(c)) [34, 36, 37, 40]. The
ATL protein of T. thermophilus, TTHA1564, can interact
with UvrA, while that of E. coli can interact with UvrA and
UvrC [36, 37, 40]. MNNG caused an increased mutation
frequency in the ttha1564-deficient mutant compared with
the wild type (unpublished data). Genetic analysis of S.
pombe Atl1 showed that atl1 is epistatic to rad13 (the fission
yeast orthologue of human ERCC5) and swi10 (the ERCC1
orthologue) but not to rhp14 or rad2 for N-methyl-N ′-nitro-
N-nitrosoguanidine (MNNG) toxicity [40]. Analyses of the
spontaneous mutation rate of rad13 and rad13 atl mutants
suggested that ATL-DNA complexes block an alternative
repair pathway probably because ATL proteins form a highly
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Figure 2: A schematic representation of models for direct reversal of DNA damage. The structure of the ATL proteins was modeled by
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(a) Cyclobutane pyrimidine dimers are recognized by photolyase (TTHB102; PDB ID: 1IQR) and repaired by photolyase. (b) O6-
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stable complex with DNA in the absence of Rad13 or other
NER proteins [40]. However, the mechanism by which ATL
proteins repair lesions in collaboration with NER proteins is
not well understood.

The protein Ada repairs alkylated lesions in the same
manner as AGTs in E. coli (Figure 2(b)) [27]. The amino
acid sequence and the molecular function of the C-terminal
domain of Ada (C-Ada) show similarity to those of AGTs.
The N-terminal domain of Ada (N-Ada) can repair a methyl
phosphotriester lesion in DNA in vitro [44]. Methylated N-
Ada specifically binds to the promoter region of the ada-alkB
operon and the alkA and aidB genes and C-Ada can bind to
RNA polymerase [45, 46]. Thus, the methylated Ada acts as
a transcriptional activator.

2.3. AlkB. AlkB homologues are conserved in many
organisms including humans and E. coli. As described
above, alkB is one of the genes regulated by Ada. AlkB
requires α-ketoglutarate and Fe(II) as cofactors to repair
N1-methyladenine or N3-methylcytosine via an oxidative
demethylation mechanism [46]. These properties are con-
sistent with the fact that AlkB has sequence motifs in
common with 2-oxoglutarate and iron-dependent dioxyge-
nases (Figure 2(d)) [47]. AlkB oxidizes the methyl group
using nonheme Fe2+, O2, and α-ketoglutarate to restore
undamaged bases with subsequent release of succinate, CO2,
and formaldehyde. The detailed mechanisms of substrate
recognition and catalysis were identified by structural and
mutational analyses.

Eight AlkB homologues are known in humans, [48]
and, of these, ALKBH1, ALKBH2, and ALKBH3 have been
identified as repair enzymes, each of which has a different
substrate specificity [49, 50]. E. coli AlkB can repair a
lesion in both single-stranded DNA (ssDNA) and dsDNA,
whereas ALKBH3 repairs lesions only in ssDNA. ALKBH1
and ALKBH2 can act only on DNA whereas E. coli AlkB and
ALKBH3 can act on both DNA and RNA [51]. The crystal
structures of AlkB-dsDNA and ALKBH2-dsDNA complexes
explain distinct preferences of AlkB homologues for sub-
strates [51]. Cell cycle-dependent subcellular localization
experiments suggested that ALKBH2 and ALKBH3 repair
mainly newly synthesized DNA and mRNA, respectively, and
withhold demethylation of modified rRNA or tRNA.

3. Base Excision Repair

DNA is altered and damaged by various endogenous and
exogenous reactions [52]. With regard to endogenous
reactions, deamination of cytosine, adenine and guanine
produce uracil, hypoxanthine, and xanthine, respectively.
Depurination and depyrimidination result in the formation
of an apurinic/apyrimidinic site (AP site). Reactive
oxygen species (ROSs) convert guanine to 7,8-dihydro-
8-oxoguanine (8-oxoguanine, 8-oxoG, or its isomeric
form 8-hydroxyguanine) and purine bases to 2,6-diamino-
4-hydroxy-5-formamidopyrimidine (FaPyG) and 4,6-
diamino-5-formamidopyrimidine (FaPyA). Thymine glycol,
cytosine hydrates, and etheno adducts of adenine, cytosine,

and guanine are also generated as a result of oxygen damage.
DNA replication errors also introduce lesions into the DNA.
For example, DNA polymerases sometimes incorporate
mismatched bases or damaged nucleotides (such as dUMP
and 8-oxo-dGMP) [53–55]. With regard to exogenous
reactions, DNA is susceptible to damage by agents such
as UV radiation and alkylating compounds. The lesions
caused by endogenous and exogenous reactive species can
be repaired through the base excision repair (BER) pathway
described below.

3.1. General Mechanism of BER. BER is probably the most
frequently used DNA repair pathway in the cell (Figure 3,
Table 1) [56, 57]. Bases damaged as described above are
specifically recognized by various DNA glycosylases to
initiate BER [58]. Monofunctional DNA glycosylases catalyze
the hydrolysis of N-glycosyl bonds and generate an AP
site. Bi- and trifunctional DNA glycosylases have AP lyase
activity via a β- or β/δ-elimination mechanism using an
ε amino group of a lysine residue or α-imino group in
addition to DNA glycosylase activity [59]. However, it
is still unclear whether this lyase activity is the primary
in vivo mechanism. AP sites are targeted by both AP
endonuclease and AP lyase. AP endonuclease nicks an AP
site through a hydrolytic reaction to generate a 3′-OH and
5′-deoxyribosephosphate (dRP) [60–62]. This 5′ block is
removed by deoxyribophosphodiesterase (dRPase) or dRP
lyase using hydrolytic or lyase (β-elimination) mechanisms,
respectively [63–65]. When the AP lyase incises an AP site,
it produces 3′-α,β-unsaturated aldehyde (by β-elimination)
or 3′-phosphate (by β/δ-elimination) and 5′-phosphate
[66]. These 3′-blocking groups must be removed by 3′-
phosphoesterase to allow DNA polymerase activity. A one-
nucleotide gap typically remains after AP site processing.
When repair synthesis is performed by incorporation of a
single nucleotide, this pathway is called single nucleotide-
BER (SN-BER) [67]. Some DNA polymerases can synthesize
DNA of more than 2 bases by strand displacement activity,
followed by cleaving flap DNA via flap endonuclease activity.
This pathway is called long-patch BER (LP-BER) [67]. In
both pathways, the resulting nick is sealed by DNA ligase.

