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Abstract

Biological networks are often heterogeneous in their connectivity pattern, with degree distri-

butions featuring a heavy tail of highly connected hubs. The implications of this heterogene-

ity on dynamical properties are a topic of much interest. Here we show that interpreting

topology as a feedback circuit can provide novel insights on dynamics. Based on the obser-

vation that in finite networks a small number of hubs have a disproportionate effect on the

entire system, we construct an approximation by lumping these nodes into a single effective

hub, which acts as a feedback loop with the rest of the nodes. We use this approximation to

study dynamics of networks with scale-free degree distributions, focusing on their probability

of convergence to fixed points. We find that the approximation preserves convergence sta-

tistics over a wide range of settings. Our mapping provides a parametrization of scale free

topology which is predictive at the ensemble level and also retains properties of individual

realizations. Specifically, outgoing hubs have an organizing role that can drive the network

to convergence, in analogy to suppression of chaos by an external drive. In contrast, incom-

ing hubs have no such property, resulting in a marked difference between the behavior of

networks with outgoing vs. incoming scale free degree distribution. Combining feedback

analysis with mean field theory predicts a transition between convergent and divergent

dynamics which is corroborated by numerical simulations. Furthermore, they highlight the

effect of a handful of outlying hubs, rather than of the connectivity distribution law as a

whole, on network dynamics.

Author summary

Nature abounds with complex networks of interacting elements—from the proteins in

our cells, through neural networks in our brains, to species interacting in ecosystems. In

all of these fields, the relation between network structure and dynamics is an important

research question. A recurring feature of natural networks is their heterogeneous struc-

ture: individual elements exhibit a huge diversity of connectivity patterns, which
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complicates the understanding of network dynamics. To address this problem, we devised

a simplified approximation for complex structured networks which captures their dynam-

ical properties. Separating out the largest “hubs”—a small number of nodes with dispro-

portionately high connectivity—we represent them by a single node linked to the rest of

the network. This enables us to borrow concepts from control theory, where a system’s

output is linked back to itself forming a feedback loop. In this analogy, hubs in heteroge-

neous networks implement a feedback circuit with the rest of the network. The analogy

reveals how these hubs can coordinate the network and drive it more easily towards stable

states. Our approach enables analyzing dynamical properties of heterogeneous networks,

which is difficult to achieve with existing techniques. It is potentially applicable to many

fields where heterogeneous networks are important.

Introduction

Complex networks, their structure and dynamics, have become an indispensable tool for

investigating biological systems [1–3]. Networks provide a mathematical model for a system of

many interacting components; such models are a cornerstone of computational neuroscience

and are widely used in cell biology to describe genetic networks, protein interactions, metabo-

lism and more. Motivated at least partly by these applications, the mathematical theory of net-

work analysis has gained general and fundamental interest and has advanced tremendously in

the past decades. Topics of interest include network structure and topology; dynamic behav-

iour such as fixed points, their stability and their scaling with network size; robustness of these

dynamic properties to noise and to evolution; and network controllability and information

processing properties [4–7].

One important property of biological networks that has raised much interest is their hetero-

geneous topology. Analyses of metabolic, protein interaction, gene regulatory and neural net-

works all show heterogeneous connectivity, including heavy tail distributions and modular

structure [8–14]. Heterogeneous networks, such as those with a broad connectivity distribu-

tion, are generally more difficult to analyze; inferring their detailed topology requires exceed-

ingly high statistics. Power-law distributions often provide a good approximation to such

networks, but statistical difficulties have led to some debate concerning their adequacy [15].

Understanding how heterogeneous connectivity profiles relate to properties of the associ-

ated dynamical system is a non-trivial theoretical challenge [16–20]. In particular, heterogene-

ity makes these networks non-tractable by mean field methods [20]. In the current work we

propose a different view on this problem, which interprets network topology as an effective

feedback system. We develop a novel approximation for network ensembles with a broad con-

nectivity distribution, based on the dominant role of a handful of hubs in a finite network.

Identifying such hubs [21], understanding their impact on network functionality [22], and

advancing the related theory [23] are all active research areas. Approximating a few hubs at the

tail-end of the distribution by a single effective hub, we map the problem of heterogeneous net-

work dynamics to that of a homogeneous network coupled to a single external node: each

scale free network is approximated by a single lumped-hub connected to a homogeneous net-

work of the remaining nodes (the bulk). Despite the simplification, this mapping retains prop-

erties of the original network ensemble. The new network is parameterized by hub strength

and bulk connectivity.

We focus on the probability of random network ensembles to converge to attractors, and

how this probability is modulated by ensemble topology. Convergence to fixed points is one of
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the simplest dynamical behaviors, and hence a suitable starting point for analysis. Moreover,

stable fixed points have traditionally been linked to fundamental functional properties of net-

works [24–26].

The lumped-hub approximation captures much of the behavior of heterogeneous network

ensembles in terms of their probability of convergence to fixed points. The simplified ensem-

ble can be analyzed by a combination of mean field approximations and feedback analysis. For

networks with outgoing hubs, this analysis predicts a phase transition between converging and

diverging dynamics as a function of the balance between hub strength and bulk connectivity,

which is verified by numerical simulations. We show that the prediction holds on average for

scale-free networks in a range of parameters relevant to real networks. Deviations from the

theory stemming from large variability in scale-free ensembles as well as corrections to the

mean field assumption are discussed.

