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Abstract 

Background:  Malaria remains a challenge in Solomon Islands, despite government efforts to implement a coordi-
nated control programme. This programme resulted in a dramatic decrease in the number of cases and mortality 
however, malaria incidence remains high in the three most populated provinces. Anopheles farauti is the primary 
malaria vector and a better understanding of the spatial patterns parasite transmission is required in order to imple-
ment effective control measures. Previous entomological studies provide information on the ecological preferences 
of An. farauti but this information has never before been gathered and “translated” in useful tools as maps that provide 
information at both the national level and at the scale of villages, thus enabling local targeted control measures.

Methods:  A literature review and consultation with entomology experts were used to determine and select envi-
ronmental preferences of An. farauti. Remote sensing images were processed to translate these preferences into 
geolocated information to allow them to be used as the basis for a Transmission Suitability Index (TSI). Validation was 
developed from independent previous entomological studies with georeferenced locations of An. farauti. Then, TSI 
was autoscaled to ten classes for mapping.

Results:  Key environmental preferences for the An. farauti were: distance to coastline, elevation, and availability of 
water sources. Based on these variables, a model was developed to provide a TSI. This TSI was developed using GIS and 
remote sensing image processing, resulting in maps and GIS raster layer for all the eight provinces and Honiara City at 
a 250 m spatial resolution. For a TSI ranging from 0 as not suitable to 13 as most suitable, all the previous collections of 
An. farauti had mean TSI value between 9 and 11 and were significantly higher than where the vector was searched for 
and absent. Resulting maps were provided after autoscaling the TSI into ten classes from 0 to 9 for visual clarity.

Conclusions:  The TSI model developed here provides useful predictions of likely malaria transmission larval sources 
based on the environmental preferences of the mosquito, An. farauti. These predictions can provide sufficient lead-
time for agencies to target malaria prevention and control measures and can assist with effective deployment of 
limited resources. As the model is built on the known environmental preferences of An. farauti, the model should be 
completed and updated as soon as new information is available. Because the model did not include any other malaria 
transmission factors such as care availability, diagnostic time, treatment, prevention, and entomological parameters 
other than the ecological preferences neither, our suitability mapping represents the upper bound of transmission 
areas. The results of this study can now being used as the basis of a malaria monitoring system which has been jointly 
implemented by the Solomon Islands National Vector Borne Disease Control Programme, the Solomon Islands Mete-
orological Services and the Australian Bureau of Meteorology. The TSI model development method can be applied to 
other regions of the world where this mosquito occurs and could be adapted for other species.
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Background
In the Western Pacific Region, around 730 million peo-
ple experience some risk of malaria, with over 30 mil-
lion deemed as being at high risk [1]. The risk of malaria 
transmission is the highest in Papua New Guinea, the 
Solomon Islands and Vanuatu where more than 90% 
inhabitants are living in a high malaria transmission risk 
area, with the Solomon Islands and Papua New Guinea 
accounting for 86% of all reported deaths in the region 
in 2014. The transmission of malaria is both spatially 
and temporally variable, and understanding such vari-
ability is essential to improving control and elimination 
programmes.

Within the Solomon Islands the seasonal variability of 
malaria is well known but knowledge gaps remain. Cur-
rent geographical categories of the Health Divisions used 
by the malaria control programme are too broad and 
have environmental heterogeneity that makes it difficult 
to effectively analyse the links between environment and 
malaria transmission and therefore to implement more 
finely targeted control measures. A single health division 
can contain both coastal and inland villages experiencing 
different risk profiles and requiring different approaches 
to reduce infection rates. As in many other malaria 
impacted regions of the world, there is need to improve 
systems used for high-quality surveillance, monitoring 
and evaluation, including the development of new tools 
to identify changes in disease burdens and risk levels [1, 
2].

The Solomon Islands is a great case study for demon-
strating the utility of high-resolution GIS techniques for 
improving the understanding of malaria transmission 
providing a baseline for improved malaria control efforts. 
In the Solomon Islands, the government implemented 
control program that included house spraying with 
dichlorodiphenyltrichloroethane (DDT), insecticide-
treated bed nets and community awareness programmes 
[3, 4] was interrupted in the early 2000s due to eth-
nic violence. A subsequent large increase in the num-
ber of malaria cases led to a new government “National 
Malaria Strategic Vision, 2007–2016”, which aimed to 
reduce national malaria incidence by over 75%, includ-
ing malaria elimination in the provinces of Temotu and 
Isabel (National Malaria Strategic Vision 2007–2016). 
This programme was largely successful, with a dramatic 
drop in infection rates. The annual parasite incidence is 
now below 100 cases per 1000 population in all provinces 
[1, 4], although there is considerable spatial variability 
in incidence, with incidence remaining relatively high 

in three of the more populated provinces, Guadalcanal, 
Malaita and Central Province [2]. High resolution geo-
graphical information system (GIS) mapping was imple-
mented in the two malaria elimination provinces, Isabel 
and Temotu, to organize reactive treatment around each 
new case [5]. This included obtaining global position-
ing system (GPS) coordinates of households over several 
years, but did not include any predictive capacity or envi-
ronmental transmission risk.