3.2. BER in T. thermophilus. The T. thermophilus HB8
genome contains the genes for all the fundamental BER
enzymes. The genome includes the following monofunc-
tional DNA glycosylases: 3-methyl-adenine DNA glycosylase,
TTHA0329 (ttAlkA); uracil DNA glycosylase A, TTHA0718
(ttUDGA); uracil DNA glycosylase B, TTHA1149 (ttUDGB).
It also includes the following bifunctional DNA glycosylases:
endonuclease III (Nth), TTHA0112 (ttEndoIII); adenine
DNA glycosylase, TTHA1898 (ttMutY); formamidopyrimi-
dine DNA glycosylase, TTHA1806 (ttMutM). AP endonucle-
ases are classified on the basis of their structure as members
of either the exonuclease III family or the endonuclease IV
(Nfo) family. The only AP endonuclease in T. thermophilus
is the EndoIV, TTHA0834 (ttEndoIV); a similar restriction
occurs in other bacterial and archaeal species. T. thermophilus
has been found to have two DNA polymerases, TTHA1054
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Figure 3: General mechanism of the BER pathway in T. thermophilus. UDGA, UDGB, and AlkA are monofunctional DNA glycosylases.
UDGA (PDB ID: 1UI0) and UDGB (PDB ID: 2DDG) remove uracil from DNA. AlkA removes 3-methyladenine in E. coli. MutY and
EndoIII are bifunctional DNA glycosylases and have both DNA glycosylase and AP lyase activities. MutY removes adenine opposite 8-oxoG,
and EndoIII removes pyrimidine residues damaged by ring saturation, fragmentation, and contraction [41], by which 3′-phospho α,β-
unsaturated aldehyde (3′-PUA) remains. MutM (PDB ID: 1EE8) is a trifunctional DNA glycosylase that removes 8-oxoG from oxidatively
damaged DNA and 3′-phosphate remains. An AP site resulting from DNA glycosylase activity is processed by EndoIV or multifunctional
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(ttPolI) and TTHA1150 (ttPolX), and an NAD+-dependent
DNA ligase, TTHA1097 (ttLigA). The crystal structures of
ttUDGA [68], ttUDGB [69], ttMutM [70], and ttEndoIV
(unpublished data) have been determined.

Uracil-DNA glycosylases (Ungs or UDGs) remove uracil
from DNA by cleaving the N-glycosylic bond. These enzymes
are classified into several families on the basis of similarities
in their amino acid sequences [71, 72]. T. thermophilus HB8
has two Ungs that belong to families 4 (ttUDGA) and 5
(ttUDGB). ttUDGA removes uracil from not only U : G but
also U : C, U : A, and U : T and can also remove uracil from
ssDNA. Moreover, the crystal structure of ttUDGA with
uracil indicates that the mechanism by which family 4 Ungs
remove uracils from DNA is similar to that of family 1
enzymes [68]. The crystal structures of apo-form ttUDGB
and ttUDGB complexed with AP site containing DNA have
been solved [69]. The active site structures suggest that this
enzyme uses both steric force and water activation for its

excision reaction. Based on the absence of a significant open-
closed conformational change upon binding to DNA, it was
proposed that Ungs recognize the damaged base by sliding
along the target-containing strand [69].

MutM is a trifunctional DNA glycosylase which removes
8-oxoG from oxidatively damaged DNA [73]. ttMutM was
cloned, characterized, and crystallized. Based on crystal
structure and biochemical experiments of ttMutM, DNA-
binding mode and catalytic mechanism of MutM were
proposed [70].

In mammalian cells, SN-BER is the principal BER
sub-pathway and is catalyzed mainly by Polβ [74, 75].
Nevertheless, LP-BER also occurs in vivo [76]. The selection
of which sub-pathway to use is dependent on the nature
of the damaged base, the 5′-blocking structure, and the
enzymes involved [74, 77–82]. Bacteria have both SN- and
LP-BER pathways [83]. Bacterial PolIs, including ttPolI,
have strand displacement [84] and flap endonuclease-like
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activities (structure-specific 5′-nuclease activity) [85–89].
Therefore, PolI is probably the main DNA polymerase in
bacterial LP-BER. Furthermore, the fact that the β-clamp,
the β subunit of DNA polymerase III holoenzyme, interacts
with some DNA repair enzymes, such as PolI and LigA [90],
indicates that it is possibly involved in bacterial LP-BER in a
similar manner to mammalian PCNA clamp [77].

Many bacteria have PolX, which belongs to the X-
family DNA polymerases; the mammalian homologues of
this enzyme are Polβ, Polλ, Polμ, TdT, and Polσ [91]. PolXs
can efficiently fill a short DNA gap in mammals [79, 92]
and bacteria [93] and are therefore thought to be the main
DNA polymerases in the SN-BER pathway [74, 75, 94].
Although PolX is conserved in many bacteria, including T.
thermophilus, E. coli does not have this enzyme. Therefore,
T. thermophilus has an advantage as a model organism in
understanding human and bacterial BER. ttPolX has two
principal active regions, the N-terminal POLX core (POLXc)
domain and the C-terminal polymerase and histidinol
phosphatase (PHP) domain. These domains are conserved
in many bacteria, but eukaryotic PolXs lack the PHP domain.
Furthermore, it is thought that only PHP domain-containing
PolXs have 3′-5′ exonuclease activity [95, 96]. The PHP
domain has nine catalytic residues and is mainly responsible
for the nuclease activity; however, the POLXc domain is also
needed for this activity [97]. Although the PHP domain
is thought to have a phosphoesterase activity, details of
the function of the PHP domain remain to be clarified.
Bacterial PolXs may play more than two roles in the BER
pathway whereas these functions might be performed in
eukaryotes by two or more separate enzymes. Identifying the
role of the PHP domain of bacterial PolXs in BER will be
important for understanding both bacterial and eukaryotic
BERs.

3.3. Eukaryotic-Specific BER Enzymes. Eukaryotes have many
functional homologues of bacterial BER enzymes, and
the mechanism of BER is similar to that of prokaryotes.
However, eukaryotes also have specific BER enzymes. To
date, poly(ADP-ribose) polymerase (PARP) and X-ray cross-
complementing group 1 (XRCC1) have been identified
as eukaryotic-specific enzymes. PARP1 uses NAD to add
branched ADP-ribose chains to proteins. PARP1 functions as
a DNA nick-sensor in DNA repair and as a negative regulator
of the activity of Polβ in LP-BER [98]. XRCC1 interacts with
DNA ligase III and PARP through its two BRCT domains
and with Polβ through an N-terminal domain. XRCC1 also
interacts with many other proteins and forms a large DNA
repair complex [99, 100].