Our results offer a novel framework for analyzing heterogeneous networks, which links

insights from two different angles—internal dynamics of complex networks and the response

to external input of simpler networks. The success of our mapping suggests that the role of out-

going hubs, in remarkable contrast to incoming ones [27], can be considered analogous to that

of an external input in overcoming recurrent activity, suppressing chaotic dynamics, and ulti-

mately driving the system to a stable fixed point. It highlights the crucial role of a small number

of hubs in a finite network: their existence and relative strength is predictive of a given net-

work’s dynamics, possibly more so than other quantitative features of the distribution from

which the connectivity was sampled.

Results

Dynamics with scale-free networks: Motivating observations

In what follows we analyze a model of nonlinear dynamics, often used to describe biological

interactions such as in neuronal or genetic regulatory networks [24, 28]. Binary dynamic vari-

ables, si (1� i� N), approximate the activity of N individual elements as being in one of two

states: expressed (+1) or repressed (−1) genes, firing or quiescent neurons. The effect of ele-

ments on one another is described by a weighted sum of all incoming links:

sðt þ 1Þ ¼ signðWsðtÞÞ ð1Þ

where W is the N × N connectivity matrix with real entries giving the strengths of interactions,

drawn from some random network ensemble, and

signðxÞ ¼

1; if x > 0

0; if x ¼ 0

� 1 if x < 0:

8
>>><

>>>:

ð2Þ

This is a special case of the widely studied Boolean networks [24, 29, 30], with the Boolean

function chosen here to be the sign of the inputs’ weighted sum (for significance and alterna-

tive definitions of the sign function, see Materials and methods).

The ensemble from which W is drawn is a crucial ingredient of Eq (1). To study the effects

of topology on the dynamics, we define W = T � J as a Hadamard (element-wise) product

between a random topology matrix T and a random interaction strength matrix J. The 0/1

adjacency matrix T defines a directed graph, whose edges are sampled from specified distribu-

tions of incoming and outgoing connections (see Materials and methods). The strengths J are

i.i.d. Gaussian variables with zero mean and standard deviation of unity.
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For networks described by a directed graph, in general, incoming and outgoing degree dis-

tributions, Pin(k), Pout(k), need not be the same. In one case of special interest, gene regulatory

networks, an empirical observation of such dissimilarity was reported. Outgoing connections

were found to have a broad distribution consistent with a power-law: Pout(k) * k−γ, a scale-

free (SF) distribution, while incoming connections were much more narrowly distributed

around the average [31]. These statistical properties represent the biological observation that

while any given gene is regulated by at most a handful of others, some transcription factors

can regulate the expression of up to hundreds of genes in the cell. These ‘master regulators’ are

of much interest in cell biology, and have been at the focus of many specific molecular studies

[32]. In neuroscience, evidence was also found for a hierarchy of connectivity, with scale-free

topology suggested in several contexts [10, 11]. In particular, “leader neurons” were identified

and studied [33].

In a recent work describing gene regulatory networks by random interaction matrices, it

was found that among various network topologies, those drawn from ensembles with outgoing

hubs have a high probability to converge to attractors under exploratory adaptation [27].

Ensembles that showed efficient ability for adaptation also exhibited a high probability of con-

vergence to a fixed point attractor in their intrinsic dynamics.

Particularly noteworthy in this context is the observation that for the transpose random

network ensemble, where incoming connections are broadly distributed whereas outgoing

connection are not, the abundance of fixed point attractors is decreased dramatically. This

result is illustrated for the model of Eq (1) in Fig 1A (open circles). For each of the two ensem-

bles—Scale-Free Out degree distribution (SFO) and the transposed SFI—the fraction of simu-

lations converging to a fixed point after a given time interval was computed; this is used as an

estimate of the convergence probability across the ensemble. The result is presented as a func-

tion of network size N for both ensembles. For SFO networks a considerable convergence

Fig 1. Dynamic properties of Scale-Free-Out (SFO, blue) vs. Scale-Free-In (SFI, red) network ensembles. (A) Convergence probability is shown as a

function of network size N. Filled circles show convergence to frozen cores larger than 90% of the network; open circles show convergence to fixed

points. Each data point represents an ensemble average over 600 networks with random T, J and initial conditions. (B) Distribution of frozen core sizes

(FC) relative to network size, across the SFO ensemble for N = 1500. The distribution is further zoomed near FC = 1 justifying the notion of quasi fixed

point, defined in the text and elaborated in Materials and methods. Scale free parameters for both panels are γ = 2.2 and kmin = 1, Binomial parameters

are N and p = k/N with k* 5 (exact value of k is determined by the realization of scale free distribution. See Materials and methods for details).

https://doi.org/10.1371/journal.pcbi.1007825.g001
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probability is maintained up to the maximal network size tested, N = 5000, whereas for SFI

networks this probability decreases rapidly and is negligible for networks with N> 1000.

These results are consistent with those of [27], where a model with continuous dynamics was

used, extending the observation on the two transposed ensembles to Boolean dynamics.

