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Calcium homeostasis plays an essential role in maintaining excitation–contraction
coupling (ECC) in cardiomyocytes, including calcium release, recapture, and storage.
Disruption of calcium homeostasis may affect heart function, leading to the development
of various heart diseases. Myocardial ischemia/reperfusion (MI/R) injury may occur after
revascularization, which is a treatment used in coronary heart disease. MI/R injury is a
complex pathological process, and the main cause of increased mortality and disability
after treatment of coronary heart disease. However, current methods and drugs for
treating MI/R injury are very scarce, not ideal, and have limitations. Studies have shown
that MI/R injury can cause calcium overload that can further aggravate MI/R injury.
Therefore, we reviewed the effects of critical calcium pathway regulators on MI/R injury
and drew an intuitive diagram of the calcium homeostasis pathway. We also summarized
and analyzed calcium pathway-related or MI/R drugs under research or marketing by
searching Therapeutic Target and PubMed Databases. The data analysis showed that six
drugs and corresponding targets are used to treat MI/R injury and involved in calcium
signaling pathways. We emphasize the relevance of further detailed investigation of MI/R
injury and calcium homeostasis and the therapeutic role of calcium homeostasis in MI/R
injury, which bridges basic research and clinical applications of MI/R injury.
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INTRODUCTION

Myocardial ischemia/reperfusion (MI/R) is an inevitable process
in the treatment of cardiovascular diseases such as acute
myocardial infarction, thrombolysis, coronary angioplasty, and
cardiac arrest (Zhu et al., 2017). MI/R injury refers to a more
serious damage caused by ischemic myocardial tissues after
blood perfusion is restored. MI/R can aggravate reversible
damage to cardiac tissue; it may also promote reversible
damage into irreversible damage of cardiac tissue, eventually
worsening the patient's condition and even causing death (Fiolet
and Baartscheer, 2000). It can be clinically manifested as
arrhythmia, decreased cardiac function, and enlarged
myocardial necrotic area (Murphy and Steenbergen, 2008).
Recently, research has mainly focused on various theories such
as calcium overload, energy metabolism disorders, free radical
effects, oxidative stress, inflammatory response, and
mitochondrial dysfunction (Thind et al., 2015). Although vast
studies have reported on the mechanism underlying MI/R injury,
the clinical transformation is limited and the therapeutic effects
are not ideal. At present, there are few clinical treatments for MI/
R injury, mainly through ischemic post-conditioning and drugs
of anti-free radicals, dilating blood vessels, and reducing calcium
overload. Therefore, further exploring the mechanism of MI/R
injury and developing more effective anti-MI/R drugs are
necessary (Turer and Hill, 2010; Ibanez et al., 2015). Calcium
homeostasis is particularly important for myocardial cell
structure and function. So, it is of significance to focus on
some cardiac protective reagents related to calcium overload to
treat MI/R injury (Kleinbongard et al., 2012).

Ca2+ is an important cytoplasmic signaling molecule in most
cellular responses and is mainly distributed in extracellular and
intracellular organelles, such as sarcoplasmic reticulum (SR) and
mitochondria. Calcium plays a vital role in excitation–
contraction coupling (ECC) of heart tissue. When cardiac
action potential occurs, extracellular Ca2+ enters the cell
through L-type Ca2+ channels (LTCC), and intracellular Ca2+

activates ryanodine receptor 2 (RyR2) and more Ca2+ is released
from the sarcoplasmic reticulum releases (Marks, 2013). When
the intracellular Ca2+ is present at a certain level, it binds to the
myofilament protein troponin C causing myocardial contraction.
On the one hand, sarco (endo) plasmic reticulum Ca2+-ATPase
(SERCA) recaptures intracellular Ca2+ back to SR. On the other
hand, sodium/calcium exchanger (NCX) expels Ca2+ from the
cells and the dissociation of Ca2+ from myofilament protein
relaxes the myocardial cells (Hadri and Hajjar, 2011). The ECC
in myocardial cells can also be attributed to multiple organelles
together to maintain intracellular calcium homeostasis. Calcium
levels in myocardial cells are regulated by LTCC, NCX, SERCA,
RyR2, and mitochondria, which participate in calcium overload
during MI/R injury (Landstrom et al., 2017). The study of cardiac
calcium homeostasis has always been a hot topic. Common
experimental subjects include human induced pluripotent stem
cells (hiPSCs), isolated hearts, primary cardiomyocytes and
whole animals(Pall et al., 2003; Lee et al., 2011). Experimental
methods of calcium homeostasis are also constantly evolving
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usually through electrophysiological methods, such as field
potential and patch clamp; the direct capture technology of
intracellular calcium sparks, calcium leakage, and calcium
transients; traditional gene and protein qualitative or
quantitative techniques for in-depth study (Huffaker et al.,
2004; Eden et al., 2016). Continuously updated research
methods are conducive to clarifying the role of calcium
homeostasis in MI/R injury, thus accelerating drug
development for the treatment of MI/R injury to alleviate
limitations of clinical drugs.

Calcium homeostasis disorder is regarded as an important
treatment target for clinical intervention of MI/R injury.
However, there is currently no article that summarizes and
introduces the interaction between calcium homeostasis and
MI/R injury. Therefore, we review the role of calcium
homeostasis in MI/R injury and the contribution of calcium
signal pathway-related drugs currently under research or in the
market to MI/R injury. Our work aimed to provide strong
evidence for further development of MI/R candidate drugs
treatment for MI/R injury.
CALCIUM HOMEOSTASIS

Calcium Release
During cardiac action potential, Ca2+ enters through LTCC,
which triggers Ca2+ release from SR through RyR2. And
FKBP12.6 stabilizes RyR2 and prevents abnormal contraction
of cardiomyocytes (Bers, 2008).

LTCC
Voltage-gated calcium channels include Cav1 (LTCC), and Cav2
and Cav3, which are non-LTCCs. Cav1.2 and Cav1.3 are co-
expressed in multiple tissues (sinus node, atrium, and neurons)
and play similar regulatory roles. Cav1.1 and Cav1.4 are expressed
only in skeletal muscle and retina, respectively (Striessnig et al.,
2010). LTCC channel consists of a1, b, a2d, g subunits, and
calmodulin. The a1 subunit is the main pore-forming structure
with themost significant effect on the LTCC current intensity. As a
dual regulator, calmodulin is capable of Ca2+-dependent
inactivation and facilitation. The T-tubule on the plasma
membrane of ventricular myocytes is a typical recessed structure
with a large amount of LTCC distribution (Shaw and Colecraft,
2013). At myocardial cell action potential, LTCC is activated by
depolarization and opened for extracellular Ca2+ into the cell. This
enriched T-tubule spatial advantage is helpful for RyR2 of nearby
SR to complete calcium-induced calcium release. b2 adrenergic
receptor (b2AR) interacts directly with LTCC (Cav1.2); LTCC is
regulated by G protein, adenylate cyclase, PKA, PP1, and PP2A,
which affects channel activity. Some studies have shown that loss
or deficiency of LTCC function can lead to short QT intervals and
sudden cardiac death (Shaw and Colecraft, 2013). Cav1.2 subtype
blockers, such as nifedipine, verapamil, diltiazem, are clinically
called calcium channel blockers and are used for the treatment of
hypertension, angina pectoris, and arrhythmia (Kleinbongard
et al., 2012). Therefore, LTCC plays a pivotal role in many
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cardiovascular diseases, and more research is needed to elaborate
its specific mechanisms.