4. Nucleotide Excision Repair

Nucleotide excision repair (NER) is one of the most impor-
tant repair systems and is conserved from prokaryotes to
higher eukaryotes [101, 102]. The most important feature of
the NER system is its broad substrate specificity: NER can
excise DNA lesions such as UV-induced pyrimidine dimers
or more bulky adducts [103].

In the prokaryotic NER system, recognition and excision
of DNA lesions are mediated by UvrABC excinucleases
(Figure 4) [101, 102]. After the incision event, UvrD
helicase removes the nucleotide fragment, PolI synthesizes
the complementary strand, and then DNA ligase completes
the repair process. NER has two sub-pathways, global
genomic repair (GGR) and transcription-coupled repair
(TCR) [104, 105]. In GGR, recognition of DNA lesions by
UvrAB initiates the initiation of the repair reaction, whereas,
in TCR, stalling of the RNA polymerase is responsible for
the initiation of repair [106]. When a transcribing RNA
polymerase meets a bulky DNA lesion, the polymerase
stalls. Transcription-repair coupling factor (TRCF) releases
the stalled RNA polymerase from the template DNA and
then recruits UvrA. After UvrA has bound to the DNA,
the subsequent reactions proceed in the same fashion as in
GGR.

Most eukaryote species, including humans, possess an
NER system. The amino acid sequences of the proteins
that act in eukaryotic NER are very different from those
of bacterial proteins, but the functions of these proteins
are nevertheless similar [101]. The molecular mechanism of
NER is more complicated in eukaryotes than bacteria. The
eukaryotic NER pathway involves more than ten proteins,
including some that are functional homologues of those
required for bacterial NER [107].

4.1. Global Genomic Repair (GGR). Bacterial GGR is a
multistep process that removes a wide variety of DNA
lesions. In solution, UvrA and UvrB form UvrA2B or
UvrA2B2 that can recognize lesions in DNA and can make a
stable complex with the DNA [108, 109]. When UvrB detects
a lesion, it hydrolyzes ATP to form the pro-preincision
complex. After UvrA is released, UvrB binds tightly to DNA
and makes a stable UvrB-DNA complex, that is, a pre-
incision complex. In this state, UvrB hydrolyzes ATP and
can then specifically recognize damage in the absence of
UvrA [110]. In E. coli, UvrB can hydrolyze ATP in this step
with UvrA but not without UvrA [111]. In T. thermophilus
HB8, the UvrB protein (ttUvrB; TTHA1892) shows ATPase
activity at its physiological temperature even in the absence
of UvrA (ttUvrA; TTHA1440) [112, 113]. Finally, a new
pre-incision complex is formed by binding new ATP [110].
UvrC can bind to the pre-incision complex to incise both
sides of a DNA lesion. The first incision is made at the
fourth or fifth phosphodiester bond on the 3′ side of the
lesion and is immediately followed by incision at the eighth
phosphodiester bond on the 5′ side [114, 115]. The catalytic
sites for 3′ and 5′ incisions are located in different domains of
UvrC. It has been reported that the expression levels of uvrA
and uvrB are approximately three times higher than that of
uvrC (ttha1548) in T. thermophilus [116].

UvrD is a DNA helicase that releases lesion-containing
DNA fragments from dsDNA. The purification and char-
acterization of UvrD from T. thermophilus (ttUvrD;
TTHA1427) have been reported [117]. After removing the
nucleotide fragment, PolI synthesizes a new strand with the
same sequence as the removed nucleotide fragment. The
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Figure 4: A schematic representation of models for the nucleotide excision repair pathway controlled by Uvr proteins. All of the
predicted protein structures were modeled using SWISS-MODEL. The template structures used in the model building were Geobacillus
stearothermophilus UvrA, the N- and C-terminal domain of Thermotoga maritime UvrC, G. stearothermophilus UvrD, Thermus aquaticus
DNA polymerase I, Thermus filiformis DNA ligase, and E. coli TRCF. UvrA (TTHA1440; predicted model) and UvrB (TTHA1892; PDB
ID: 1D2M) recognize the DNA lesion. In transcribing strand, TRCF (TTHA0889; predicted model) is also involved in recognition of the
lesion. UvrC (TTHA1568; predicted model) incises both sides of the lesion. The DNA fragment containing the lesion is excised by UvrD
(TTHA1427; predicted model), SSB (TTHA0244; 2CWA), and exonuclease RecJ (TTHA1167; PDB ID: 2ZXO). A new strand is resynthesized
by DNA polymerase I (TTHA1054; predicted model) and ligated by DNA ligase (TTHA1097; predicted model).

newly synthesized sequence is ligated to the adjacent strand
by DNA ligase, and all of the repair steps are completed.

4.2. Transcription-Coupled Repair (TCR). Bacterial TCR is a
highly efficient NER system. In 1985, it became apparent that
the DNA lesion in the transcribed strand is preferentially
repaired [118]. The first consequence of this mechanism is
that a stalled RNA polymerase interacts with UvrA with high
affinity. Interestingly, however, a stalled RNA polymerase
interrupts the NER repair system in vitro [119]. Hence,
it was suspected that an unknown factor must release the
stalled RNA polymerase and recruit NER proteins. Selby et al.
showed in E. coli that the gene product (transcription-repair
coupling factor, TRCF) of the mfd gene is the factor involved
[106, 120].

TRCF can release a stalled elongation complex but not
an initiation complex [106]. The activity for releasing an
elongation complex is dependent on ATP hydrolysis. After
the complex is released, TRCF can recruit UvrA to the DNA
lesion. TRCF has a UvrB homology module, which interacts
with UvrA [106, 121]. After recruiting UvrA to the DNA
lesion, the subsequent reactions are the same as in GGR.
UvrB and DNA form a pre-incision complex, and then UvrC
incises both sides of the DNA strand.

The broad substrate specificity of TCR is similar to that
of GGR, but TCR repairs lesions with a higher efficiency
[106]. In TCR, UvrA can be more rapidly directed to the
DNA lesion because the stalled RNA polymerase and TRCF
mediate binding of UvrA, whereas, in GGR, UvrA needs to
search for DNA lesions across the whole genome without
the aid of cofactors. An increased efficiency in finding the
substrate also increases the efficiency of the repair system.