In order to further reduce the malaria burden in the 
Solomon Islands, tools are required that can more accu-
rately map malaria transmission risk at a spatial resolu-
tion that allows for targeted and cost effective control 
programs at the scale of villages including all the high 
incidence areas. Identifying locations that are suit-
able breeding sites for the main malaria vector, Anoph-
eles farauti is needed to manage control strategies over 
the country and in each province and for the manage-
ment of local larval sources at the scale of villages. This 
is achieved via the following approach: (1) identify the 
ecological preferences of the primary mosquito vector 
for malaria in the Solomon Islands, An. farauti; (2) use 
of high-quality data to build GIS layers based on key 
variables related to these ecological preferences, as well 
as locations of human settlements; (3) develop monitor-
ing tools in the form of maps and GIS layers, for users to 
identify likely regions of malaria transmission.

Methods
Study area
The Solomon Islands lie between 5° and 12°S and 152° 
to 170°E. Made up of over 900 islands in the Western 
Pacific, the Solomon Islands has ten administrative divi-
sions. Malaria occurs in all but one of these, Rennel and 
Bellona Province (Fig.  1). The WHO lists the Solomon 
Islands as one of their malaria elimination programme 
countries as the National Vector Borne Disease Control 
Programme (NVBDCP) aims to eliminate malaria in two 
of the peripheral areas, Isabel and Temotu Provinces, and 
to decrease the high levels of malaria incidence in Gua-
dalcanal Province [4].

The Solomon Islands has a tropical climate and the 
major islands have often steep thickly forested mountain 
ranges and deep narrow valleys [6]. Coastal areas consist 
of coral reefs, lagoons and mangrove swamps. Rainfall 
occurs throughout the year, with higher rainfalls between 
November and April. The majority of the population 
reside within 5 km from the coast on the coast, with the 
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only substantial inland populations occurring in Guadal-
canal and Malaita [7].

The largest island is Guadalcanal, which also has the 
highest rate of malaria risk. There has been a dramatic 
decrease in the number of confirmed malaria cases in the 
last 20 years due largely to increased awareness, preven-
tion measures, and access to care [1, 4]. However, malaria 
remains an important health issue and further progress 
towards their aims of elimination and control will rely on 
having in place improved surveillance and monitoring 
systems.

Anopheles farauti behaviour and ecological preferences
In order to build a malaria risk model it was important 
to identify environmental variables that indicate the 
ecological preferences of the main mosquito vector for 
the Solomon Islands, An. farauti. This was achieved by 
reviewing the literature and consulting experts. The lit-
erature review was primarily conducted using PubMed, 
supplemented through searches using Google Scholar 
and available archives (http://www.acq.osd.mil/eie/
afpmb​/conte​nt/liter​ature​-retri​eval-syste​m). The experts 
that were directly contacted were Dr. Nigel Beebe (Uni-
versity of Queensland) and Dr. Patricia Dale (Griffith 
University) at the beginning of the study and Professor 
Thomas Burkot (James Cook University) and Dr. Robert 

Cooper (Australian Army Malaria Institute) at the valida-
tion stage.

Proximity to water sources, including those around 
settlements, and distance from the coast influences the 
presence of An. farauti. This species is known to breed 
in a wide range of water sources, from fresh water, small 
containers, including coconut shells, to brackish pools 
[6]. However, this species is more common close to the 
coast, particularly in coastal swamps and low-lying river-
ine areas [6, 8], and is rarely seen beyond 5 km from the 
ocean. More recently, in Central and Western provinces, 
a large larval study showed that most common habitats of 
An. farauti larvae were coastal lagoons and swamps [9]. 
The most productive sites were few, fixed and findable 
making them amenable for larval source management.

The flight range of An. farauti is around 1–1.5 km [10]. 
Charlwood et  al. captured An. farauti in two villages 
separated by 4 km and then released them either in their 
original village or the other one. Displaced mosquitoes 
were recaptured in both villages but non-displaced ones 
were not [11]. Elevation is thought to play an indirect role 
in the presence of An. farauti through its impact on tem-
perature and humidity [12]. Temperature both affects the 
survival rates of the parasites during the stage inside the 
Anopheles as well as that of the mosquitoes themselves. 
The ideal temperature range for the parasite is 19–25 °C 