RyR2
RyR is a homotetrameric structure located on the SR membrane.
There are three RyR subtypes distributed in mammals: RyR1 is
mainly distributed in skeletal muscle, RyR2 primarily in cardiac
muscle tissue (Laver, 2018), and RyR3 mainly in brain tissue.
This article mainly introduces RyR2 function of in myocardial
tissue. RyR2 is a calcium channel that releases calcium from SR
to the cytoplasm after LTCC activation (Dulhunty et al., 2012).
The amount of calcium released by SR during a cardiac cycle is
related to LTCC current, RyR2 Ca2+ sensitivity, and SR Ca2+

content (Cully et al., 2018). RyR2 and inositol triphosphate
receptor (IP3R) have the same conservative structure, and
therefore, may have evolved from a common precursor
structure; the common allosteric activation mechanism of both
is N-terminus displacement of two adjacent domains (Dulhunty
et al., 2012). PKA hyperphosphorylated RyR2 increases calcium-
dependent calcium release, leading to diastolic calcium leakage in
cardiomyocytes and decreased myocardial contractility.
Importantly, FKBP12.6 can stabilize RyR2, thereby preventing
excessive calcium release by RyR2 and intracellular calcium
homeostasis imbalance (Oda et al., 2015). The role of RyR2 in
M/R remains debatable; however, reducing RyR2 activity has a
protective effect on cardiomyocytes. Specifically, reducing RyR2
opening before ischemia can reduce the calcium overload (Yang
et al., 2015). Studies have shown that during MI/R, RyR2
structure gets damaged, which also accounts for large amount
of calcium leaks in SR and calcium overload. Therefore, reducing
calcium leakage may be a novel strategy for treating MI/R
(Zucchi et al., 1994; Fauconnier et al., 2013).

FKBP12.6
The FK506 binding proteins (FKBP) are expressed in
cardiomyocytes and act as essential RyR2 regulators. FKBP12
and FKBP12.6 subtypes correspond to low and high RyR2
affinity, respectively. Reportedly, FKBP12.6 and not FKBP12
can inhibit RyR2 activity. FKBP12.6 and RyR2 association
keeps RyR2 closed, preventing calcium release from the SR,
thereby, ensuring heart relaxation (Xiao et al., 2018). PKA, Ca2
+-calmodulin–dependent protein kinase II (CaMKII), and
phosphatases are involved in RyR2 phosphorylation. PKA-
induced RyR2 phosphorylation (Ser-2808) promotes FKBP12.6
and RyR2 dissociation, thereby opening RyR2 and promoting
calcium-activated calcium release (Zhao et al., 2017). This
process may be caused by the reduction of PP1 and PP2A levels.

RyR2 phosphorylation caused by CaMKII (Ser-2814) is more
critical than that by PKA. Studies have shown that atrial
fibrillation induced in FKBP12.6 KO mice can be achieved by
inhibiting CaMKII phosphorylation RyR2 instead of PKA,
thereby inhibiting SR calcium leakage and delayed
depolarization (Bito et al., 2013). Decreasing RyR2 open
frequency has been shown to reduce heart failure. The
overexpression of cardiac FKBP12.6 in the mouse model has
shown to reduce the probability of RyR2 opening, but this
method is not sufficient to prevent and mitigate remodeling
Frontiers in Pharmacology | www.frontiersin.org 3
after myocardial infarction. Besides, TGF-b has a protective
effect on MI/R injury, and FKBP12 is a ligand of TGF-b.
FKBP12 can also promote the production of interleukin-2,
which is used as a transcription factor against MI/R injury
(Åström-Olsson et al., 2009). Therefore, FKBP12.6 reportedly
has potential in treatment of cardiovascular diseases.

Calcium Recapture
After myocardial contraction, intracellular Ca2+ is returned to SR
through SERCA; excessive Ca2+ can also be expelled from cells
through the NCX, resulting in myocardial cell relaxation (Zhu
et al., 2017).

NCX
Mammals have three NCX gene types, namely, SLC8A1 (NCX1),
SLC8A2 (NCX2), SLC8A3 (NCX3) (Giladi et al., 2016). In
mammals, NCX1 is widely distributed in a variety of cells,
NCX2 primarily in brain tissue, and NCX3 mainly in brain
and skeletal muscle. Besides, SLC8A4 (NCX4) is expressed in
amphibians, reptiles, and fish. NCX regulates myocardial ECC,
long-term enhancement, neuron development, immune
response, and mitochondrial function. NCX structure mainly
consists of 10 transmembrane helices and a large cytosolic
regulatory loop (f-loop) (Khananshvili, 2013). Unlike SERCA
(high affinity-low volume), NCX (low affinity-high volume)
responds quickly to changes in intracellular Ca2+ based on
[Ca2+]i. NCX performs intracellular and external ion-exchange,
according to 3Na+:Ca2+ (Chu et al., 2016; Giladi et al., 2016). The
direction of calcium movement depends on [Na+]i, [Ca

2+]i, and
membrane potential inside and outside the cell. NCX cannot be
phosphorylated by kinases but can be reversibly regulated by
cellular effectors, including Ca2+, Na+, H+, NO, PIP2,
phosphoarginine, phosphocreatine, ATP, endogenous NCX
inhibitor, and f-loop (Khananshvili, 2013).

NCX participates intracellular calcium homeostasis
regulation and is implicated in the occurrence and
development of various diseases, such as heart failure,
arrhythmia, diabetes, hypertension, and cerebral ischemia. The
role of NCX in cardiovascular diseases is debatable. Some studies
have shown that heart-specific NCX knockout mice can resist
MI/R injury, which may be associated with calcium overload
inhibition (Chu et al., 2016). Other studies have shown that NCX
can alleviate cardiomyocyte function in patients with heart
failure and overexpression reduces the development of systolic
and diastolic dysfunction (Khananshvili, 2013). In conclusion,
inhibiting reverse transport of NCX is an ideal method for
reducing calcium overload and a promising treatment strategy
for MI/R.

SERCA
There are three SERCA genotypes: ATP2A1 (SERCA1a,
SERCA1b), ATP2A2 (SERCA2a, SERCA2b, SERCA2c), and
ATP2A3 (SERCA3a-f), each of containing multiple subunits.
SERCA2a is the most important, mainly expressed in the heart
and slow-twitch skeletal muscle, and mainly involved in
cardiomyocyte ECC. SERCA1 is mainly expressed in fast-
twitch skeletal muscle, SERCA2b mainly in smooth muscle and
June 2020 | Volume 11 | Article 872
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non-muscle tissue, SERCA2c mainly in epithelial and
hematopoietic cells and SERCA3 primarily in hematopoietic
cells (Lipskaia et al., 2014). SERCA has a molecular weight of
110 kDa and hydrolyzes one ATP to transport two Ca2+ back to
the SR, causing myocardial relaxation (Balcazar et al., 2018).
SERCA consists of three distinct domains, including the
cytoplasmic head, the transmembrane region of ten helical
segments that contain two Ca2+ binding sites, and luminal
loops (Stammers et al., 2015).