4.3. Crystal Structures and Functions of Key Enzymes. The
overall crystal structures of UvrA, UvrB, and TRCF and the
two domains of UvrC were determined some years ago [122–
128]. In 1999, UvrB was the first of the proteins involved in
NER to have its crystal structure established [124, 125, 127].
Later, in 2006, the 3D structure of the UvrB-DNA complex
was reported [129]. It was suggested by limited proteolysis
that ttUvrB is comprised of four domains, whereas analysis
of the 3D structure identified five domains, 1a, 1b, 2, 3,
and 4 (Figure 5(a)) [125, 130]. Domain 2 interacts with
UvrA, and domain 4 interacts with both UvrA and UvrC.
Domains 1a and 3 contain helicase motifs and share high
structural similarity to the DNA helicases NS3, PcrA, and
Rep. The flexible β-hairpin-connecting domains 1a and 1b
are predicted to play important roles in DNA binding.
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The structure of the UvrB-DNA complex shows that the
nucleotide directly behind the β-hairpin is flipped out and
inserted into a small pocket in UvrB [129].

The crystal structures of the N-terminal and C-terminal
domains of UvrC were reported in 2005 and 2007, respec-
tively, but the 3D structure of the interdomain loop and
of full-length UvrC is still unclear [123, 128]. The N-
terminal domain of UvrC catalyzes the 3′ incision reaction
and shares homology with the catalytic domain of GIY-YIG
family endonucleases. The C-terminal domain of UvrC is
responsible for the 5′ incision [123]. It includes an endonu-
clease domain and an (HhH)2 domain. Despite the lack of
sequence homology, the endonuclease domain has an RNase
H-like fold. We established the methods of purification
of UvrC from T. thermophilus (ttUvrC; TTHA1568), and
Hori et al. developed an in vitro reconstitution system of
NER using purified ttUvrA, ttUvrB, and ttUvrC [131]. The
ttUvrABC system can recognize a (6-4) thymine dimer and

excise the affected strand; however, it does not excise a
strand containing 8-hydroxy-2′-deoxyguanine or 2-hydroxy-
2′-deoxyadenine [131].

The overall structure of UvrA was reported in 2008 [126].
UvrA is comprised of six domains: ATP-binding I, signature
I, ATP-binding II, signature II, UvrB-binding, and insertion
domains (Figure 5(b)). UvrA has two ATPase modules: one
is divided into an ATP-binding domain I and a signature
domain I, the other is divided into an ATP-binding domain
II and a signature domain II. UvrA contains three zinc ions.
It has been reported that ttUvrA and ttUvrB can recognize
bulky adducts, such as tetramethylrhodamine and tetram-
ethylrhodamine ethyl ester, and (6-4) pyrimidine dimer
[113, 131]. Furthermore, it has been shown that ttUvrA
can interact with the ATL protein, but the physiological
significance of this interaction remains unclear [37].

The overall structure of TRCF was reported in 2006
[122]. Domains 1a, 2, and 1b comprise a UvrB homology
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module, which interacts with UvrA (Figure 5(c)). Domains
5 and 6 comprise a DNA translocation module. Domain 4
is an RNA polymerase interaction domain (RID). The RID
and the DNA translocation modules are linked by a long
helix called the relay helix. The functions of domains 3 and
7 are unclear. The mfd gene from T. thermophilus (the gene
product name is ttTRCF; TTHA0889) is listed in the genome
annotation but no formal report has yet been published.

The 3D structures of these proteins show that they
all contain several enzymatic domains. The NER pathways
involve multi-step processes; therefore, almost all the pro-
teins can interact in order to advance the process to the next
repair step. TRCF has a UvrA-binding domain whose amino
acid sequence and 3D structure are similar to those of the
UvrB domain 2 [122]. Therefore, it might be expected that
TRCF would bind to UvrA in the same manner as UvrB. The
mechanisms of interaction of TRCF with UvrA and other
proteins, such as the ATL protein, are not yet well defined.

5. Mismatch Repair

The DNA mismatch repair (MMR) machinery recognizes
and corrects mismatched or unpaired bases that principally
result from errors by DNA polymerases during DNA repli-
cation. MMR increases the accuracy of DNA replication
by at least 3 orders of magnitude [132]. Mutations in
the genes involved in MMR are associated with increased
predisposition to human hereditary nonpolyposis colorectal
cancers [133]. Postreplication MMR is achieved by removal
of a relatively long tract of mismatch-containing oligonu-
cleotides, a process called long-patch MMR. Here, we refer
to long-patch MMR simply as MMR.

5.1. Methyl-Directed MMR in E. coli. In E. coli, the first steps
in MMR are performed by the MutHLS system, which con-
sists of three proteins, MutS, MutL, and MutH (Figure 6(a))
[134, 135]. In this system, a MutS homodimer recognizes
and attaches to a mismatched base in the dsDNA [136–138].
A MutL homodimer then interacts with and stabilizes the
MutS-mismatch complex and activates a MutH restriction
endonuclease [139]. The MMR system needs to discriminate
the newly synthesized DNA strand in order to remove
the incorrect base of the mismatched pair. However the
mismatch itself contains no signal for such discrimination.
The E. coli MMR system utilizes the absence of methylation
at a restriction site to direct repair to the newly synthesized
strand [135]. Immediately after replication, the restriction
sites in the newly synthesized strand remain unmethylated.
At the site of a mismatch, the MutH endonuclease nicks
the unmethylated strand at a hemimethylated GATC site
to introduce an entry point for the excision reaction. The
error-containing region is excised by a DNA helicase [140]
and an ssDNA-specific exonuclease [141–143]. The excised
tract of oligonucleotides is then replaced by DNA synthesis
directed by DNA polymerase III and a ligase. Since the
absence or presence of methylation provides the signal
for strand discrimination, E. coli MMR is termed methyl-
directed MMR [135]. Homologues of E. coli MutS and MutL

are found in almost all organisms; however, no homologue of
E. coli MutH has been identified in the majority of eukaryotes
or most bacteria.

5.2. Nick-Directed MMR in Eukaryotes. In eukaryotes, it
has been demonstrated that strand discontinuity serves as
a signal for directing MMR to a particular strand of the
mismatched duplex in vitro. In living cells, newly synthesized
strands contain discontinuities as 3′-ends or termini of
Okazaki fragments. Since the presence or absence of a nick
can be a strand discrimination signal, eukaryotic MMR is
termed nick-directed MMR. It has also been reported that
the shorter path from a nick to the mismatch is removed
by the excision reaction, indicating that 5′- and 3′-nick-
directed MMR are distinct [144–147]. Surprisingly, both
5′- and 3′-nick-directed strand removal requires the 5′-3′

exonuclease activity of exonuclease 1 (EXO1) [148, 149]. This
apparently contradictory requirement for 5′-3′ exonuclease
activity in 3′-nick-directed MMR was explained by the
breakthrough discovery that the human MutL homologue
MutLα (MLH1-PMS2 heterodimer) and the yeast homo-
logue MutLα (MLH1-PMS1 heterodimer) harbor latent
endonuclease activity, which nicks the discontinuous strand
of the mismatched duplex [147, 150, 151]. In eukaryotic 5′-
nick-directed and 3′-nick-directed MMR, MutLα incises the
3′- and 5′- sides of a mismatch, respectively, to yield a DNA
segment spanning the mismatch. Then, the 5′-3′ exonuclease
activity of EXO1 removes the segment.