Fig. 1  Solomon Islands’ provinces. In italic, the eight provinces and Honiara City where malaria cases occur

http://www.acq.osd.mil/eie/afpmb/content/literature-retrieval-system
http://www.acq.osd.mil/eie/afpmb/content/literature-retrieval-system
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[13]. Soil temperature is also important to survival of the 
mosquitoes and this too is influenced by elevation, as 
well as by aspect. Temperature decreases with altitude at 
a rate of around 1 °C for every 100 m in elevation, though 
the relationship is weaker near the equator [14]. Within 
the Solomon Islands, temperatures and relative humid-
ity tend to be relatively stable and within the ideal lim-
its for both the parasite and the mosquito, however, on 
the larger islands such as Guadalcanal and Makira there 
is a rain shadow effect [14, 15]. In these locations greater 
rainfall is experienced on the windward side of the islands 
than on the more sheltered (by higher elevation areas) 
leeward side. However, aspect (in the geographical term 
of direction which the slope is facing) is not considered 
further in the model as it does not impact on the pres-
ence of the mosquito, but rather on Anopheles quantity 
and seasonal variation. Anopheles farauti has only once 
been found at more than 100 m altitude (in Vanuatu, at 
335 m; [10]). However, An. farauti sensu lato species are 
isomorphic and at the time of Daggy’s study [10], before 
molecular-based techniques described in 1991 and 1995 
[16, 17], An. farauti was indistinguishable from its sib-
lings species, one of which has been collected at higher 
elevations. Hence, elevation may only be an indirect fac-
tor for the presence of An. farauti.

Based on the review of the literature and consulting 
entomological experts, a list of environmental parameters 
that are expected to impact on the biology or behaviour 
of An. farauti was generated. The initial list was further 
refined to ensure that the final parameters selected could 
be easily translated into a format that could be later used 
within an operational model to help control the spread 
of the mosquito. Where two possible sources were avail-
able for the same parameter, preference was given to that 
which had few data gaps and was more likely to be easily 
available into the future.

Model development
The model developed for monitoring likely regions of 
malaria transmission was based on a spatial translation of 
what is known about An. farauti in the Solomon Islands. 
It is a statistical model based on published field informa-
tion, and it is not considered to be a physiological model.

Scores
Once the environmental parameters were chosen (see 
Results for further details), values of these parameters 
were converted into scores. These scores consisted of 
ordered categories, the number and thresholds of which 
were determined using published results from field stud-
ies and a synthesis of knowledge from a review of the lit-
erature. To allow for standardization between variables, 
all scores were scaled to be within the range 0–5. The 

final scores for each parameter were further validated 
through consultation with entomological experts.

Suitability model
A model for malaria transmission suitability was devel-
oped using available knowledge and parameter scores, 
i.e. using a partially theoretical structure combined with 
data. While it is acknowledged that the ecological pref-
erences component may be incomplete, as there are 
some existing gaps in knowledge, this model allows for 
parameter adjustment and for the output of new spatial 
information based on the assembly of several parameters 
known to impact on An. farauti presence. The result is a 
spatial prediction model at much finer scales than previ-
ously available, i.e. at the scale of villages and the malaria 
control programmes.

The transmission suitability index, TSI, for malaria in 
the Solomon Islands was used is an additive model with 
weighed parameters of the form:

where wi is the weight of the ith parameter, pi.
The formula and resulting preliminary suitability maps 

were presented to entomology experts for validation. The 
resulting TSI, which ranged from 0 to 13, was used for 
the validation and then was autoscaled into 10 classes, to 
0–9 for the mapping.

Data collection and preparation
Malaria cases data
The National Vector Borne Disease Control Programme 
(NVBDCP) is responsible for monitoring and control 
of malaria within the Solomon Islands. As part of this 
process they are responsible for maintaining a malaria 
database which contains monthly passive case detec-
tion data. They provided monthly malaria cases and 
Solomon Island GIS data on administration, health and 
environment.

Available monthly passive case detection data are 
aggregated at the provincial level from 1988 to 1998, 
but were also available at the sub-provincial level, from 
1996 for Honiara City, Central Province and Isabel Prov-
ince, from 1997 for Guadalcanal Province, from 1999 for 
Temotu Province and from 2000 for Makira-Ulawa and 
Western Provinces. In 2001, new divisions were intro-
duced. However, data from 2000 and 2001 were incom-
plete and considered unreliable due to ethnic conflicts 
during this period. As a result, cases from 2001 to 2012 as 
reference were used.

The malaria data were checked for potential errors, 
including double, misspelt, misnamed or missing data. 
The cleaned data were then compared to a GIS database 
that included health centre locations and names. Data 

TSI = w1 ∗ p1 + w2 ∗ p2 + · · · + wk ∗ pk
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errors and location or name conflicts were corrected, 
where possible, and some remaining questions were 
checked during a workshop with the national and prov-
ince malaria control managers in Honiara. This resulted 
in all health centres from the malaria cases database 
being georeferenced by health area and province for each 
of eight provinces and Honiara city. Finally, a buffer of 
5 km was defined around each health centre and a spe-
cific GIS layer was allocated, because distances greater 
than 5 km have been shown to have negative impact on 
health [18].