When simulating these Boolean dynamics, we noticed that networks often converge to a

state where the vast majority of the nodes are fixed—“frozen”, while the rest continue to

change (Fig 1B). From a biological perspective these are of interest as partially fixed states, and

mathematically they have been studied in the context of general Boolean networks [30]. In

what follows we define a quasi-fixed-point (QFP) as a state in which most (> 90%) of the

nodes are frozen. Fig 1A (filled circles) demonstrates that the probability of convergence to a

QFP behaves qualitatively similar to the corresponding probability for fixed points: the

remarkable difference between SFO and SFI ensembles and its dependence on network

size remain the same. This shows that the constraining effect of outgoing hubs on network

dynamics is not a unique feature of fixed points, but is also present for weaker notions of

convergence.

Our empirical observations rely on convergence of dynamics—and hence is affected both

by the existence of fixed points and by their stability. In Materials and methods we show that

networks from both SFO and SFI ensembles typically have O(1) fixed points. This suggests

that the reported differences between ensembles stem from stability of fixed points. In the fol-

lowing sections we develop an approach which enables to better understand the stability prop-

erties of the two ensembles.

The lumped-hub approximation

A finite realization of a power-law connectivity distribution is dominated by a handful of hubs

connected to a macroscopic fraction of the network. Fig 2A shows an empirical histogram of

the outgoing connections in an SFO network with N = 1500, where the largest hubs each con-

nect to * 1000 nodes. To capture the properties of such a network we divide it into a small

group of leading hubs, and the “bulk”—the rest of the network. The m largest hubs are lumped

into one node, while the remaining nodes are substituted by a homogeneous network with

binomially distributed incoming and outgoing degrees, preserving the average connectivity.

Fig 2. The lumped-hub approximation. (A) In a finite network with SFO degree distribution, the m largest hubs (gray shading) are connected to a

macroscopic fraction of the network. The histogram shows the number of outgoing connections from each node. (B) In the lumped-hub approximation

of the same network, these are substituted by one effective hub and the rest of the nodes are approximated by a Binomial network. The connection

strengths of the single hub to the bulk are determined by summing the strengths of the m lumped hubs. The mean degree of the bulk, kb, is retained in

the mapping. Here N = 1500.

https://doi.org/10.1371/journal.pcbi.1007825.g002
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We call this mapping the “lumped hub approximation”; the resulting network is character-

ized by the bulk mean connectivity kb and the pattern of connections ui from the lumped-hub

to each node i in the bulk. These depend both on the original network topology and the lump-

ing parameter m.

The connections ui are derived by summing the contributions of all the hubs that were

lumped according to:

ui � N ð0;
Xm

j¼1

TijÞ ð3Þ

where we assume that hubs in the original SFO network are represented by rows 1, . . ., m of

the connectivity matrix. In this construction, if more than one of the largest m hubs in the

original network were connected to node i, then the connection between the lumped hub and

this node is drawn from a distribution with appropriately scaled variance. We refer to this set-

ting as Exact Pattern approximation, since the connectivity from the lumped hubs is fully pre-

served (as opposed to coarser approximations discussed below).

Despite the crudeness of the lumping approximation, we find that it preserves dynamic

properties of scale free networks at the ensemble level. Fig 3 shows that the probability to con-

verge to a QFP in the approximated networks follows the same dependence on network size as

the original scale free ensembles. In particular, the significant difference between SFO and SFI,

mapped to either an outgoing or incoming lumped hub, is captured by the approximation.

These results are presented for a specific SFO ensemble, characterized by a fixed set of parame-

ters (see figure caption for details).

Fig 3. Convergence probability of SFO/SFI lumped-hub approximation. Probability of convergence to a Quasi

Fixed Point (QFP), for SFO and SFI (blue and red filled circles respectively; same data as in Fig 1A). Their

corresponding lumped-hub approximations are shown in blue and red open symbols with lumping parameter m = 4.

Statistics and parameters as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1007825.g003
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We next ask whether our lumping approximation can reproduce the range of different

behaviors across SFO ensembles with various power-law distributions. To answer this question

we map a broad range of SFO ensembles to lumped-hub networks and compare their dynamic

properties. Fig 4 (top left) shows a scatter-plot of convergence probabilities for SFO networks

vs. their lumped-hub approximations. Each point represents a specific SFO topology realiza-

tion T, and the convergence probability is estimated as an average over realizations of connec-

tion strength J. It is seen that the convergence probability is largely retained in the mapping

across a range of scale free parameter γ. In addition, the bottom-left panel of Fig 4 shows that

the distribution of frozen core (FC) sizes, exhibiting a bi-modal shape dependent on ensemble

parameters, is also very well captured by the lumping approximation. Comparisons of the

Fig 4. Lumped-hub approximation captures SFO network properties for a range of power-laws. Within the lumped-hub approximation, we show

three coarse grained versions of the hub outgoing connectivity pattern. (Left) Exact pattern of connectivity is maintained. (Middle) Number of nonzero

connections is maintained, but their weights are replaced by a Gaussian distribution. (Right) A single Gaussian distribution describes all outgoing

connections. (Top) Probability of converging to QFP for SFO networks and their respective lumped-hub approximations with increasingly coarse

graining. For each SFO parameter γ (color code and legend), 125 topology realizations T were drawn, and the convergence probability was estimated

from 50 realizations of the connection strength J and initial conditions. On each colored cluster of points, longer lines denote the direction of the linear

fit to each γ, and the size of the perpendicular segment is the remaining variance after the fit. The identity line is added for reference (dashed black).