5.3. MMR in mutH-Less Bacteria. The DQHA(X)2E(X)4

motif in the C-terminal domain of the PMS2 subunit of
human MutLα comprises the metal-binding site, which
is essential for endonuclease activity [150]. In mutH-less
bacteria, the C-terminal domains of MutL homologues
contain this metal-binding motif and exhibit endonuclease
activity [150, 152]; moreover, in T. thermophilus, Aquifex
aeolicus, and Neisseria gonorrhoeae, this activity is abolished
by mutations in the motif [152–154]. The endonuclease
activity of T. thermophilus MutL has been shown to be
essential for in vivo DNA repair activity [152]. Thus,
the molecular mechanism of MMR in mutH-less bacteria
appears to resemble that of eukaryotic MMR (Figure 6(b)).

MutS homologues from mutH-less bacteria show funda-
mentally similar properties to E. coli MutS and eukaryotic
MutSα. First, T. thermophilus MutS exhibits a high affinity for
mismatched heteroduplexes [138, 155], and the mismatch-
MutS complex seems to be stabilized by MutL [152].
Second, similar ATP binding-dependent conformational
changes have been observed in MutS homologues from
T. thermophilus [156], E. coli [157, 158], and humans
[159, 160]. Third, the crystal structures of Thermus aquaticus
MutS [137], E. coli MutS [136, 161], and human MutSα
[162] exhibit a common mismatch recognition mode in
which the mismatched base is recognized by the intercalated
phenylalanine residue from one of the two subunits. Finally,
T. thermophilus mutS gene complements the hypermutability
of the E. coli mutS-deleted null mutant [138]. These results
indicate that interspecies variations in MMR machinery may
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Figure 6: A schematic representation of models for MMR pathways in E. coli and mutH-less bacteria. (a) 5′- and 3′-methyl-directed MMR
in E. coli. DNA mismatches principally result from misincorporation of bases during DNA replication. The MutS (PDB ID: 1E3M)/MutL
(PDB ID: 1NHJ) complex recognizes a mismatch and activates the MutH endonuclease (PDB ID: 1AZO). MutH nicks the unmethylated
strand of the duplex to introduce an entry point for the excision reaction. In 3′-methyl-directed MMR, one of the 5′-3′ exonucleases (RecJ
and exonuclease VII (ExoVII)) removes the error-containing DNA strand in cooperation with UvrD helicase (PDB ID: 2IS4) and single-
stranded DNA-binding protein (SSB; PDB ID: 1EYG). By contrast, one of the 3′-5′ exonucleases (exonuclease I (ExoI; PDB ID: 1FXX)
and exonuclease X (ExoX)) is responsible for the 3′-5′ excision reaction. DNA polymerase III (PDB ID: 2HNH) and DNA ligase (PDB
ID: 2OWO) synthesize a new strand to complete the repair. (b) A predicted model for 5′- and 3′-nick-directed MMR in T. thermophilus.
After recognition of a mismatch by MutS (TTHA1324), MutL (TTHA1323) incises the discontinuous strand of the mismatched duplex to
direct the excision reaction to the newly synthesized strand. The error-containing DNA segment is excised by UvrD helicase (TTHA1427),
SSB (TTHA0244), and an exonuclease (either RecJ (TTHA1167; PDB ID: 2ZXR) or ExoI (TTHB178)) followed by the resynthesis of a new
strand by DNA polymerase III (TTHA0180) and DNA ligase (TTHA1097). The modeled structures of T. thermophilus MutS, MutL (amino
acid residues 1–316), ExoI, DNA polymerase III α subunit, DNA ligase, and E. coli RecJ were modeled using SWISS-MODEL. The template
structures used for model building were E. coli MutS, the N-terminal domain of MutL, ExoI, UvrD, DNA polymerase III α subunit, DNA
ligase, and T. thermophilus RecJ.

principally derive from differences in the functions of the
MutL homologues.

The biochemical properties of MutL endonucleases have
been studied using MutL homologues from mutH-less ther-
mophilic bacteria such as T. thermophilus and A. aeolicus. The
endonuclease activity of T. thermophilus MutL is suppressed
by the binding of ATP [152]. MutL homologues belong to the
GHKL ATPase superfamily that also includes homologues
of DNA gyrase, Hsp90, and histidine kinase [163]. GHKL
superfamily proteins undergo large conformational changes
upon ATP binding and/or hydrolysis. Such conformational
changes are expected to affect the molecular functions of the
MutL homologues [164, 165]. The endonuclease activities
of MutL homologues exhibit no sequence or structure
specificity [150, 152]; hence, it is thought that living cells

may have mechanisms for regulating these activities. Cells
may employ ATP binding-induced suppression of MutL
endonuclease activity in order to ensure mismatch-specific
incision. It has also been suggested that the ATP binding
form of T. thermophilus MutL preferably interacts with a
MutS-mismatch complex [152]. Since the ATPase activity
of MutL is activated by interaction with MutS, it could
be speculated that the ATP binding-dependent suppression
of the endonuclease activity of MutL is canceled by the
interaction with a MutS-mismatch complex. Recently, it was
reported that the endonuclease activity of A. aeolicus MutL
in response to ATP depends on the concentration of the
protein and that when A. aeolicus MutL is present at relatively
high concentrations activity is stimulated, not suppressed,
by ATP [154]. This result indicates that ATP is required not
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only for suppression but also for active enhancement of the
endonuclease activity of MutL.