Administrative and settlement data
Information was obtained on the administrative bound-
aries, health administrative points and areas and settle-
ment locations. For the administrative boundaries this 
was through the database of global administrative areas 
(GADM; http://www.gadm.org/) which contained infor-
mation on the country, province and wards (polygons). 
The health administrative data were obtained from Solo-
mon Islands GIS, provided by the NVBDCP. Census data, 
obtained from the Solomon Islands National Statistics 
Office, 2009 Census of Population and Housing, through 
the PopGIS2 platform (Secretariat of the Pacific Com-
munity, Statistics for Development Division), was used 
to locate settlements. The Census indicating around 
9000 settlements in the Solomon Islands. All data were 
checked for double, misspelt, misnamed or missing val-
ues. The administrative contours from GADM were then 
used to calculate the distance to the coastline, after vali-
dation by image process calculations. The final results 
were GIS layers for settlements, health centres, and set-
tlement distance to a health centre, inside or outside a 
buffer of 5 km. Around 678 settlements were within 5 km 
of at least two health centres, 6580 within 5  km of one 
health centre and 2442 over 5 km from any health centre. 
This data could then be used in GIS queries and maps.

LANDSAT ETM + band 8
LandSat 7 ETM + band 8, sourced from the Global Land 
Cover Facility (http://www.landc​over.org), was used to 
calculate higher resolution information on the distance 
to the coast. The ETM or enhanced thematic mapper 
Plus sensor has images with a 30  m spatial resolution 
over seven spectral bands. The eighth band has a 15  m 
resolution and was the only one used in this analysis. 
Landsat products could not be used for land use and land 
cover determination because of the small numbers of 
available images and the frequent cloud cover. One image 
was identified to have no cloud on the Guadalcanal coast-
line and was used as the GADM source for the Island/
Province boundary. Further details on the images used 
are provided in Appendix A.

Elevation
Digital elevation data were obtained from the Shuttle 
Radar Topography Mission Version 4 (SRTM V4) Ver-
sion 4 courtesy of the US Geological Survey (http://
srtm.csi.cgiar​.org) [19, 20]), using the C-band Wave-
length (5.6 cm). These data were arranged in 1° by 1° tiles, 
resampled to a resolution of 3-arcs second, 90 m at the 
equator. The vertical datum used was the EGM96 (Earth 
Gravitation Model 1996), the vertical error in the digital 
elevation model being less than 16 m. Further details on 
the images used are provided in Appendix A.

Land cover
Land cover data were obtained from the European 
Space Agency and the Université Catholique de Louvain 
(http://due.esrin​.esa.int). This Global Cover 2009 dataset 
[21] has a 250 m spatial resolution, based on the MERIS 
sensor on the ENVISAT satellite, and uses 22 land cover 
classes defined by the FAO Land Cover Classification 
System. The data were processed using a window on 
the Solomon Islands and then for each of the provinces. 
Provided in a Plate-carrée projection, a plane equi-rec-
tangular projection, the data were georeferenced with 
resampling by nearest neighbour method (with IDRISI 
software), so as to be converted into the same projection, 
as the other layers. The total root mean square error was 
less than half the size of the cell (15/2 m) and then veri-
fied upon importing into GIS software. The data within 
the images were classified according to level of water cov-
erage: i.e. no water, permanent water, and non-perma-
nent water with potentially flooded areas. Further details 
on the images used are provided in Appendix A.

Software
R software version 3.4.3 [22] with the following packages 
ggplot2 [23], tidyverse [24] were used for statistical analy-
sis and graphs. Images were processed in TerrSet 18.21 © 
1987–2016 J. Ronald Eastman [25], products images were 
exported in geotif format, then imported into Mapinfo 
Pro 15.0 © 2015 Pitney Bowes Software Inc., where GIS 
layers were organized and GIS queries were dealt with.

Results
The main results are separated according to the identified 
ecological preferences of the main mosquito vector, An. 
farauti, and settlement locations, leading to the devel-
opment of maps and a GIS layer of the suitability index. 
Literature review and expert consultation identified the 
following environmental variables were identified to sig-
nificantly contribute to the likely presence of An. farauti: 
distance from coast, elevation, presence of water bod-
ies and proximity to settlements (as humans are a blood 
source).

http://www.gadm.org/
http://www.landcover.org
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
http://due.esrin.esa.int
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Distance to coastline
Prior to calculating the distance of settlements from the 
coastline, the distance of all pixels from the coastline was 
determined from LANDSAT—band 8 images, described in 
the “Methods” section. Three images were used, all from 
the 4th of April 2001, before the scan line corrector (SLC) 
failed in May 2003 resulting in data gaps. An additional 
image, from the 12th of January 2006, was used. This latter 
image retained the same radiometric and geometric cor-
rections as the earlier images (https​://lands​at.usgs.gov). A 
mosaic, or merge, of the images was then used to create a 
single image covering the Solomon Islands.