Data points were jittered by a small uniform random noise (in range of ±0.01) to avoid their overlap due to discrete sampling. (Bottom) Cumulative

distributions of frozen core sizes for SFO networks and their lumped-hub approximations for two power-law exponents: γ = 2.2, 2.8 (color coded as in

the top panels). All scale free distributions have kmin = 1 (see Materials and methods for more details).

https://doi.org/10.1371/journal.pcbi.1007825.g004
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autocorrelation and dimensionality of non-converging trajectories are given in Materials and

methods, also supporting the similarity of the approximation to the original networks. These

results demonstrate that our lumped-hub approximation describes dynamic properties of the

SFO network ensembles across a broad range of parameters.

Feedback analysis for the lumped-hub network ensemble

We have seen that despite its coarseness, the lumped hub approximation somehow captures an

important feature of scale free networks that strongly affects their dynamics. Can it be har-

nessed to gain a deeper understanding of these networks?

In particular we are interested in the significantly larger convergence probability in the SFO

ensemble compared to the corresponding SFI. The essence of this difference becomes intui-

tively clear in the lumped-hub approximation. In lumped SFO networks, the hub coherently

drives a macroscopic fraction of the bulk nodes. In contrast, in lumped SFI networks the hub

receives a large number of inputs but only drives a small fraction (� kb) of the nodes. Previous

work showed that intrinsically chaotic dynamics of homogeneous random networks can be

suppressed by a coherent external drive [34]. Although here the hub is not external to the net-

work, we argue that a similar suppression effect underlies convergence in SFO networks.

The lumped-hub network is described by two coupled equations of the bulk and the hub:

s0ðt þ 1Þ ¼ signðW 0s0ðtÞ þ uhðtÞÞ ð4Þ

hðt þ 1Þ ¼ signðvTs0ðtÞÞ ð5Þ

where s0 and W0 denote the bulk activity and connectivity respectively, the scalar h is the hub

activity and the vectors u, v are the connections between the bulk and the lumped hub.

Our results so far relied on the outgoing connectivity from the lumped hub maintaining the

Exact Pattern of the original connectivity, according to Eq (3). To facilitate the analysis, we

consider an ensemble that retains statistics of the lumped hub connectivity rather than its

exact pattern:

ui �
N ð0; s2

hÞ; with Prob a

0; with Prob ð1 � aÞ
:

(

ð6Þ

This ensemble is characterized by three parameters: mean degree of the bulk kb; the hub

sparseness α, representing the fraction of its nonzero outgoing connections; and the variance

s2
h representing its connection strengths. Assuming a Gaussian distribution of connections,

this defines the Sparse Gaussian ensemble (Fig 4, center). This approximation is shown to pre-

dict both convergence probabilities (top) and frozen core statistics (bottom) nearly as well as

the lumped hub with the Exact Pattern of connectivity.

Notably, a coarser model, which we refer to as the Dense Gaussian approximation, and

where sparseness is not preserved, turns out to be dramatically less accurate. This ensemble,

where the hub is connected to the entire network by outgoing connections drawn from a

Gaussian distribution with variance as2
h, tends to systematically overestimate convergence

probabilities (Fig 4, right). In what follows, we therefore analyze the Sparse Gaussian ensemble

to assess the influence of the lumped hub on network dynamics.

Consider first an auxiliary setting—the “open loop” setting—where the hub is held at a

fixed value. Here the conditions on column mean [20] are fulfilled and Mean Field analysis

can be applied. Effectively, connections from the bulk of the network to the hub are discarded,

and it remains connected only through its outgoing links (Fig 5A). The hub then acts as an
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input to the rest of the network, a simple situation that can be analyzed by Mean Field Theory.

Formally, we replace the dynamic variable h by a fixed value (+ 1 without loss of generality),

namely Eq (5) is substituted by h(t + 1) = 1. In this open loop setting, the regularizing effect of

the fixed input competes with the recurrent dynamics of the bulk, and we ask under what con-

ditions the system converges to a fixed point. Later, we relate the open-loop results back to a

fully recurrent network including the hub as a dynamic variable [35].

To determine whether or not the system converges to a fixed point under input, we con-

sider the time-evolution of the Hamming distance d(t) between two bulk trajectories s0
1
ðtÞ and

Fig 5. Feedback analysis for the lumped-hub network ensemble. (A) Conceptual scheme of feedback analysis. The lumped-hub network contains

a single hub (gray) connected to a homogeneous network representing the bulk (green). In the open loop setting, the hub is clamped to a fixed value

while its incoming connections from the bulk are disabled (×). (B) Mean Field Theory predicts a threshold value of σh above which chaos in the bulk

network is suppressed and the system is driven to a stable fixed point. These transition lines are plotted in the (kb, σh) plane for various values of hub

sparseness α. (C) The Probability of converging to a QFP for lumped-hub network ensembles computed as a function of hub strength σh, for open-

loop (crossmarks, converging to 1) and closed-loop (circles, converging to 1/2). Two values of average bulk connectivity and sparseness are shown:

kb = 3, α = 0.5 (blue) and kb = 5, α = 1 (red). MFT-predicted transition is depicted by vertical lines of the corresponding color. The solid lines are the

open loop values divided by two. The numerical results confirm both the transition point and the factor of half due to closing the loop. N = 1500,

and statistics is obtained from 239 realizations. (D) Same as (C), for the open loop case and as a function of kb for fixed (σh, α) with N = 5000. Blue:

(σh = 1.0,α = 0.25), red: (σh = 2.12,α = 0.5). Statistics is obtained from 180 realizations. Gray regions in (B), (D) denote the limit of validity of MFT

(See section Limits to the lumped hub approximation).

https://doi.org/10.1371/journal.pcbi.1007825.g005
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s0
2
ðtÞ. In the thermodynamic limit N!1, this evolution is deterministic and given by some

function f(d) (see Ref. [36] and Materials and methods for derivations):

dðt þ 1Þ ¼ f ðdðtÞÞ: ð7Þ

The external drive h can suppress chaotic activity and drive the network to a stable state s0� if

and only if d� = 0 is a stable fixed point of the mapping Eq (7). This, in turn, requires the deriv-

ative of d at the origin, denoted byrd, to be smaller than one. We show in Materials and

Methods that, within Mean Field Theory (MFT), the condition for this can be expressed as a

threshold on the hub strength,

sh > scritðkb; aÞ ð8Þ

with σcrit depending on the average bulk connectivity kb and the sparseness α. Fig 5B shows

this critical line for several values of α in the (σh, kb) plane. Importantly, the lines are distinct

for different hub sparsity α. As already seen in Fig 4 (right), ignoring sparsity leads to an over-

simplified and inaccurate model.

Fig 5C illustrates the accuracy of our theory. Blue and red × symbols show simulated proba-

bility of convergence rising from zero to one as a function of σh for two sets of (kb, α), with the

critical values predicted by Eq (8) (vertical lines in corresponding colors). These results dem-

onstrate both the qualitative prediction—a (smoothed) transition from zero to one in conver-

gence probability, and the correct location of the transition at the predicted σcrit. The width of

the transition is affected by two factors—the slope of the critical lines in the (σh, kb) plane (Fig

5B) and the finite size of the system. We demonstrate these effects by using a larger network

and traversing the plane along kb instead of σh, resulting in a much sharper transition (Fig 5D).

We therefore conclude that MFT adequately predicts the open-loop convergence probability.

Note that the critical driving strength increases indefinitely for large kb, in agreement with pre-

vious results [36, 37].

Returning now to the closed-loop network dynamics Eqs (4) and (5), where feedback to the

hub is restored and it is a dynamic variable with incoming and outgoing connections, we ask

whether a stable attractor under external drive is consistently maintained as an attractor of the

recurrent dynamics. Intuitively one may argue that, with probability 1/2 with respect to the

random connections in the ensemble, the clamped value will be consistent with the hub’s

input; the driven steady-state will then also be an attractor of the full recurrent dynamics. This

intuitive argument only refers to existence of a closed-loop fixed point, and does not guarantee

its stability. Therefore, beyond the open-loop stability criterion Eq (8), the closed-loop setting

requires to consider the recurrent dynamics of the hub. As long as the hub does not flip from

its clamped value (h changes from +1 to −1), open and closed loop system dynamics coincide.

Consider a state s0, a small distance d = δ> 0 away from the fixed point s0�. For a stable

fixed point we expect exponential convergence with a raterd. Taking into account the finite

size of the network, we estimate that convergence to a distance of less than one node (d< N−1)

takes approximately

Tconv � �
logðNdÞ
logrd

: ð9Þ

Preserving this stability in the full closed-loop network requires that the hub does not flip its

sign during the time of convergence:

Tconv < Tflip: ð10Þ
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In Materials and Methods we show that the typical hub flipping time Tflip is approximately:

Tflip �
N
ffiffiffiffi
kh

p
d

ð11Þ

which implies that Eq (10) holds forrd far enough from the phase transition. Furthermore, it

is argued that even in the proximity of the critical valuerd� 1−, the corrections due to closing

the loop are smaller than the error of the mean field approximation made in the open loop

analysis. Taken together, these arguments show that all effects of closing the loop will reduce

the probability of the system converging to a stable fixed point by half. Fig 5C shows this is

indeed the case. Circles depict closed-loop simulations of lumped-hub networks, and the

matching lines show the smoothed result for open-loop divided by two.

Applicability of feedback analysis to finite SFO networks

We now return to evaluate the accuracy of our mean field approximation to the original scale

free network ensembles. Making the connection between the theoretical results and empirical

simulations entails two steps: first, for each scale free network realization we define the

lumped-hub parameters (kb, σh, α); second, these parameters are used to computerd in MFT

(Materials and Methods), predicting convergence for values smaller than one. Importantly, the

first step is not a one-to-one transformation between the parameters of the scale free ensemble

and those of the lumped-hub ensemble: due to the large heterogeneity of scale free networks,

different realizations generally result in widely varying lumped-hub parameters and conse-

quently in broadly distributed values ofrd. An example of this distribution is shown for one

SFO ensemble in Fig 6A. In particular, lumped-hub parameters across the ensemble are such

thatrd is distributed on both sides of the phase transition (dashed vertical line,rd = 1). This

wide distribution for fixed generative parameters, implies a lack of sharp phase transition

when these parametes are varied.

Pooling together realizations of different power-law parameters opens a broader range of

rd such that comparison to the theory is more meaningful. We simulated many SFO networks

with a range of underlying power-law parameters and tested the prediction of a transition as a

function ofrd. Fig 6B compares the theoretical prediction for the convergence probability

(dotted black line) with the pooled simulation results (blue symbols); despite the pooling of a

highly variable set of simulations,rd is revealed as a crucial determinant of convergence. The

smooth sigmoid obtained follows the transition around the predicted value ofrd = 1. A

decrease in convergence probability is found for very lowrd values, in contrast to the predic-

tion; this effect will be discussed below. For one SFO ensemble, the simulations follow the pre-

diction but cover only a small range ofrd (red symbols).