A variety of molecules regulate SERCA; SERCA also affects
intracellular calcium homeostasis. Phospholamban (PLB)
phosphorylation can release the inhibitory effect on SERCA;
PKA affects SERCA sensitivity to calcium (Hayward et al., 2015).
SERCA overexpression increases calcium reuptake and calcium
transients, but has no effect on calcium leakage caused by RyR.
Hence, SERCA agonists are used to treat heart failure, diabetes,
and metabolic diseases (Bassani and Bassani, 2005). Studies have
shown that soluble guanylyl cyclase activation can stimulate cGMP
signals, increase Ca2+ uptake by increasing SERCA activity, and
reduce reperfusion-induced calcium overload. SERCA is an
essential calcium homeostasis and is associated with the
pathological mechanisms of various diseases; SERCA is expected
to become an important target for cardiovascular disease.

PLB
PLB located in SR contains 52 amino acids (6.1 kD), easily forms
a polymer (22 kD), which interacts with SERCA and inhibits its
activity (Ablorh and Thomas, 2015). PLB consists of three parts:
cytoplasmic domain a (including phosphorylation sites serine16
and threonine17), cytoplasmic domain b (rich in amidated
amino acids), and domain c (transmembrane structure). PLB
can be phosphorylated by PKA (serine16) and CaMKII
(threonine17), thereby releasing its inhibitory effect on SERCA
(Haghighi et al., 2014). When cytosolic calcium levels are low,
PLB combines with SERCA2a to reduce calcium reuptake; when
cytosolic calcium levels iare high, CaMKII or PKA can
phosphorylate PLB, thereby promoting PLB and SERCA2a
depolymerization and allowing SERCA2a to uptake calcium
again (Frank and Kranias, 2000). Sarcolipin is a functional PLB
homolog with a serine/threonine kinase 16 phosphorylation site
(Bhupathy et al., 2007). SERCA activity is super-inhibited by the
synergistic action of PLB and SLN (Morita et al., 2008).
Disrupting PLB–SERCA2a interactions can reduce cardiac
systolic dysfunction, but eliminating PLB is not useful in
treating all forms of heart failure (MacLennan and Kranias,
2003). Further research on the structure and function of PLB–
SERCA2a will provide new insights into the role of PLB in
cardiovascular disease.

CaMKII
CaMKII has four genotypes a, b, g, and d; a and b are mainly
expressed in the nervous system, and g and d generally in various
cells (Grueter et al., 2006). Among them, d is the most prevalent
subtype in cardiac tissue. CaMKII structure includes amino-
terminal catalytic, the central regulatory, and the carboxy-
terminal associated domains that oligomerize (Grueter et al.,
2006). CaMKII holoenzyme is a wheel-like structure composed
Frontiers in Pharmacology | www.frontiersin.org 4
of 6-12 homologous or heterologous kinase subunit. CaMKII can
act on Ca2+-releasing proteins such as RyR2, LTCC, IP3R, and
regulate calcium recalculation byPLBandSERCAphosphorylation
(Maier and Bers, 2002). CaMKII phosphorylation promotes
maintenance of high active LTCC, resulting in excessive
extracellular influx into myocardial cells (Mattiazzi and Kranias,
2014). The effect of CaMKII on RyR2 is controversial, as RyR2-
mediated increased and decreased calcium release has been
reported. CaMKII phosphorylates PLB, which in turn releases
its inhibitory effect on SERCA and enhances calcium
reuptake capacity.

A study of an animal model of structural heart disease proved
that CaMKII overexpression can lead to myocardial dilatation,
dysfunction, and calcium homeostasis imbalance in
cardiomyocytes (Grueter et al., 2006). bAR increases CaMKII
activity and expression. Therefore, CaMKII inhibition can
combat cardiac hypertrophy, cardiac dilatation, and myocardial
infarction-induced dysfunction, and bAR overstimulation
(Mattiazzi and Kranias, 2014). In MI/R injury, CaMKII could
activate NF-kb, promote inflammatory response leading to
apoptosis, and aggravate MI/R injury (Ling et al., 2013). In
simple terms, CaMKII has a significant impact on calcium
cycling and various diseases, and it is worth carrying out an
in-depth study.

Calcium Storage
The main cardiomyocyte Ca2+ storing organelles are SR and
mitochondria. SR and mitochondria are essential during heart
contraction and relaxation and provide enough oxygen and ATP
to body tissues via blood circulation. Although the functional
characteristics of SR and mitochondria are different, their
cooperation also ensures normal heart operation. Therefore,
both mitochondrial and SR reductions and dysfunction can
cause heart-related diseases (Chernorudskiy and Zito, 2017).

Sarcoplasmic Reticulum
Myocardial SR is composed of longitudinal tubes and terminal
cisternae. The longitudinal tube membrane mainly contains
SERCA and PLB for calcium reuptake. The terminal cisternae
(RyR2) stores and releases Ca2+. There are also several soluble
proteins in the SR cavity, including calsequestrin and calreticulin.
They have low Ca2+ affinity, but a large binding capacity. Their
primary function is to bind Ca2+ in the SR cavity. These proteins
can reduce [Ca2+]i in the SR cavity, facilitate transport of calcium
pumps, and store Ca2+ for release at the subsequent myocardial
contraction. Therefore, SR regulates cytosolic [Ca2+]i mainly in
three steps such as calcium release, reuptake, and storage, and
different proteins perform their functions (Bers, 2008).

Studies have found that SR calcium balance is very vital for
normal physiological function and information transmission of
cardiomyocytes. SR calcium homeostasis is closely related to the
development of cardiovascular diseases, such as ischemic heart
disease, cardiac hypertrophy, hypertension, and heart failure
(Fiolet and Baartscheer, 2000). Ca2+ release other than that in
the normal calcium cycle is called SR calcium leakage, which is
mainly mediated by RyR2. Calcium leakage can cause cardiac
systolic dysfunction by reducing effective SR Ca2+ release, cause
June 2020 | Volume 11 | Article 872
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diastolic dysfunction by increasing diastolic cytosolic Ca2+, and
induce arrhythmias (Hulot et al., 2012). Therefore, further
study on SR calcium regulatory channels will help reveal the
role of Ca2+ regulation in cardiovascular disease and provide new
insights and strategies for cardiovascular disease treatment
and prognosis.

Mitochondria
A double membrane structure characterizes the mitochondria;
there is a cavity between both membranes due to the folding of
inner membrane to form ridges. Mitochondria are the main sites
for intracellular oxidative phosphorylation and adenosine
triphosphate (ATP) formation. Additionally, mitochondria are
also involved in processes such as apoptosis, signal transduction,
cell proliferation, and metabolism (Williams et al., 2015). The
cardiomyocyte activity is energy consuming. The mitochondria
of each ventricular muscle cell account for about 33% of cell
volume, which also reflects their importance for cardiomyocytes.
Ca2+ enters the mitochondrial matrix through a highly selective
and low-conductivity mitochondrial calcium uniporter channel.
It is pumped into the membrane space through the
mitochondrial sodium-calcium exchanger, which maintains
calcium dynamic balance in the mitochondria (Williams et al.,
2015). Calcium directly or indirectly regulates many components
in ATP production, such as crucial enzymes and proteins of the
tricarboxylic acid cycle.