5.4. Strand Discrimination in Nick-Directed MMR. As men-
tioned above, a pre-existing strand break serves as a signal to
direct the excision reaction in eukaryotic nick-directed MMR
[146, 150]. Since daughter strands always contain 3′- or 5′-
termini during replication, these ends may act as strand
discrimination signals in vivo. In eukaryotic nick-directed
MMR, MutLα is responsible for strand discrimination by
incising the discontinuous strand [150]. Interestingly, MutLα
has been found to incise the discontinuous strand at a
distal site from the pre-existing strand break. It remains to
be elucidated how MutLα discriminates the discontinuous
strand of the duplex at a site far removed from the strand
discrimination signal. One possible explanation may lie in
the association of MutS and MutL homologues with replica-
tion machinery. MSH6 and MSH3 subunits contain a PCNA-
interacting motif [166], and this interaction between MutSα
and PCNA is now well characterized [167]. Furthermore,
both PCNA and replication factor C (RFC) are required for
stimulation of the latent endonuclease activity of MutLα in
eukaryotic MMR [150]. These results suggest that MutSα
(or MutSβ) and MutLα are loaded onto the substrate DNA
through an interaction with PCNA in the presence of RFC
to produce binding to the newly synthesized strand in the
catalytic site of the MutLα endonuclease domain [168–
170]. In mutH-less bacteria, it has been also demonstrated
that mismatch-provoked localization of MutS and MutL is
controlled through an association with β-clamp, a bacterial
counterpart of eukaryotic PCNA [171]. These interactions
may also be responsible for strand discrimination in bacterial
nick-directed MMR.

5.5. Downstream Events in Nick-Directed MMR. EXO1 is
responsible for the excision reaction in eukaryotic MMR in
vitro. To date, EXO1 is the only ssDNA-specific exonuclease
that has been reported to be involved in the reaction
[150, 172]. In addition, no MMR-related eukaryotic DNA
helicase has yet been identified. The exonuclease activity
of eukaryotic EXO1 is enhanced by a direct interaction
with MutSα in a mismatch- and ATP-dependent manner
[173]. MutSα is known to form a sliding clamp that diffuses
along the DNA after mismatch recognition. The diffusion of
MutSα from the mismatch may be required for the activation
of EXO1 at the 5′-terminus of the error-containing DNA
segments. In contrast to eukaryotes, the MutL of A. aeolicus
stimulates DNA helicase activity in UvrD, an enzyme that
shows high conservation of amino acid sequence among
bacteria [174]. Furthermore, in T. thermophilus, genetic
analyses have indicated that 5′-3′ exonuclease RecJ and 3′-
5′ exonuclease ExoI are involved in parallel pathways of
MMR [175]. It is possible that mutH-less bacteria employ the
cooperative function of multiple exonucleases and helicases
to remove error-containing DNA segments.

Termination of the EXO1-dependent excision reaction in
eukaryotic 3′-nick-directed and MutLα-dependent 5′-nick-
directed MMR is expected to be determined by pre-existing

and newly introduced 3′-termini, respectively. In mutH-less
bacteria, the mechanism for termination of the excision-
reaction remains unknown. Since not only 5′-3′ exonuclease
but also 3′-5′ exonuclease can be involved in the repair
[175], termination of an excision reaction in 5′- and 3′-nick-
directed MMR might be achieved by the 3′- and 5′-termini
that are introduced by MutL.

Further biochemical and structural studies on exonu-
cleases are required to achieve a deeper understanding
of the excision reaction. Recently, the crystal structure of
intact RecJ, a 5′-3′ exonuclease, from T. thermophilus was
reported [176]. The entire structure of RecJ consists of four
domains that form a ring-like structure with the catalytic
site in the center of the ring. One of these four domains
contains an oligonucleotides/oligosaccharide-binding fold
that is known as a nucleic acid-binding fold. Knowledge of
these structural features increases our understanding of the
molecular basis for the high processivity and specificity of
this enzyme. Furthermore, two Mn2+ ions in the catalytic site
suggest that RecJ utilizes a two-metal ion mechanism [177]
for the exonuclease activity. The understanding of a 3′-5′

exonuclease in MMR has been also enhanced by the ongoing
biochemical studies on T. thermophilus ExoI [175]. The study
revealed that ExoI has extremely high KM value compared
with other exonucleases. The interactions with other MMR
proteins might stimulate the DNA-binding activity of ExoI.
Especially, it would be intriguing to examine the interaction
between ExoI and MutS.

6. Recombination Repair

DNA double-strand breaks (DSBs) are the most crucial
lesions in DNA for inducing loss of genetic information and
chromosomal instabilities. DSBs can be caused by ionizing
radiation, ROS, nuclease dysfunction, or replication fork
collapse [178]. Defects in the repair of DSBs lead to cancer
or other severe diseases [179–181]. There are two different
pathways for repair of DSBs, homologous recombination
(HR) and nonhomologous end-joining [178]. HR is the
accurate pathway and makes use of undamaged homologous
DNA as a template for repair. Nonhomologous end-joining
directly ligates two DSB ends together, and although it is
efficient, it is prone to loss of genetic information at the
ligation sites. In most bacteria, the HR pathway is thought
to be the major route for repair of DSBs [182–184].

Recombination repair of DSBs consists of various steps:
end resection, strand invasion, DNA repair synthesis, branch
migration, and Holliday junction (HJ) resolution (Figure 7).
Although the repair-related components and details of each
step show variations among organisms, these steps are
conserved in all organisms, and there are many evolutionarily
conserved functional homologues involved in recombination
repair [182, 184]. The first step of recombination repair,
end resection, is initiated by a 5′ to 3′ degradation of DSB
ends to generate 3′-ssDNA tails. Next, mediator proteins
bind to the 3′-tailed ssDNA and load the recombinase
to promote formation of a nucleoprotein filament. The
recombinase searches for a homologous DNA sequence
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Figure 7: A schematic pathway of recombination repair and structures of the proteins involved in T. thermophilus. Recombination repair
of DSBs is initiated by an end resection step in which DSB ends are processed by the concerted action of RecJ nuclease (TTHA1167; PDB
ID: 2ZXR) and SSB (TTHA0244; PDB ID: 2CWA) to form 3′-ssDNA tails. After end resection, the SSB-ssDNA complex is disassembled and
RecA recombinase (TTHA1818) is loaded onto ssDNA by “mediators”, RecF (TTHA0264), RecO (TTHA0623), and RecR (TTHA1600), to
promote strand invasion. DNA repair synthesis is primed by PolI (TTHA1054) and PolIII (TTHA0180) from the invaded strand of the D-
loop structure. Alternatively, second-end capture is mediated by RecO and SSB and branch migration mediated by the RuvA-RuvB complex
(TTHA0291-TTHA0406; PDB ID: 1IXR) and RecG (TTHA1266) to yield HJs. HJs are cleaved by RuvC resolvase (TTHA1090) and the
nicks sealed by LigA (TTHA1097). Newly synthesized DNA is colored in blue. The model structures of T. thermophilus RecA, RecF, RecO,
RecR, PolI, PolIII α subunit, RecG, RuvC, and LigA were generated using SWISS-MODEL. The models were based on the structures of
Mycobacterium smegmatis RecA (PDB ID: 2OE2), D. radiodurans RecF (PDB ID: 2O5V), RecO (PDB ID: 1U5K), RecR (PDB ID: 1VDD), E.
coli PolI (PDB ID: 1TAU), PolIII α subunit (PDB ID: 2HNH), RuvC (PDB ID: 1HJR), LigA (PDB ID: 2OWO), and Thermotoga maritima
RecG (PDB ID: 1GM5).