Empirical convergence probabilities for scale free networks also depend on network size

(Fig 1). This dependence can be partially explained by the lumped-hub approximation: for a

given scale free ensemble, we can follow the lumped-hub parameters averaged over the ensem-

ble as a function of network size N. Fig 6C shows that the average (kb, σh, α) values progress

towards the unstable regime as network size increases, with kb being influenced most strongly;

these effects are consistent for several scale free ensembles (colors). The implications of this

trend can be seen in the dependence of convergence probability on network size, shown in Fig

6D. Simulation results of scale free networks and their corresponding lumped-hub approxima-

tions are shown together with the theoretical prediction, showing that most of the N-depen-

dency is captured correctly.
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Limits to the lumped hub approximation

The lumped hub approximation relies on the possibility of decomposing the network into a

hub and bulk nodes. In turn, the phase transition predicted for lumped-hub networks relies on

this decomposition and its relation to homogeneous networks driven by an external input.

This approximation holds for a range of parameter values of practical interest. To understand

the limits of validity of the approximation, we consider several conditions that are required to

hold.

Fig 6. Comparing lumped-hub MFT prediction with SFO simulations. (A) Variability of lumped-hub parameters in a single scale free network

ensemble: histogram shows the distribution ofrd as computed from the lumped-hub parameters, for a scale free ensemble with γ = 2.4, kmin = 1. Black

dashed line: MFT predicted phase transition,rd = 1. (B) Transition in convergence probability PQFP (blue symbols) computed for networks with

different kmin values in range 0.5� kmin� 2 and γ = 2.2, 2.4, 2.6. For each set of parameters 256 network realizations of size N = 1500 were simulated.

Results were then binned byrd width of 0.05. Bins with less than ten samples were omitted from the plot (restricting the standard error to 0.16 per

point). A short red line shows the data for the single ensemble of panel A. (C) Effect of network size on average lumped hub parameters k, σh, and α
(sparseness; inset). Increasing network size causes a gradual shift towards the unstable phase (see Fig 5B), with kb affected most strongly. Colors show

different γ. (D) Effect of network size on convergence probability: comparing simulation, lumped-hub approximation and theory. Empirical data points

represent 256 Monte-Carlo realizations for scale free with γ = 2.4, kmin = 1.

https://doi.org/10.1371/journal.pcbi.1007825.g006
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First, the most highly connected nodes are being lumped together to one effective hub. The

approximation thus neglects their internal dynamics, which should therefore be of little impor-

tance for convergence of the system. Ideally there should exist an interval of lumping numbers

m across whichrd remains largely unchanged. Fig 7A shows that this is the case for SFO net-

works with γ� 2.4 (a change of roughly 0.1 compared to a width of more than 0.2 in Fig 6B).

For γ = 2.2 we see thatrd depends more strongly on the choice of m, compromising the stabil-

ity of the approximation. Indeed, comparing the approximation to direct simulation results in

Fig 7B, shows a large discrepancy between scale free and lumped-hub behaviors for γ = 2.2.

Second, the network must remain globally connected. For very small mean connectivity,

networks tend to split into a number of disconnected components. In this situation, the proba-

bility of an individual realization converging to a fixed point drops, while realizations with

multiple fixed points emerge (See Materials and methods). We believe that this effect is

responsible for the drop in convergence probability observed at extremely lowrd (Fig 6B).

In addition, for the approximation to be relevant, the effective external drive by the hub

must be strong enough. As indicated in Fig 5B, for a sparsely connected hub (α = 0.1) the tran-

sition between convergent and chaotic regimes is almost independent of hub strength (the

regime where the hub becomes irrelevant is marked by a gray area at Fig 5B and 5D). This can

explain the failure of the theory for low α values, that arise for high γ values, as exemplified for

γ = 2.8 in Fig 7B.

Finally, by lumping m> 1 dominant hubs into a single node, we are limited to a single

fixed point of the open-loop system (up to symmetry of the hub activation). If several combi-

nations of the m hubs’ states can stabilize the open-loop system, the possibility of multiple

fixed point pairs in a single realization emerges. According to [38] and our Materials and

Methods, such a possibility should reduce the probability of convergence. This can partially

explain the slight drop below the factor of 1/2 in Fig 6B.

Fig 7. Limits of the approximation. (A) Sensitivity of lumped hub approximation to the number of leading nodes being lumped is shown for 1000

realisations of scale-free topology with fixed parameters kmin = 1, N = 1500, and for three values of γ = 2.2, 2.4, 2.6. For each realization, therd at m = 1

is taken as reference, from which the subsequent decrease inrd is measured. (B) Fig 6D is replicated for γ = 2.2, 2.8. In the large γ case, the lumped hub

model holds, while mean field theory becomes invalid due to extreme sparseness. For low γ it is the lumped hub model per se that becomes inaccurate,

due to sensitivity to choice of m.

https://doi.org/10.1371/journal.pcbi.1007825.g007
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Discussion

Broad connectivity profiles are a ubiquitous feature of naturally occurring networks. Under-

standing the dynamics arising from such topology, however, remains a great challenge. Our

main hypothesis in this work was that, for such networks, a small number of nodes has a dis-

proportionate effect on the entire system dynamics. We suggest a simplified model—the

lumped-hub approximation—that makes this hypothesis explicit by lumping these nodes into

a single hub and replacing the rest of the network by a homogeneous bulk.