Mitochondria are not involved in myocardial ECC regulation
under physiological conditions. However, due to the large
calcium capacity of mitochondria, which accounts for about
30% of the calcium capacity in plasma and tissue cells, they
compensate by alleviating intracellular calcium accumulation
during calcium overload in myocardial cells (Dorn and Maack,
2013). Studies have shown that mitochondrial reactive oxygen
species production is an early trigger for MI/R injury and causes
respiratory chain dysfunction. In I/R heart, mitochondrial
channel dysfunction of myocardial cells causes changes in
mitochondria membrane potentials (Chouchani et al., 2014).
This extends to the entire cell, causing structural and functional
disorders. Therefore, mitochondrial damage causes ATP
depletion, which accelerates myocardial cell death and
promotes the reversible damage of myocardial tissue to
irreversible damage (Paradies et al., 2018)
INTERACTION OF CALCIUM OVERLOAD
AND MYOCARDIAL ISCHEMIA-
REPERFUSION

MI/R Protection Signaling Pathway
Ca2+ is driven by a large electrochemical gradient across the
plasma membrane into the cells. Cells use this external source of
signal Ca2+ by activating various entry channels, such as voltage-
operated channels (Shaw and Colecraft, 2013). The other
principal source of Ca2+ for signaling is the internal stores that
are located primarily in the SR, and IP3R, RyR, and SERCA
regulate the release and recycle of Ca2+ (Chernorudskiy and Zito,
Frontiers in Pharmacology | www.frontiersin.org 5
2017). The principal activator of these channels is Ca2+ itself, and
this process of Ca2+-induced Ca2+ release is central to the
mechanism of calcium signaling (Bers, 2008). The signaling
pathway of MI/R protection is very complicated and involves
many factors (Fiolet and Baartscheer, 2000). Obviously, the
intervention of the above proteins is potential to promote MI/
R protection. And there are some other signaling pathways,
which start with G protein-coupled receptors or cytokine
receptors activated by adenosine or opioids (Murphy and
Steenbergen, 2008). These processes enable protection signals
into cardiac cell. Intracellular signals then activate the PI3K-
AKT, JAK-STAT, and cGMP-protein kinase G (PKG) pathways.
Signaling further activates downstream endothelial nitric oxide
synthase (eNOS), glycogen synthase kinase (GSK)-3b,
hexokinase II (HK II), and protein kinase Cϵ (PKCϵ). The
above process further opens the mitochondrial ATP-dependent
potassium channel and inhibits opening of the mitochondrial
permeability transition pore (MPTP), which prevents apoptosis
factor cytochrome C and apoptosis-inducing factor (AIF) from
entering the cytoplasm to induce apoptosis (Hausenloy and
Yellon, 2016). In fact, intervention in one of the above
pathways may achieve cardiac protection. For example,
meprobamate and KAI-9803 (Table 1) are two drugs in
clinical research, which protect MI/R injury via PKC-ϵ
activation and PKC-d inhibition, respectively (Mochly-Rosen
et al., 2012). There are insufficient drugs for treating MI/R
injury, so it is necessary to conduct further research on MI/R
signaling pathways to find targets with cardioprotective effects.
Mechanism of Calcium Overload
Generation During MI/R
After a period of ischemia and hypoxia, myocardial cells have
metabolic abnormalities, including increased anaerobic
fermentation. Furthermore, intracellular H+ aggregation causes
a low intracellular pH, and intracellular Na+ increases through
H+/Na+ exchange (HNX). Excessive intracellular Na+ will
promote Na+ excretion and Ca2+ intake by NCX, which
significantly increases intracellular calcium levels, hence,
leading to calcium overload. When blood flow and oxygen
supply to the cardiac tissue returns to normal, extracellular pH
level is further increased, HNX and NCX activities are enhanced,
and intracellular calcium overload is further aggravated (Murphy
and Steenbergen, 2008). Direct H+/Ca2+ exchange can also
directly cause calcium overload. Elevated intracellular calcium
levels also activate intracellular calcium-activated calcium
release. Existing studies have shown that NCX and HNX
inhibition has a protective effect on MI/R injury (Mozaffari
et al., 2013). Two candidate drugs, FR-183998 and zoniporide
hydrochloride which target HNX, are currently under
development for MI/R injury treatment(Tracey et al., 2003;
Ishizaki et al., 2008). Opening RyR2 channel effluxes SR Ca2+

into the cytoplasm, exacerbating calcium overload. Calcium
overload can cause a series of irreversible cell injury responses,
such as cardiac contractile dysfunction and apoptosis.

Additionally, MI/R produces some toxic substances, such as
oxygen-free radicals (OFR), in the myocardial cells. OFR can
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decompose cell membrane phospholipid components and
damage membrane structure, which leads to increased
membrane permeability and excessive extracellular Ca2+ influx
(Fiolet and Baartscheer, 2000). OFR also damages to the SR
membrane, eventually increasing intracellular calcium levels and
further exacerbating calcium overload (Mozaffari et al., 2013).

Mechanism of Calcium Overload
Aggravating MI/R Injury
Ca2+ plays a vital role in cardiac ECC, so calcium overload will
further exacerbate the degree of MI/R injury in cardiac muscle
cells. Excessive intracellular calcium will enter the mitochondria,
resulting in mitochondrial calcium overload; this inhibits ATP
Frontiers in Pharmacology | www.frontiersin.org 6
production, exacerbates energy metabolism disorders, and
eventually leads to myocardial cell apoptosis (Dorn and
Maack, 2013). Mitochondrial damage is regarded as a sign of
myocardial cell transformation from reversible to irreversible
damage (Williams et al., 2015).

Intracellular calcium can also activate some phospholipases,
mainly protein kinase C and phospholipase A, which destroy the
cell membrane skeleton. Furthermore, the reaction produces
some toxic substances such as free fatty acids, leukotrienes,
prostaglandins, and oxygen-free radicals (Hausenloy and
Yellon, 2016). These cause mitochondrial dysfunction, increase
membrane permeability, impede signal transmission in cells, and
promote vast myocardial cell apoptosis. Excessive calcium can
TABLE 1 | Summary of MI/R injury drugs.

Target Target type Drugs KEGG pathway

1 Angiopoietin 1
receptor (TEK)

Clinical trial
target

AKB-9778 (Goel
et al., 2013)

Ras signaling pathway; Rap1 signaling pathway; HIF-1 signaling pathway; PI3K-Akt signaling
pathway; rheumatoid arthritis

2 Adenosine A2b
receptor (ADORA2B)

Successful
target

Adenosine (Xin
et al., 2020)

Calcium signaling pathway; Rap1 signaling pathway; neuroactive ligand-receptor interaction;
vascular smooth muscle contraction; alcoholism

3 Adrenergic receptor
beta-1 (ADRB1)

Successful
target

Metoprolol (Qin
et al., 2020)

Calcium signaling pathway; cGMP-PKG signaling pathway; cAMP signaling pathway; neuroactive
ligand-receptor interaction; endocytosis; adrenergic signaling in cardiomyocytes; Gap junction;
salivary secretion; dilated cardiomyopathy

4 Dipeptidyl peptidase
4 (DPP-4)

Clinical trial
target

REC-01(Jackson,
2017)

Protein digestion and absorption; IL2 signaling pathway; TGF-beta receptor signaling pathway

5 Glycoprotein IIb/IIIa
receptor (GPIIb/IIIa)

Successful
target

Abciximab (Eitel
et al., 2013)

Platelet degranulation; elastic fiber formation; PECAM1 interactions; molecules associated with
elastic fibers; Integrin cell surface interactions; syndecan interactions; ECM proteoglycans; integrin
alphaIIb beta3 signaling; p130Cas linkage to MAPK signaling for integrins; VEGFA-VEGFR2
pathway; MAP2K and MAPK activation

6 Lecithin-cholesterol
acyltransferase
(LCAT)

Clinical trial
target

MEDI6012 (Althaf
et al., 2015)