Data from mosaic image covering the Guadalcanal Prov-
ince was extracted and verified against the GADM dataset. 
This was achieved by creating a new image with the same 
parameters, spatial resolution and corner coordinates, and 
rasterizing the contour polygon. A mask was then created 
for the Guadalcanal Province, with values of 0 for sea and 
1 for land pixels. An Edge filter, Laplacian edge enhance-
ment 3 × 3, was used to ensure the province area had a 
minimum width of 2 pixels and a continuous boundary. 
This final image was created by overlaying the mask image 
to ensure that distance from the coast was only calculated 
using pixels inside the province boundary (contour). As a 
good match was obtained between the mosaic image and 
the GADM dataset, this contour extraction validation step 
was not required for the other provinces.

To translate these scores of the distance from the coast 
for each pixel (in metres), we used the IDRISI software 
(https​://clark​labs.org/) and converted this from degrees 
to metres using the following procedure. The distance in 
degrees was multiplied by the length of a degree at Gua-
dalcanal which equals 109.6251  km (= [2 * cos(latitude) * 
6378]/360, where 6378 is the radius of the Earth in km) 
and then converted to metres. Calculation of the distance 
of settlements from the coast is described in “Model” sec-
tion. The process obtaining the distance from coast data 
is described in “Model” section and shown in Fig. 2.

The need for a high spatial resolution for distance to 
the coastline supported by the study of Bugoro et  al., 
where larvae were sampled at 50 m intervals along three 
streams, starting from the coast [26]. Larvae density fol-
lowed a J-shaped curve, decreasing from 0 to 50  m to 
500 m from the coast and monotonically decreasing until 
3  km. Based on these results we determined non-linear 
scores for distance to coastline (see Table 1).

Elevation
Elevation may be an indirect factor of An. farauti presence 
through its impact on localized temperature and humidity 
[12]. Temperature and humidity are also known to influ-
ence the survival of the internal parasites of the mosquito. 
Four SRTM Version 4 geotif images of digital elevation 

data were used as a mosaic to cover the Solomon Islands 
and a window was determined for each of the eight prov-
inces and Honiara city. Pixels values that were below sea-
level elevations reclassified as 0 m (using IDRISI software). 
A score classification was then applied (Table 1). The data 
were then exported in bmp format and the resulting raster 
images georeferenced in GIS software.

Proximity to water bodies
The Global Cover 2009 dataset [21] was used to deter-
mine locations and classification of water bodies. As 
the image was in Plate-Carrée projection, it had to be 
georeferenced and resampled.

As the permanence of water (natural or irrigated) was 
the most important characteristic, these were reclassi-
fied, and assigned a score, as follows: Permanent water 
bodies, permanently flooded areas (score = 3) cor-
responding to Global Cover code 210, 170. Non-per-
manent (regularly flooded or irrigated) water bodies 
and waterlogged soil by fresh, brackish or saline water 
(score = 1): Global cover code 11, 14, 160, 180. No 
water, no flood, no irrigation (score = 0): Global Cover, 
all other codes (Table 1).

Model
The model was developed in two main steps: creation 
of a Boolean raster image for settlement distance and 
then, reclassification and standardizing of the raster 
images for distance from the coastline, elevation and 
land cover.

Boolean raster image of settlement proximity
A Boolean raster image was created with distance from 
settlement as a variable. A value of 1 was attributed to 
each pixel that was within 1 km of any settlement, while 
a value of 0 was assigned to pixel greater than 1 km from 
a settlement.

Reclassification, weight and standardization
A new integer value between 0 and 5 was assigned to 
each pixel of the three following raster images: distance 
from the coastline, elevation and land cover (Table 1 and 
Fig. 3).

Model development
To develop the model of malaria transmission suit-
ability, the final raster images for distance from coast-
line, elevation and land cover were selected and the 
score from each image for each pixel were added, using 
a logical OR operation. A logical AND operation was 
then used to multiply the settlement images with the 
resultant image. The final image had new pixels rang-
ing in value from 0, if its geolocation was in the sea or 

https://landsat.usgs.gov
https://clarklabs.org/
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inland and more than 1 km from any settlement, to the 
sum of the scores of distance from coastline, elevation 
and land cover (maximum value of 13) if not. The final 
model for transmission suitability index, as described 
above, is represented by the formula:

TSI = w1 * (distance from coastline) + w2 * (eleva-
tion) + w3 * (land cover); for geolocations less than 1 km 
from a settlement; and 0 otherwise, where w1, w2, w3 are 
the scores associated with distance to coastline, elevation 
and land cover, respectively (range 0–5).

See the suitability map for Guadalcanal in Fig.  4 and 
Honiara City in Fig. 5 and in Appendix B for details and 
for the other provinces.

Model validation
Validation of a suitability model differs from a validation 
for a presence/absence model. Validating a suitability is 
about presence in suitable areas with no record of pres-
ence in non suitable areas. The absence of a record in a 
suitable areas does not mean that the area is not suit-
able. Validation of the malaria Transmission Suitability 
Index was restricted to areas where entomological stud-
ies had previously occurred, with the results also veri-
fied by entomological experts.