and catalyzes strand invasion to yield a D-loop structure.
After strand invasion, DNA synthesis occurs using the
homologous DNA as the template, and the intermediates
are processed through a branch migration reaction to form
HJs, stable four-stranded DNA structures. Finally, HJs are
endonucleolytically resolved into linear duplexes, and the
nicks at cleavage site are sealed by DNA ligase to complete
the repair. HR significantly contributes to retention of
genome integrity; however, this mechanism is also utilized
for the rearrangement of genome, such as incorporation of
foreign DNAs or intrachromosomal gene conversion [185,
186]. There are various anti-recombination mechanisms to
suppress excessive recombination that might cause genomic
instabilities [187, 188]. These sub-pathways interact with
each other to regulate the HR system.

6.1. End Resection and Loading of Recombinase. Recombina-
tion repair is initiated by an end resection step that processes
DSB ends to generate 3′-ssDNA tails. In mammals, various
nucleases and helicases have been implicated in this step,
such as the MRN complex, CTIP, EXO1, DNA2, and RECQ
paralogues [189]. By contrast, most bacteria have two major
sub-pathways, the RecF pathway and the RecBCD/AddAB
pathway [183, 190, 191]. The RecF pathway is highly
conserved in many bacteria and is similar to the eukaryotic
end resection pathway whereas the RecBCD/AddAB pathway
differs from that of eukaryotes and also shows diversity in
bacteria. In the RecF pathway, RecJ nuclease, RecQ helicase,
and SSB act in concert in the processing of DSB ends. After
DNA unwinding by RecQ helicase and 5′ to 3′ exonucleolytic
degradation by RecJ nuclease, the generated 3′-ssDNA tails
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Figure 8: A schematic illustration of RecA-ssDNA interaction in the nucleoprotein filament. (a) A schematic representation of a RecA-ssDNA
nucleoprotein filament. The filament comprises a helical structure. RecA molecules are shown as red spheres and the ssDNA as a black line.
(b) A schematic model of RecA-ssDNA interaction. The RecA protomer has the L1 and L2 loops and the N-terminal region to make contact
with the ssDNA. The bound ssDNA comprises a nucleotide triplet with a nearly normal B-form distance between bases followed by a long
internucleotide stretch before the next triplet. The ATP binds to RecA-RecA interfaces. The schematic model was prepared from the crystal
structure of RecA-ssDNA complex (PDB ID: 3CMW).

are coated and stabilized with SSB [192]. Interestingly,
there is no RecQ homologue in T. thermophilus HB8 [193].
However, a recent in vitro reconstitution study of the E. coli
RecF pathway showed that RecJ nuclease degrades dsDNA
exonucleolytically in the absence of RecQ helicase [190].
Another study also showed that Haemophilus influenzae
SSB directly interacts with RecJ nuclease and stimulates
exonuclease activity [194]. Based on these results, it could
be speculated that in T. thermophilus HB8, RecJ nuclease
and SSB might synergistically perform the end resection
step without involvement of a helicase. Recently, the crystal
structures of T. thermophilus RecJ and SSB were solved
[176]. By combining these structural data with biochemical
analyses, it should soon be feasible to elucidate the molecular
mechanism of the end resection step.

In the RecF pathway, after generation of 3′-ssDNA tails,
recombination mediators, RecFOR or RecOR, disassemble
the SSB-ssDNA complex and load RecA recombinase onto
ssDNA to form nucleoprotein filaments [190, 195]. Struc-
tural and biochemical analyses of T. thermophilus RecF, RecO,
and RecR proteins showed that RecR forms a tetrameric ring-
like structure and acts as a DNA clamp and also binds to RecF
and RecO; on the other hand, RecO can also bind to RecR,
SSB, and ssDNA [196–198]. These studies found that SSB
is displaced from ssDNA by RecO and that RecA loading is
mediated by RecR [198]. Based on these results, there appear
to be two distinct ways for SSB displacement and RecA
loading [190]. The RecFOR complex binds at the ssDNA-
dsDNA junction on the resected DNA and loads RecA onto
ssDNA in a 5′ to 3′ direction. The RecOR complex binds
to SSB-ssDNA complex and promotes the exchange of SSB

by RecA. These processes are very similar to the eukaryotic
recombination repair pathway mediated by RAD52, RAD54,
BRCA2, and RAD51 paralogues [199–202]. Recombinase
loading by “mediators” is thought to be a common system
of recombination repair in all three kingdoms of life.

6.2. Strand Invasion by Recombinase. The DNA strand
exchange between homologous segments of chromosomes
is catalyzed by the RecA-family recombinases, which include
RecA in bacteria, RAD51 in eukaryotes, and RadA in archaea
[203]. The processes catalyzed by these recombinases have
been studied in detail [204–206]. In bacteria, RecA binds to
ssDNA, forming helical nucleoprotein filament (Figure 8(a)).
Contact between the RecA-coated ssDNA and dsDNA allows
ssDNA to search sequence homology. Strand exchange is
initiated by local denaturation of dsDNA in a region of
homology. The invading strand forms a paranemic joint,
which is an unstable intermediate. When the free end
of the strand invades, the paranemic joint is converted
into a plectonemic joint, in which the two strands are
intertwined. Then heteroduplex formation is extended by
branch migration.

The crystal structure of RecA filament determined in
1992 [207] revealed six subunits in each helical turn, but
this structure contained no DNA. In 2008, Chen et al.
determined the structures of both RecA complexed with
ssDNA and with dsDNA [208], which are the substrate and
product forms of DNA strand exchange, respectively. The
RecA-ssDNA filament is different from the RecA filament
primarily in the orientation of the subunit relative to the
filament axis. The bound ssDNA makes contact with the
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L1 and L2 loops, which had been suggested to be DNA
binding sites and the N-terminal region (Figure 8(b)). It had
been previously assumed that in the nucleoprotein filament
ssDNA is uniformly stretched by about 1.5-fold [209].
However, unexpectedly, the DNA comprises a nucleotide
triplet (three-nucleotide segment) with a nearly normal B-
form distance between bases followed by a long untwisted
internucleotide stretch before the next triplet. In addition,
ATP binds to RecA-RecA interfaces, which can couple RecA-
ATP interaction to RecA-DNA interaction.