Glycerophospholipid metabolism

7 Leukotriene A-4
hydrolase (LTA4H)

Successful
target

Bestatin (W et al.,
2018)

Arachidonic acid metabolism; metabolic pathways

8 P2Y purinoceptor 12
(P2RY12)

Successful
target

Prasugrel; Brilinta
(B, 2010)

Platelet activation

9 Poly [ADP-ribose]
polymerase 1
(PARP1)

Successful
target

Nicotinamide (EJ
et al., 2009)

Base excision repair; NF-kappa B signaling pathway

10 Protein kinase C
delta (PRKCD)

Clinical trial
target

KAI-9803 (Gross
and Gross, 2007)

Chemokine signaling pathway; vascular smooth muscle contraction; tight junction; Fc epsilon RI
signaling pathway; Fc gamma R-mediated phagocytosis; neurotrophin signaling pathway;
inflammatory mediator regulation of TRP channels; GnRH signaling pathway; estrogen signaling
pathway; Type II diabetes mellitus

11 Protein kinase C
epsilon (PRKCE)

Clinical trial
target

Meprobamate
(Mochly-Rosen
et al., 2012)

cGMP-PKG signaling pathway; sphingolipid signaling pathway; vascular smooth muscle
contraction; tight junction; Fc epsilon RI signaling pathway; Fc gamma R-mediated phagocytosis;
inflammatory mediator regulation of TRP channels; type II diabetes mellitus; microRNAs in cancer

12 Proteinase activated
receptor 1 (F2R)

Successful
target

Vorapaxar (Maki
et al., 2010)

Calcium signaling pathway; Rap1 signaling pathway; cAMP signaling pathway; neuroactive ligand-
receptor interaction; endocytosis; PI3K-Akt signaling pathway; complement and coagulation
cascades; platelet activation; regulation of actin cytoskeleton; pathways in cancer

13 Sodium/hydrogen
exchanger (SLC)

Literature-
reported target

FR-183998 (Ishizaki
et al., 2008)

cAMP signaling pathway; cardiac muscle contraction; adrenergic signaling in cardiomyocytes;
regulation of actin cytoskeleton; thyroid hormone signaling pathway; salivary secretion; gastric acid
secretion; pancreatic secretion; bile secretion; proteoglycans in cancer

14 Sodium/hydrogen
exchanger 1
(SLC9A1)

Clinical trial
target

Zoniporide
hydrochloride
(Tracey et al., 2003)

Calcium signaling pathway; cAMP signaling pathway; cardiac muscle contraction; adrenergic
signaling in cardiomyocytes; regulation of actin cytoskeleton; thyroid hormone signaling pathway;
salivary secretion; gastric acid secretion; pancreatic secretion; bile secretion; proteoglycans in
cancer

15 Thromboxane A2
receptor (TBXA2R)

Successful
target

Ridogrel (Xavier
et al., 2009)

Calcium signaling pathway; neuroactive ligand-receptor interaction; platelet activation

16 Voltage-gated
calcium channel
alpha Cav2.1
(CACNA1A)

Successful
target

Flunarizine (Wulff
et al., 2019)

Calcium signaling pathway; MAPK signaling pathway; synaptic vesicle cycle; retrograde
endocannabinoid signaling; glutamatergic synapse; long-term depression; type II diabetes mellitus;
morphine addiction; nicotine addiction
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also activate caspase, calpain, endonuclease, and phospholipase,
which induce intracellular digestion of proteins and fats
(Chouchani et al., 2014; Lesnefsky et al., 2017).

Myocardial calcium overload can also cause changes in the
structure and function of coronary blood vessels and
microvascular endothelial cells . It causes adhesion,
accumulation, and infiltration of neutrophils; a series of
inflammatory factors release; and further the heart vascular
tissue damage (Kleinbongard et al., 2012). Energy metabolism
disorder caused by calcium overload can also cause myocardial
spasm, and cause pathological changes, such as arrhythmia (Zile
and Gaasch, 2011). Therefore, calcium overload plays a vital role
in MI/R injury occurrence and development and will also play a
key role in preventing and treating MI/R injury.
COMPREHENSIVE ANALYSIS OF MI/R
INJURY AND CALCIUM SIGNALING
PATHWAY

MI/R Injury Drugs
Tissue ischemia is due to insufficient hemoperfusion under
various pathological conditions. Moreover, MI/R injury is
characterized by increased tissue and cell dysfunction,
metabolic damage, and structural damage after blood supply is
restored and reperfusion occurs (Murphy and Steenbergen, 2008;
Lesnefsky et al., 2017). Studies have shown that MI/R causes
cardiac dysfunction as well as peripheral vascular injury.
Recently, research on the mechanism of MI/R injury and the
search for effective measures to reduce reperfusion injury have
become hot spots in the cardiovascular field. To more fully
understand and summarize research findings and clinical use of
MI/R drugs, we obtained relevant information (including target,
disease, drug, and KEGG pathway) via “Therapeutic Target
Database” and verified it with “PubMed” database. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway is a
database that integrates genomic, chemical, and system
function information, linking gene catalogs from genomes that
have been fully sequenced to higher-level system functions at
cell, species, and ecosystem levels (Kanehisa et al., 2017).

In Table 1, we have summarized drugs and candidates for
MI/R injury treatment. Over half of the drugs are marketed, three
eighth are drug under investigation, and the remaining are
potential candidates. Nearly half of the drugs target calcium
regulators that are mainly involved in calcium signaling pathway
regulation. Except for calcium channels, MI/R targets include
angiopoietin 1 receptor, P2Y purinoceptor 12, protein kinase C,
lecithin-cholesterol acyltransferase, and dipeptidyl peptidase 4,
indicating complexity of MI/R injury mechanisms and the
diversity of targets. In fact, the drugs used to treat MI/R injury
are very limited in clinical practice, and most of the drugs are
selected according to the symptoms (Ibanez et al., 2015). Some
drugs, such as prasugrel, brilinta, and AKB-9778, prevent blood
vessels from being clogged due to platelet activation or
vasodilation (B, 2010; Goel et al., 2013), and some drugs, such
as flunarizine, meprobamate, and KAI-9803, reduce
Frontiers in Pharmacology | www.frontiersin.org 7
cardiomyocyte damage by calcium overload and PKC pathway
inhibition (Mochly-Rosen et al., 2012). Furthermore, according
to the KEGG pathway, most drugs are not involved in a single
signal pathway, but in an interconnected signal network, which
also reflects the intricate connection between various reactions in
the body. This also helps us to understand the role of drugs in
signaling networks and links between disease and various
signaling pathways. Some of the drugs in Table 1 are still at
different stages of research, so basic and clinical researchers need
to work rigorously to develop more safe and effective drugs to
alleviate the pain and distress of MIR patients.

Calcium Signaling Pathway Drugs
We also searched for the calcium signaling pathway-related drugs
using the “Therapeutic Target Database” to better understand the
role of calcium homeostasis in various diseases. As shown in
Table 2, calcium signaling pathway drugs are mainly used to treat
cardiovascular and cerebrovascular diseases, such as myocardial
(cerebral) I/R injury, hypertension, cardiac failure, and myocardial
infarction.Abouthalf of thedrugs aremarketed, about twofifths are
undergoing clinical trials, and the remaining are potential
active candidates.