Expert validation consisted of the following: direct 
comparison with previously collected presence data and 
expert opinion on the suitability of the model structure 
and scores. Over the period 1968 to 1973, Brian Taylor 
and Mario Maffi surveyed mosquito presence over much 
of the Solomon Islands [6]. Although locations were pro-
vided for each mosquito species encountered, the data 
were not in a format that allowed it to be converted into 
GIS locations.

Dr. Nigel Beebe and his collaborators at the University of 
Queensland provided data with which to valid the model. 

Fig. 2  Distance to coastline—image processing. (1) From a mosaic of two LANDSAT images (15 meters spatial resolution) Guadalcanal main island 
is extracted; (2) A new image of the same spatial resolution is created with a rasterization of Guadalcanal’s surface area; (3) A filter is created to 
extract the contour of the island to be able to calculate the distance of each pixel of this image to the contour; (4) A multiplication of each pixel 
distance value by 0 for the sea pixels or by 1 for Guadalcanal island pixel to allow a better display of the distance to the coast for each pixel of the 
island

Table 1  Score assigned to factors

Score Distance 
to coastline 
(m/km)

Elevation (m) Landcover

5 0–50 m 0–100 m –

4 – – –

3 50 m–1 km – Permanent water bodies

2 1–3 km 100–300 m

1 3–5 km 300–600 m Non-permanent water bodies, 
including irrigated cropland 
or flooded

0 > 5 km > 600 m No water, no flood, no irriga-
tion
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His team sampled water bodies along the coast and inland 
in north Guadalcanal at the end of the dry season (Octo-
ber to November) 1997 [15]. The provided data consisted 
of GPS coordinates, including elevation, of all samples 
linked to the presence or absence of An. farauti. Model 
validation using this data indicated that there was no sig-
nificant difference between Beebe presence data and that 
produced by the TSI model (81% of the presence points 
described by Beebe et  al. had TSI scores > 9, while only 
16% of the absence points had TSI scores > 9). As the data 
by Beebe et al. [15] was based on sampling only sites along 
roadsides on a single night, ‘absence’ points do not conclu-
sively mean the mosquito was not present at that location.

The study by Russell et  al. [9], which sampled larvae 
in Central Province and Western Province in Solomon 
Islands from December 2011 to December 2012 was bet-
ter adapted to validation of the TSI model, as it reduced 
the false-absence bias by repeated monthly sampling over 
10 consecutive days in five sites in the north side of a 
lagoon and also monitored larval density [26].

For both studies by Beebe et al. and Russell et al., loca-
tions where An. farauti larvae were collected had a sig-
nificantly higher TSI score than for locations where 
collections than where no An. farauti can be found (Fig. 6 
and Table 2).

The TSI mean in Central Province and Western Prov-
ince is higher than in Guadalcanal (p < 0.0001), most 
likely because villages in Central and Western Province 
are within 2 km from the coast and, therefore, so are the 
sampled sites. In Beebe et al. [15], positive sites have been 
found up to 6.4 km from the coast.

Validation by expert consultation of the suitability of the 
TSI model and scores selected was conducted with Profes-
sor Tom Burkot (Australian Institute of Tropical Health and 
Medicine, James Cook University) and Lieutenant Colonel 
Robert Cooper (Australian Army Malaria Institute).

When additional data on the presence/absence of An. 
farauti becomes available it is hoped that further model 
validation will be possible, including for additional 
regions.

Fig. 3  Scores. Distance to coastline, Elevation and Land cover scores used in the model. From literature and experts consultation, a score between 
0 and 5 has been assigned to each factor (distance to coastline, elevation, presence of water)
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Discussion
Malaria remains a serious health risk to many communities 
within the Solomon Islands. With environmental factors 
accounting for around 90% of the malaria transmission risk, 
and approximately two-fifths of the global malaria burden 
being attributed to environment factors that are modifi-
able [27], there is an opportunity to provide tools to help 
reduce this risk. Tools, including GIS, can greatly assist in 
the monitoring, surveillance, and prediction of malaria 
presence [28]. The TSI developed here concentrates on 
the development of a model focused on the environmental 
component of malaria transmission risk.

Previous malaria surveillance models have been devel-
oped, including for the Pacific region (e.g. [5, 29]). The 
GIS-based spatial decision support system of Kelly et  al. 
was applied to three Pacific provinces including two for the 
Solomon Islands, Temotu and Isabel. In their system, Kelly 
et al. [5] mapped confirmed malaria cases and used this to 
classify active transmission foci for use in guiding targeted 
responses in eliminations zones. Rosewell et  al. [29] also 
developed a case-based malaria surveillance system based 
on mobile technologies and GIS for Papua New Guinea. 