6.3. Postsynaptic Phase. After strand invasion, HJs are
formed through DNA repair synthesis, second-end capture,
and branch migration during the postsynaptic phase. In most
organisms, a range of DNA polymerases deal with the various
DNA processes, and several of these DNA polymerases are
involved in recombination-associated DNA repair synthesis
[210]. It has been shown that the translesion synthesis
(TLS) polymerase, Polη, and replicative polymerase, Polδ,
are involved in mammalian recombination-associated DNA
synthesis [211–214]. In addition, a recent genetic study
suggested the possible involvement of human Polν, prokary-
otic PolI-like enzyme, in HR [215]. However, it is still
unclear whether other DNA polymerases can synthesize the
DNA strand during recombination. Interestingly, bacterial
TLS polymerases, PolII, PolIV, and PolV, are also able to
synthesize the DNA strand in recombination processes as
well as PolI and PolIII in E. coli; however, the details of the
relationship between TLS and HR remain to be elucidated
[216]. The Deinococcus-Thermus group of bacteria has only
two processive DNA polymerases, PolI and PolIII, and,
therefore, it should be relatively straightforward to analyze
the involvement of DNA polymerases in recombination-
associated DNA synthesis [217, 218]. A recent study on
genome repair after ionizing radiation in Deinococcus radio-
durans showed that PolI and PolIII had distinct roles in
the extensive synthesis-dependent strand annealing repair
pathway [219]; therefore, it might be expected that in T.
thermophilus, PolI and PolIII will also act in concert in
recombination-associated DNA synthesis.

Second-end capture and branch migration also occur at
the same time as DNA repair synthesis in the postsynaptic
phase. In eukaryotes, second-end capture appears to be
mediated by RAD52 and RPA, whereas their functional
homologues in bacteria are RecO and SSB, respectively [220–
222]. Interestingly, it has been shown that E. coli RecO cannot
form joint molecules with the S. cerevisiae RPA-ssDNA
complex nor can S. cerevisiae RAD52 promote second-end
capture with either the human RPA-ssDNA complex or the
E. coli SSB-ssDNA complex [222]. These results indicate
that the second-end capture event can be performed in
a species-specific manner. Various DNA translocases are
involved in branch migration. There is evidence that RAD54
and RECQ paralogues process the joint molecules to generate
HJs in eukaryotes. By contrast, RuvAB, RecG and RadA/Sms
promote branch migration in bacteria [201, 223–225]. To
date, there is no satisfactory explanation as to why a
single organism might redundantly possess multiple branch
migration activities. In bacteria, RuvAB are believed to be

the main branch migration proteins based on their genetic
properties [223, 226]. Currently, the crystal structure of
the RuvAB-HJ complex is not available. However, various
crystal structures involving T. thermophilus RuvA and RuvB
proteins have been solved and their biochemical properties
determined [227–232]. In addition, an atomic model of the
RuvAB-HJ complex has been proposed based on data from
electron microscopic analyses [229, 233]. These structural
and functional analyses of RuvAB provide insights into its
molecular properties with regard to branch migration. Two
RuvA tetramers sandwich an HJ forming a planar confor-
mation while two RuvB hexameric rings are bound to the
arms of the junction symmetrically via RuvA and promote
branch migration using energy from ATP hydrolysis [224].
Furthermore, by combining structural and biochemical data
on RuvC resolvase, it is possible to suggest a model for
HJ resolution that involves the formation of a RuvABC
resolvasome [224, 234–237].

Recombination repair is completed by HJ resolution
and sealing of its cleavage sites. In mammals, members of
a structure-specific endonuclease family, including GEN1,
SLX1, MUS81-EME1, and ERCC4-ERCC1, are involved
in the resolution of HJs and recombination intermediates
[238]. Recent work showed that GEN1 can act as an
HJ resolvase. Other studies have suggested that the SLX4
protein can form a complex with SLX1, MUS81-EME1, or
ERCC4-ERCC1 and control their activities [239–243]. It has
been shown that the SLX1-SLX4 complex can resolve HJs
symmetrically. In bacteria, RuvC and RusA have HJ resolvase
activity. RuvC forms a dimeric structure and cleaves HJs
symmetrically in a sequence-specific manner [234, 244].
Biochemical analyses of RuvC in the presence of RuvAB
suggest that RuvC forms a complex with RuvAB and that
the HJ resolution event is coupled with the branch migration
reaction [235, 236]. In E. coli, there is another resolvase,
RusA, which has cleaved HJs symmetrically at specific sites
[245, 246]. It has also been suggested that topoisomerase III
can resolve HJs in E. coli as an alternative to the RuvABC
pathway [247]. T. thermophilus does not have either RusA
or topoisomerase III [217]. Thus, this organism will be
a suitable model for analyzing this step of HJ resolution
because of its simple and minimal systems.

6.4. Anti-Recombination. Since excessive recombination
events lead to the alteration of the genetic information,
various anti-recombination mechanisms are employed by
organisms to regulate the frequency of recombination [188].
For example, the MMR system is present in a wide range of
organisms and serves particularly to prevent homeologous
recombination [187]. In bacteria, RecX acts as an anti-
recombinase that inhibits RecA recombinase in both direct
and indirect manners [248]. Direct interaction with RecX
inhibits the recombinase activity of RecA and destabilizes
the nucleoprotein filament [249, 250]. RecX also suppresses
recA induction at the transcription level [248]. The UvrD
helicase is suspected to be an anti-recombinase because of
its activity to disassemble the RecA nucleoprotein filament in
vitro [251, 252].
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Recently, a novel anti-recombination mechanism was
identified in Helicobacter pylori and T. thermophilus. It was
found that disruption of mutS2, a bacterial paralogue of
the MMR gene mutS, significantly increased the frequency
of recombination events, indicating that mutS2 had an
anti-recombination function [253, 254]. It has also been
shown that MutS2 is not involved in MMR, that is,
MutS2 prevents recombination in an MMR-independent
manner. Detailed biochemical investigation showed that
T. thermophilus MutS2 possesses an endonuclease activity
that preferably incises the D-loop structure, the primary
intermediate in HR [253, 255–257]. MutS2 might suppress
HR through the resolution of early intermediates.
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