Calcium channel blockers (CCBs), such as nifedipine,
nisoldipine, diltiazem, verapamil, nimodipine, and amlodipine
(Table 2), can be widely used to treat cardiovascular diseases
including myocardial infarction, hypertension, arrhythmia, and
angina pectoris. CCBs reduce calcium levels in myocardial cells,
which triggers a series of physiological effects against multiple
diseases. Most CCBs have significant effects and reasonable
prices, but there are still many adverse reactions. CCBs only
target angina pectoris, caused by coronary spasm, but are not
effective against other types of angina pectoris (Capiod, 2011;
Kleinbongard et al., 2012). Therefore, for, appropriate drugs
should be selected for treating different patients, according to the
disease type, to reduce adverse reactions as much as possible. In
addition, calcium overload aggravates cerebral I/R injury, and
drugs targeting calcium channels and calcium pathway-related
factors have good clinical effects on cerebral I/R injury (Ge et al.,
2005; Zhao et al., 2013). The drug targets are mainly voltage-
dependent calcium channels, calcium-activated ion channels,
and adenosine receptors. According to KEGG analysis, the
drugs listed in Table 2 also involve multiple signaling
pathways. In addition to the calcium pathway, other pathways,
such as the cAMP signaling pathway, Adrenergic signaling
pathway, cardiac muscle contraction, platelet activation, also
occur more frequently, and there is an upstream and
downstream connection between these pathways and the
calcium signaling pathways. Cardiac muscle contraction is a
complex process initiated by the electrical excitation of cardiac
myocytes, which is the processes of ECC (Bers, 2008). In other
signaling pathways, calcium serves as an important second
messenger. Adrenergic receptor as the pre-dominate receptor,
induces positive inotropic and chronotropic effects, the most
effective mechanism to acutely increase output of the heart, by
coupling to Gs, formation of cAMP by adenylyl cyclase, and
PKA-dependent phosphorylation of various target proteins
(such as RyR2, PLB, and LTCC) (Qin et al., 2020). During
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TABLE 2 | Summary of calcium signaling pathway drugs.

Target Target
type

Disease Drugs KEGG pathway

1 Adenosine A1
receptor (ADORA1)

Clinical trial
target

Orthostatic
hypotension

Caffeine (Rosenthal et al.,
2008); Tonapofylline (Chen
and Tang, 2007)

Calcium signaling pathway; Rap1 signaling pathway; cAMP signaling pathway;
neuroactive ligand-receptor interaction; vascular smooth muscle contraction;
Parkinson's disease; alcoholism

2 Adenosine A2a
receptor
(ADORA2A)

Clinical trial
target

Coronary artery
disease

Apadenoson;
Binodenoson(Hodgson
et al., 2007)

Calcium signaling pathway; Rap1 signaling pathway; cAMP signaling pathway;
neuroactive ligand-receptor interaction; vascular smooth muscle contraction;
Parkinson's disease; alcoholism

3 Adenosine A2b
receptor
(ADORA2B)

Clinical trial
target

Hypertension YT-146 (T et al., 1994) Calcium signaling pathway; Rap1 signaling pathway; neuroactive ligand-receptor
interaction; vascular smooth muscle contraction; alcoholism

4 Adenosine A2b
receptor
(ADORA2B)

Successful
target

Paroxysmal
supraventricular
tachycardi;
reperfusion injury

Adenosine (Xin et al.,
2020)

Calcium signaling pathway; Rap1 signaling pathway; neuroactive ligand-receptor
interaction; vascular smooth muscle contraction; alcoholism

5 Adrenergic receptor
beta-1 (ADRB1)

Successful
target

Hypertension;
reperfusion injury

Metoprolol (Qin et al.,
2020)

Calcium signaling pathway; cGMP-PKG signaling pathway; cAMP signaling
pathway; neuroactive ligand-receptor interaction; endocytosis; adrenergic
signaling in cardiomyocytes; gap junction; salivary secretion; dilated
cardiomyopathy

6 Angiotensin II
receptor type-1
(AGTR1)

Successful
target

Hypertension Valsartan (Chang et al.,
2020)

Calcium signaling pathway; cGMP-PKG signaling pathway; neuroactive ligand-
receptor interaction; adrenergic signaling in cardiomyocytes; vascular smooth
muscle contraction; renin-angiotensin system; renin secretion; pathways in
cancer

7 Calcium channel
unspecific (CaC)

Successful
target

Cerebral
vasospasm;
hyperinsulinemia

Nimodipine (G and M,
2009)

Calcium signaling pathway; MAPK signaling pathway; cardiac muscle
contraction;

8 Calcium-activated
potassium channel
KCa1.1 (KCNMA1)

Literature-
reported
target

Asthma Cromoglycate lisetil
hydrochloride (Law et al.,
2011)

Calcium signaling pathway; cGMP-PKG signaling pathway; vascular smooth
muscle contraction; Insulin secretion; salivary secretion; pancreatic secretion

9 Calcium-release
activated calcium
channel (CRACM)

Clinical trial
target

Non-Hodgkin
lymphoma

RP4010 (Cui et al., 2018) Calcium signaling pathway; cAMP signaling pathway; platelet activation; primary
immunodeficiency

10 Calpain-2 (CAPN2) Clinical trial
target

Cerebral
infarction

ABT-957 (Ge et al., 2005) Protein processing in endoplasmic reticulum; apoptosis; calcium signaling
pathway; Alzheimer's disease

11 CaM-kinase II
(CAMK2)

Clinical trial
target

Anxiety disorder Rimacalib (J et al., 2009) Calcium signaling pathway; ErbB signaling pathway; cAMP signaling pathway;
HIF-1 signaling pathway; Wnt signaling pathway; circadian entrainment;
neurotrophin signaling pathway; cholinergic synapse; Inflammatory mediator
regulation of TRP channels; Insulin secretion; GnRH signaling pathway;
melanogenesis; oxytocin signaling pathway; glucagon signaling pathway; gastric
acid secretion

12 Endothelin A
receptor (EDNRA)

Successful
target

Cerebrovascular
disease;
hypotension

Ambrisentan (Rosenzweig,
2006)

Calcium signaling pathway; cGMP-PKG signaling pathway; cAMP signaling
pathway; neuroactive ligand-receptor interaction; vascular smooth muscle
contraction; renin secretion; pathways in cancer

13 Nitric-oxide
synthase
endothelial (NOS3)

Clinical trial
target

Pulmonary
hypertension;
brain injury

Tilarginine acetate
(Investigators et al., 2007)

Calcium signaling pathway; arginine and proline metabolism; Metabolic
pathways; cGMP-PKG signaling pathway; HIF-1 signaling pathway; sphingolipid
signaling pathway; PI3K-Akt signaling pathway; VEGF signaling pathway; platelet
activation; estrogen signaling pathway; oxytocin signaling pathway

14 Proteinase
activated receptor 1
(F2R)

Successful
target

Myocardial
infarction

Vorapaxar (Maki et al.,
2010)

Calcium signaling pathway; Rap1 signaling pathway; cAMP signaling pathway;
neuroactive ligand-receptor interaction; endocytosis; PI3K-Akt signaling
pathway; complement and coagulation cascades; platelet activation; regulation
of actin cytoskeleton; pathways in cancer

15 S100 calcium-
binding protein B
(S100B)

Clinical trial
target

Stroke; type 2
diabetes;

ONO-2506 (Asano et al.,
2005)

Calcium signaling pathway; cGMP-PKG signaling pathway; neuroactive ligand-
receptor interaction
endocytosis; salivary secretion