Statistical algorithms were used to generate outbreak detec-
tion data down to the village level, with the results being 
automatically displayed within a mapping platform. In 
the Solomon Islands, not all cases of malaria are currently 
reported within the central government’s Health Infor-
mation System, reasons including illegible writing, lack of 
understanding of the clinical definition of malaria and insuf-
ficient resources and training [30] and this can impact on 
the usefulness of malaria surveillance models such as those 
discussed here. In addition, both systems of Kelly et al. and 
Rosewell et al. [5, 29] support the rapid detection of malaria 
cases but, unlike the TSI developed here, neither has any 
predictive capacity or considers the environmental prefer-
ences of the mosquitos and malaria parasite transmission. 
This includes the reported cases of malaria.

Community involvement is a critical component in 
malaria prevention and control [28], with eradication on 
small isolated islands being possible when levels of com-
munity involvement are high [31]. Community involve-
ment can also extend to treatment support, including 
early recognition of fever, active case detection and 
treatment distribution support. This self-monitoring 

Fig. 4  Plasmodium transmission spatial suitability and health centres map for Guadalcanal
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can provide useful data for GIS-based tools with the 
tools providing support to the communities engaged in 
malaria control efforts [28].

The malaria TSI developed here is a useful tool for the 
detection of locations at high risk of malaria transmission. 
Unlike previously available information on malaria risk 
for the Solomon Islands, e.g. that based on the reported 
number of cases for health districts, the TSI is provided at 
a much higher spatial resolution. This can enable malaria 
control measures to be more effectively targeted, especially 
vector control, down to the scale of settlements, with the 
potential to greatly reduce resource expenditure and use.

Fig. 5  Plasmodium transmission spatial suitability and health centres map for Honiara City

Wilcoxon, p = 0.017 Wilcoxon, p = 1.8e−05

Central Province 
 and Western Province Guadalcanal

absence presence absence presence

5

10

13

Anopheles farauti

TS
I

Fig. 6  Anopheles farauti presence and absence comparison TSI 
means test for Central Province and Western Province, from Russell 
et al. [9], and for Guadalcanal, from Beebe et al. [15]. Mean and 
confidence intervals (95%) are in black, boxplot are in colour, dots 
are representing TSI values for each sample, note that these values 
have been jittered (random noise added around the integer values to 
avoid overplotting)

Table 2  Anopheles farauti presence and  absence 
comparison TSI means test

Based on a total of 52 collections sites in Guadalcanal Province from Beebe et al. 
[15] for the year 1997 and of a total of 84 collection sites in Central Province and 
Western Province (CP and WP) from Russell et al. [9]

Anopheles farauti Presence (TSI 
mean (n))

Absence (TSI 
mean (n))

Wilcoxon test

Guadalcanal 9.17 (31) 7.50 (21) p < 0.0001

CP and WP 10.24 (33) 9.59 (51) p < 0.02
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Although the malaria TSI model performed well on the 
data available, the validation with the presence data of pre-
vious published studies was restricted to only some parts 
of the Solomon Islands and with sampling methods not 
always compatible with the study. Species detectability can 
vary in space and time and absence records depends on the 
sampling methods used [18, 32], suitability information is 
not the same as presence prediction and does not represent 
a probability of occurrence. Anopheles farauti is known to 
prefer established breeding sites [33] and has a narrow and 
restrictive distribution [12], with the sites being fixed [9], 
allowing a great variation of the average density between 
villages [34]. Environment can also play a role in isolation 
of breeding sites. In their first oviposition cycle, An. farauti 
females tend to disperse less to locate their hosts or breed-
ing sites when released in their natal village of capture than 
when released in another village [11]. This demonstrates 
that An. farauti has the potential to widen its distribution 
but that they prefer to stay where they are, if the environ-
ment is suitable and the hosts are present. As with any 
model, the model development and validation is only as 
good as the data input and could be improved with new 
information, such as field or experimental entomological or 
environmental data or with new tools.

It is currently not possible to effectively incorporate 
malaria incidence data into a model coupled with the 
TSI, as no information is currently available that breaks 
down the health district records, compiled over a wider 
catchment area, to the spatial and environmental resolu-
tion of the TSI. As additional data on malaria cases, and 
the presence and absence of the mosquito vector, become 
available it will be possible to further refine and validate 
the TSI, including the potential to incorporate the TSI 
into existing surveillance systems such as that developed 
by Kelly et  al. [5] or Rosewell et  al. [29]. The next step 
would be to add EIR quantitative adult as possible and 
malaria incidence cases information layers.

To some, the malaria TSI model developed here may 
appear simple. However, this also provides an advantage 
as the model is structured in such a way that it is easy to 
modify existing parameters, and their weights, or add 
additional parameters as new information comes to hand 
through either updated census, elevation or land cover 
maps or in the form of new information on the mosquito 
or its parasites environmental preferences. These are 
currently not explicitly included in the model as hydro-
meteorological factors provide a better means of study-
ing temporal variability of mosquito habitats. However, 
variations in climate variables, such as rainfall, have been 
known to influence the risk of malaria, including in the 
Solomon Islands [26, 35], and may offer some cost efficien-
cies to malaria control programmes through early warning 
systems [35, 36].