We showed that the lumped-hub approximation predicts the behavior of scale free net-

works at the ensemble level, explaining the change in convergence probability as a function of

power-law exponent and network size. Furthermore, the approximation is also helpful at the

single realization level, indicating that a large part of the variability between scale-free net-

works stems from the variability in their effective lumped-hub strength and sparseness, and in

the average bulk connectivity. In this respect, our proposed three-parameter description of

topology is more predictive than the generative scale free parameters.

Our analysis was based on scale-free connectivity, but should apply for other topologies

with broadly distributed out degree, for which mean field does not converge even with high

moment corrections [20]. In fact, our results indicate that the existence of a small number of

hubs connected to a macroscopic fraction of the network nodes, rather than the precise shape

of the distribution tail, is a crucial factor in shaping network dynamical properties. The exis-

tence of one such outgoing (but not incoming) hub was sufficient not only to induce increased

convergence to stable attractors, but also to endow the ensemble with an extremely high het-

erogeneity among realizations.

The simplicity of the lumped-hub network ensemble, with a homogeneous bulk network

and a single hub connected to a fraction α of other nodes, allows analytic treatment of the

problem. Specifically we applied feedback analysis, based on interpreting the hub as an exter-

nal drive to the bulk, and then devising a mean field theory to determine convergence of the

system. We then closed the loop while requiring consistency, allowing us to analytically esti-

mate the probability for convergence. This analysis explains simply and intuitively why net-

works with outgoing hubs, and not those with incoming hubs, tend to converge to fixed

points. We showed that, perhaps surprisingly, it is the stability of fixed points, rather than their

abundance that underlies this effect.

In homogeneous networks, the average activity is a natural quantity of interest and provides

the basis for mean-field approximations [36, 37]. For heterogeneous networks a low-dimen-

sional approximation is still desirable, but the choice is no longer obvious. If the network is

composed of homogeneous sub-networks a version of mean-field theory can be applied [39,

40]. Alternatively, a degree-dependent mean-field approach can be developed [41, 42].

Weighted averages of activity, guided by topology, can also serve to reduce the dimensionality

of the dynamics [18, 19]. Our approach can be thought of as splitting the network and then

approximating each part as homogeneous. This allows on one hand to tailor the approxima-

tion to specific heterogeneous realizations, but on the other hand to treat the approximate

problem with mean-field and feedback tools.

The analytic treatment was developed for binary dynamic variables, but the empirical con-

vergence properties and their dependence on outgoing hubs are shared also for a continuous

variable model [27]. Therefore it is plausible that these properties reflect more generally the

ability of outgoing hubs to promote convergence and to stabilize network dynamics.

We note the comparison of our results with previous work on Boolean networks with a ran-

domly chosen Boolean function at each node [43], which found that the phase transition did

not differ between SFO and SFI networks. By specifying a threshold function in our model, the
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effect of a hub becomes coherent among all the nodes that it influences. In contrast, when ran-

domizing over Boolean functions, the effect of the hub has no such coherence; it is this coher-

ence which promotes convergence in the model studied here.

From a biological viewpoint, our results illustrate how outgoing hubs—master regulators—

can act as global coordinators of dynamics in gene regulatory networks. This role is expected

to be realized under strong perturbations, in addition to the usual role of hubs as regulators of

local specific circuits. Indeed, recent experimental work in bacteria suggests an organizing role

for hubs in the emergence of gene expression patterns following strong rewiring perturbations

[44, 45]. This idea, suggesting a dual role for the structure of gene regulation networks depend-

ing on conditions, awaits further experimental and theoretical investigation.

Materials and methods

Suppression of chaos in the open-loop setting

We consider a lumped hub network ensemble, where the effective hub is clamped at a fixed

value and acts as an input to the rest of the nodes. It is connected to the network by a vector u,

covering a fraction α of the network, with connection strengths drawn from a Gaussian distri-

bution with zero mean and standard deviation σh. Formally, we determine whether the input

suppresses chaos by following the time evolution of the normalized Hamming distance

between two trajectories s1(t) and s2(t), denoted by d(t). Suppose that d(t0) = 1/N, and assume,

without loss of generality, that the states of interest s1, s2 differ at the first bit: s1
1
6¼ s2

1
while s1

j ¼

s2
j for 2� j� N. At time t0 + 1 the distance d will be determined by the number of rows in W

for which the first element changes its sign:

dðt0 þ 1Þ ¼
1

N

XN

i¼1

y jWi1j �
XN

j¼2

Wijsj þ ui

�
�
�
�
�

�
�
�
�
�

 !