16 Sarcoplasmic/
endoplasmic
reticulum calcium
ATPase (ATP2A)

Successful
target

Malaria Artemisinin (Choia et al.,
2008)

Calcium signaling pathway; pyrimidine metabolism; metabolic pathways

17 Sarcoplasmic/
endoplasmic
reticulum calcium
ATPase 2 (ATP2A2)

Clinical trial
target

Hypertension;
asthma

Gallopamil (Sulpizio et al.,
2005)

Calcium signaling pathway; renin-angiotensin system; Alzheimer's disease;
adrenergic signaling in cardiomyocytes; Thyroid hormone signaling pathway;
Alzheimer's disease; hypertrophic cardiomyopathy (HCM); arrhythmogenic right
ventricular cardiomyopathy (ARVC); dilated cardiomyopathy

18 Sodium/calcium
exchanger (SLC)

Clinical trial
target

Cardiovascular
disease

CALDARET HYDRATE
(Kawasumi et al., 2007)

Calcium signaling pathway; cardiac muscle contraction; adrenergic signaling in
cardiomyocytes;
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platelet activation, different receptors are stimulated by various
agonists, almost converging in increasing intracellular Ca2+

concentration that stimulate platelet shape change and granule
secretion (Maki et al., 2010). In a word, some important proteins,
such as RyR2, PLB, FKBP12.6, and NCX, participate in the
calcium cycling process and maintain calcium homeostasis,
thereby ensuring that intracellular Ca2+ transfers different
signals to downstream signaling pathways. Therefore, the
importance of calcium pathways is self-evident, and future
research should focus on calcium pathway drugs for treating
cardiovascular and cerebrovascular diseases.
Frontiers in Pharmacology | www.frontiersin.org 9
Comprehensive Analysis
As a second messenger in cells, Ca2+ plays an essential role in
maintaining cell proliferation, division, and energy metabolism.
The calcium signal pathway-related protein expression and ion
channel regulation mechanism connect arrhythmia, myocardial
hypertrophy, and heart failure in cardiovascular diseases, making
the development of these diseases a cause and effect (Bers, 2008;
Hidalgo, 2017). As MI/R injury-mediated calcium overload is
multifactorial, it is vital to regulate intracellular calcium
homeostasis to maintain normal physiological function and
information transmission in cells (Fiolet and Baartscheer,
TABLE 2 | Continued

Target Target
type

Disease Drugs KEGG pathway

19 Sodium/hydrogen
exchanger 1
(SLC9A1)

Clinical trial
target

Myocardial
infarction; angina
pectoris

Zoniporide hydrochloride
(Tracey et al., 2003)

Calcium signaling pathway; cAMP signaling pathway; cardiac muscle
contraction; adrenergic signaling in cardiomyocytes; regulation of actin
cytoskeleton; thyroid hormone signaling pathway; salivary secretion; gastric acid
secretion; pancreatic secretion; bile secretion; proteoglycans in cancer

20 Thromboxane A2
receptor (TBXA2R)

Successful
target

Acute
myocardial
infarction

Ridogrel(Xavier,Davel,
Fukuda and Rossoni
2009)

Calcium signaling pathway; neuroactive ligand-receptor interaction; platelet
activation

21 Voltage-gated
calcium channel
alpha Cav1.2
(CACNA1C)

Successful
target

Hypertension Rauwolfia serpentina root
(Wiens and De Luca,
2016)

Calcium signaling pathway; MAPK signaling pathway; cGMP-PKG signaling
pathway; cAMP signaling pathway; cardiac muscle contraction; adrenergic
signaling in cardiomyocytes; vascular smooth muscle contraction; circadian
entrainment; type II diabetes mellitus; hypertrophic cardiomyopathy (HCM);
Arrhythmogenic right ventricular cardiomyopathy (ARVC); dilated cardiomyopathy

22 Voltage-gated
calcium channel
alpha Cav1.2
(CACNA1C)

Clinical trial
target

Alzheimer
disease

ARC029 (H et al., 1989) Calcium signaling pathway; MAPK signaling pathway; cGMP-PKG signaling
pathway; cAMP signaling pathway; cardiac muscle contraction; adrenergic
signaling in cardiomyocytes; vascular smooth muscle contraction; circadian
entrainment; Insulin secretion; type II diabetes mellitus; hypertrophic
cardiomyopathy (HCM); arrhythmogenic right ventricular cardiomyopathy
(ARVC); dilated cardiomyopathy

23 Voltage-gated
calcium channel
alpha Cav2.1
(CACNA1A)

Successful
target

Cardiac failure;
reperfusion injury

Flunarizine (Wulff et al.,
2019)

Calcium signaling pathway; MAPK signaling pathway; synaptic vesicle cycle;
retrograde endocannabinoid signaling; glutamatergic synapse; long-term
depression; type II diabetes mellitus; morphine addiction; nicotine addiction

24 Voltage-gated
calcium channel
alpha Cav2.2
(CACNA1B)

Successful
target

Pain; traumatic
brain injury

Ziconotide (Xiong et al.,
2009)

Calcium signaling pathway; MAPK signaling pathway; synaptic vesicle cycle;
retrograde endocannabinoid signaling; GABAergic synapse; dopaminergic
synapse; taste transduction; type II diabetes mellitus

25 Voltage-gated
calcium channel
alpha Cav3.1
(CACNA1G)

Successful
target

Hypertension;
Insomnia;

Verapamil (TD et al., 2005) Calcium signaling pathway; MAPK signaling pathway; circadian entrainment;
type II diabetes mellitus

26 Voltage-gated
calcium channel
alpha Cav3.2
(CACNA1H)

Successful
target

Metabolic
acidosis;
migraine

Sodium bicarbonate
(Wood et al., 2009)

Calcium signaling pathway; MAPK signaling pathway; circadian entrainment

27 Voltage-gated
calcium channel
alpha-2/delta-1
(CACNA2D1)

Successful
target

Hypertension Diltiazem (Huang et al.,
2009); Amlodipine (Ram,
2009)

Calcium signaling pathway; MAPK signaling pathway; cardiac muscle
contraction; adrenergic signaling in cardiomyocytes; Oxytocin signaling pathway;
hypertrophic cardiomyopathy (HCM); arrhythmogenic right ventricular
cardiomyopathy (ARVC); dilated cardiomyopathy

28 Voltage-gated
calcium channel
alpha-2/delta-1
(CACNA2D1)

Successful
target

Chronic
obstructive
pulmonary
disease

Pregabalin (Andrade,
2018)

Calcium signaling pathway; MAPK signaling pathway; cardiac muscle
contraction; Adrenergic signaling in cardiomyocytes; Oxytocin signaling pathway;
hypertrophic cardiomyopathy (HCM); arrhythmogenic right ventricular
cardiomyopathy (ARVC); dilated cardiomyopathy

29 Voltage-gated L-
type calcium
channel (L-CaC)

Successful
target

Angina pectoris;
hypertension

Nifedipine (Kleinsasser
and Loeckinger, 2002);
Nisoldipine; Levamlodipine
(Oh et al., 2012)

Calcium signaling pathway; MAPK signaling pathway; Cardiac muscle
contraction;

30 Voltage-gated L-
type calcium
channel (L-CaC)

Clinical trial
target

Cardiovascular
disease

BAY-Y-5959 (GH et al.,
1998)

Calcium signaling pathway; Cardiac muscle contraction;
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2000). Based on data of tables, about two fifths of diseases
(Table 1) involve calcium signaling pathways, three fifth of the
drugs (Table 2) are used to treat cardiovascular disease, and
more than one-fifth of the drugs (Table 2) to treat MI/R injury.
The above results also prove that calcium homeostasis plays an
irreplaceable role in normal cell operation and cardiovascular
disease development, especially MI/R injury and hypertension.