Conclusion
The TSI model developed here provides assistance for 
those wishing to make predictions of likely incidence of 
malaria outbreaks based on the environmental prefer-
ences of the mosquito, An. farauti. These predictions can 
provide sufficient lead-time for agencies to target malaria 
prevention and control measures and can assist with 
effective deployment of often limited resources.

Based on literature and interviews with experts, three 
parameters were identified as influencing the likelihood 
of malaria mosquito vector presence. These were: distance 
from coastline, elevation and presence of water bodies. The 
model was developed for the Solomon Islands and eco-
logical preferences of An. farauti, but can be modified for 
other regions and species. The final TSI had a spatial reso-
lution of 250 m, providing a much greater spatial resolu-
tion than any previous predictive models for the Solomon 
Islands, allowing for the scale of the control programme to 
move from districts to villages. This will allow those tasked 
with malaria control and elimination to identify spa-
tial clusters of likely outbreaks and to define strategies to 
potentially eliminate malaria at the periphery of these and 
to reduce transmission of malaria between clusters.

In order for the Transmission Suitability Index to 
remain current, it is recommended that it be updated as 
new information on the environmental preferences of An. 
farauti becomes available, for example, after each geo-
referenced census period. In the future it is hoped that 
the TSI developed here can be incorporated into other 
malaria surveillance tools, so that locations with predicted 
malaria outbreaks can be superimposed with updated 
case data and information at high resolution on past con-
trol measures, such as spraying and control effectiveness.

In summary, the TSI, provides a visual display of likely 
malaria outbreaks allowing quick and effective commu-
nication of malaria risk and is a useful tool for assisting 
decision-makers with both a national coverage and at the 
village scale.
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Appendix A

Additional details of images and datasets used in the 
analyses.
LANDSAT ETM + band 8:

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p087r067_7p20010404_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 04/04/2001.

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p088r067_7p20010404_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 04/04/2001.

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p087r066_7p20010404_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 04/04/2001.

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p088r066_7p20010404_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 04/04/2001.

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p083r067_7p20070307_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 07/03/2007.

•	 NASA Landsat Program, 2003, Landsat ETM + scene 
p083r068_7p20070307_z58_nn80, SLC-Off, USGS, 
Sioux Falls, 07/03/2007.

Elevation data

•	 USGS, year, Shuttle Radar Topography Mission, 3 
arcs second, version 4, srtm_68_14, Global Land 
Cover Facility, University of Maryland, College Park, 
Maryland, Month year.

•	 USGS, year, Shuttle Radar Topography Mission, 3 
arcs second, version 4, srtm_69_14, Global Land 
Cover Facility, University of Maryland, College Park, 
Maryland, Month year.

•	 USGS, year, Shuttle Radar Topography Mission, 3 
arcs second, version 4, srtm_69_15, Global Land 
Cover Facility, University of Maryland, College Park, 
Maryland, Month year.

•	 USGS, year, Shuttle Radar Topography Mission, 3 
arcs second, version 4, srtm_70_15, Global Land 
Cover Facility, University of Maryland, College Park, 
Maryland, Month year.

Landcover data

•	 Globcover14_200901_200912_V2.
•	 © ESA 2010 and UCLouvain, Accompanied by a link 

to our ESA DUE GlobCover website: http://due.esrin​
.esa.int/page_globc​over.php.

The Internet Archive
The Internet Archive is a 501(c) (3) non-profit library.
https​://archi​ve.org/searc​h.php?query​=anoph​eles%20far​

auti.
Walter Reed Institute
The Walter Reed Biosystematics Unit| Museum Support 

Center, MRC-534 | Smithsonian Institution| 4210 Silver Hill 
Rd.| Suitland, MD 20746-2863 USA| Ph: 301-238-1077; FAX: 
301-238-3168 Entomology Branch| Walter Reed Army Insti-
tute of Research| 503 Robert Grant Avenue| Silver Spring, 
MD 20910-7500 USA.

http://www.wrbu.org/mqID/mq_medsp​c/AD/ANfar​
_hab.html.

Appendix B
Malaria transmission suitability maps. See Figs.  7, 8, 9, 
10, 11, 12, 13 and 14.

http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
https://archive.org/search.php%3fquery%3danopheles%20farauti
https://archive.org/search.php%3fquery%3danopheles%20farauti
http://www.wrbu.org/mqID/mq_medspc/AD/ANfar_hab.html
http://www.wrbu.org/mqID/mq_medspc/AD/ANfar_hab.html
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Fig. 7  Choiseul Province

Fig. 8  Central Province
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Fig. 9  Isabel Province

Fig. 10  Makira Ulawa Province
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Fig. 11  North Malaita Province

Fig. 12  South Malaita Province
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Fig. 13  Nende, main island of Temotu Province

Fig. 14  Western Province
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