As shown in Figure 1, the six drugs including adenosine,
ridogrel, vorapaxar, metoprolol, flunarizine, and zoniporide
hydrochloride have the potential to treat MIR, but their
treatment mechanisms are different. Our analysis of the data in
Tables 1 and 2 shows that voltage-dependent calcium channels,
adrenergic receptor b1, proteinase-activated receptor 1 (PAR1),
HNX, adenosine A2b receptor, and thromboxane A2 (TXA2)
receptor are important targets for MI/R injury treatment and
calcium pathways. As mentioned in Mechanism of Calcium
Overload Generation During MI/R, when MI/R, a huge
difference in intracellular and extracellular pH of the myocardial
cells occurs, and HNX and NCX change the movement of H+,
Na+, and Ca2+, which aggravates calcium overload (Chu et al.,
2016). The role of LTCC as ECC activating signal in the calcium
pathway is self-evident. Besides, adrenergic receptors can
effectively induce downstream signaling pathways, including
calcium cycling pathways by cAMP formation and PKA
phosphorylation, thereby increasing cardiac output (Qin et al.,
2020). Studies also have shown that angiotensin-induced increase
in TXA2 has a protective effect onMI/R injury, and this regulatory
effect is related to maintaining calcium homeostasis (Dogan et al.,
Frontiers in Pharmacology | www.frontiersin.org 10
1997). Therefore, these targets directly or indirectly play a role in
relieving MI/R injury by regulating calcium signaling pathways.

Besides, the drugs we listed are basically chemical drugs,
which generally have specific targets. But, the composition of
traditional Chinese medicine (TCM) is complex, and the targets
are not single. For cardiovascular diseases, which involve
multiple signaling pathways, TCM has its unique advantages.
For example, Rauwolfia serpentina root was clinically proven to
treat hypertension, fever, liver disease, and other diseases in the
past (Wiens and De Luca, 2016; Dong et al., 2018). Besides,
current research also proved its good effect on MI/R injury.
Therefore, investing TCM for cardiovascular disease treatment
should be increased.

In fact, nearly half of the drugs listed in Tables 1 and 2 are in
preclinical or clinical research, such as FR-183998 and
zoniporide. In order to ensure the safety and effectiveness of
drugs, drug development is a long and costly process. If there is a
problem in any part of the research and development process, the
drugs will be forced to stop. Therefore, not all of the drugs we
listed can be successfully marketed in the end and solve problems
for patients. The disease characteristics of MI/R injury determine
that more effective targets and even drugs related to calcium
pathways can be discovered in the future. These still need
persevering research by scientific researchers.
CONCLUSIONS

Normal heart function depends on coordinated Ca2+ movement
into and out of the plasma membrane and sarcoplasmic reticulum;
calcium circulation disorders can cause various heart diseases.
Changes in the Ca2+ steady-state, including decreased SR Ca2+

reuptake, abnormal calcium channels, SR Ca2+ leakage, or
significantly decreased SERCA2a expression can cause various
heart diseases, including ischemic heart disease, reperfusion injury,
hypertrophic cardiomyopathy, diastolic cardiomyopathy, and
heart failure (Bers, 2008). With continuous improvement of
electrophysiology and pharmacology technology, especially
combination and application of patch-clamp technology and
molecular cloning technology, researcher can gain an in-depth
understanding of drugs and the ion channel effects of
cardiovascular active ingredients from cell to the molecular
levels. These methods are significant in understanding the
impact of drugs on ion channel activity and mechanism of
action against MI/R injury. By studying MI/R injury mechanism
and better understanding the underlying signaling pathways, we
will have better opportunities to develop treatments to protect
against MI/R injury. We look forward to the development of new
therapies to reduce MI/R injury and incorporate them into clinical
trials as soon as possible.

In summary, understanding the role of calcium pathway-related
proteins in MI/R injury is of great benefit in elucidating the
pathogenesis of MI/R injury. Copious literature summarize that
MI/R injury can cause calcium overload, which can further
aggravate MI/R injury. Therefore, these regulatory proteins, such
as LTCC, NCX, SERCA, RyR2, PLB, and FKBP12.6, provide
potential targets for the prevention and treatment of clinical MI/
FIGURE 1 | Venn diagram of drugs from MI/R injury and calcium signaling
pathway. We collected 16 drugs for the treatment of MIR injury and 30 drugs
involved in calcium signaling pathway. The MI/R drugs related to calcium
signaling pathway include: adenosine, ridogrel, vorapaxar, metoprolol,
flunarizine, and zoniporide hydrochloride.
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R injury, and multi-target therapy may also have potential
application. After analyzing the data in the Tables, we found that
six drugs including adenosine, ridogrel, vorapaxar, metoprolol,
flunarizine, and zoniporide hydrochloride were used to treat MI/R
injury and the treatment mechanisms were related to the calcium
signaling pathway (Figure 2). The specific targets of these six
drugs, such as voltage-dependent calcium channels, adrenergic
receptors b1 and HNX are different and involved in calcium
signaling pathway, which also reflects the complexity of the MI/
R mechanism and the important role of maintaining calcium
homeostasis on MI/R injury. In our statistics, some drugs are
still in the research stage, and the clinical demand has also pushed
researchers to make greater efforts to find more effective and safe
drugs to treat MI/R injury. Therefore, this article reviews the role of
calcium overload in the development of MI/R injury and the
current research progress of marketed and candidate drugs,
aiming to provide some help for further studying the protection
mechanism and therapeutic reagents of MI/R injury.

However, the current study is still in its initial stage, and there
are many problems, mainly with regard to two aspects. Firstly,
MI/R injury involves multiple signaling pathways, and the cross-
talk between multiple MI/R-related mechanism and calcium
regulation can be further studied. Additionally, different
calcium pathway drug combinations or multi-target chemical
synthetic drugs can be tested in MI/R injury treatment to cope
Frontiers in Pharmacology | www.frontiersin.org 11
with the complex pathological mechanism underlying MI/R.
Second, to study calcium homeostasis in MI/R injury,
application and development of new technologies can promote
research breakthroughs, such as real-time calcium channel
current and calcium concentration detection, and real-time
capture detection for calcium channel protein modification,
which broaden the scope of basic research and accelerate the
search for MI/R candidate drugs.
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FIGURE 2 | Calcium overload is the important target of treating myocardial ischemia/reperfusion (MI/R) injury. The maintenance of calcium homeostasis requires the
participation of multiple regulatory proteins including LTCC, RyR2, SERCA, NCX, PLB, FKBP12.6, and CaMK II. When MI/R occurs, calcium homeostasis will be broken
and further developed into calcium overload. Calcium overload further exacerbates MI/R injury. Therefore, inhibiting calcium overload is an effective way to reduce MI/R
injury. These drugs currently on the market or under investigation including adenosine, ridogrel, vorapaxar, metoprolol, flunarizine, and zoniporide hydrochloride, are for
the treatment of MI/R injury or have the potential to treat MI/R injury. These drugs can play a cardioprotective role by regulating the calcium signaling pathway.
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