: ð12Þ

Equivalently, one may consider the derivative at the origin of the normalized distance d, given

by:

rd ¼ N Pr jWi1j >
XN

j¼2

Wijsj þ ui

�
�
�
�
�

�
�
�
�
�

( )

; ð13Þ

with the condition for stability beingrd< 1. The inequality in curly brackets can be realized

only if Wi1 is nonzero; moreover the other matrix element can be grouped according to the

number of nonzero elements in each row. This grouping results in the following convenient

way to rewrite the last equation:

N � 1rd ¼ P1

XN

k0¼0

P2ðk
0ÞP3ðk

0Þ ð14Þ

with terms P1,2,3 defined as:

P1 ¼ Pr fWi1 6¼ 0g ð15Þ

P2 ¼ Pr f#fWij 6¼ 0g ¼ k0jj > 1g ð16Þ

P3 ¼ a Pr jz1j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þ s2

h

p
jz2j

� �
þ

þð1 � aÞ Pr fjz1j >
ffiffiffiffi
k0
p
jz2jg

ð17Þ

PLOS COMPUTATIONAL BIOLOGY Scale free topology as an effective feedback system

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007825 May 11, 2020 15 / 24

https://doi.org/10.1371/journal.pcbi.1007825


Here z1, z2 are i.i.d. normal Gaussian variables, as follows from the mean field approximation,

and i is an arbitrary row. The terms P1 and P2 are determined by the network structure: P1 is

simply the sparsity of the Binomial network which makes up the bulk nodes,

P1 ¼ N � 1kb; ð18Þ

and the probability of a row in the network having exactly k0 nonzero entries is:

P2ðk0Þ ¼ Pbinomðk0;N � 1;N � 1kbÞ: ð19Þ

The only term which depends on the actual realization of weights is P3. To evaluate it we note

that for a positive scalar η:

Pr fjz1j > Zjz2jg ¼
2

p
arctan

1

Z
: ð20Þ

To derive this expression, one notes that in the |z1|, |z2| plane, we are interested in the portion

of probability mass that lies below the line jz2j ¼
jz1 j

Z
. Since the probability density in this plane

only depends on the distance from the origin, we simply compute the angle between this line

and the |z1| axis and Eq (20) follows.

Combining all the terms together, and assuming large N, we arrive at:

rd ¼
2kb
p

XN

k0¼0

Ppoissonðk
0; kbÞ a arctan

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þ s2

h

p þ ð1 � aÞ arctan
1
ffiffiffiffi
k0
p

 !

; ð21Þ

For α = 1 and large kb, the sum over k0 can be approximated by its expected value, and tanh

by its argument leading to:

rd �
2kb

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ s2

h

p �
2kb
psh

: ð22Þ

This expression accounts for the asymptotically linear relation between k and σ at the phase

transition curve in Fig 5B. Conversely, for sparse hubs with α< 1 there exists a kmax above

which we haverd> 1 for any σh.

Quasi fixed points

Along with a possibility of converging to a stable fixed point another scenario exists where

most network nodes are fixed but a small fraction is still toggling.

More specifically, a situation where all nodes except a small, interconnected clique are fro-

zen becomes typical. We refer to such a regime as a quasi fixed point (QFP). A threshold to

define a QFP was set empirically at a value of 0.9 where a rise in probability of frozen cores

starts (Fig 1B).

Fixed points are always there, regardless of topology

Defined by equation Eq (1), our system turns out to be a special case of the Theorem in

Ref. [38] which states that the expectation EM of number of fixed points M in random Boolean

networks is one, subject to a condition on the distribution of random Boolean functions that

holds in our setting. Specifically, to comply with [38] an ensemble of random Boolean func-

tions ϕi(s) defining the network dynamics via si(t + 1) = ϕi(s(t)), must have a set of neutral
links, the removal of which renders the network acyclic. Here a link j! i between a pair of
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nodes is said to be neutral iff

Prf�iðsÞ ¼ gðs1; s2::sj::sNÞg ¼ Prf�iðsÞ ¼ gðs1; s2::�sj ::sNÞg ð23Þ

for any Boolean function g. In our case of a threshold function, the condition Eq (23) is ful-

filled immediately because

Pr �iðsÞ ¼ sign
XN

k¼1

W1

iksk

 !( )

¼ Pr �iðsÞ ¼ sign
XN

k¼1

W2

iksk

 !( )

ð24Þ

for Gaussian matrices W1 and W2 differing by inversion of a single element.

Unfortunately, the expectation, without any higher moments known, does not provide

information about a typical case. Depending on the topology T, a typical realization of W
might have M = O(1). Alternatively, there could be a few exceptional realizations with a huge

number of fixed points while typically M = 0.

For example, for T = I there are M = 0 fixed points with probability 1 − 2−N and M = 2N

with probability 2−N. Conversely if T is a cyclic graph (e.g. cyclic permutation) then with prob-

ability of half the network has two fixed points, and it has zero fixed points in the complemen-

tary case. Although it is not immediately clear which scenario is relevant for scale free

networks, for lumped hub networks some insights are available.

For a lumped hub network with a strong hub, such thatrd< 1 in the open loop setting,

global convergence to a stable fixed point s0 = s� is expected. If the consistency condition asso-

ciated with relaxation of clamping h(t) in Eq (5) is met, then the closed loop system inherits

the fixed point at s = s�. Moreover, another fixed point emerges at s = −s� corresponding to a

drive of −1 in the open loop system. Since the aforementioned condition is met with probabil-

ity half we have an expected number of 2� 1

2
¼ 1 fixed points in agreement with [38].

In the opposite extreme case of zero drive from the hub, it follows from mean field theory

that the network exhibits chaotic dynamics with any pair of state-space trajectories becoming

asymptotically orthogonal. In particular, to comply with MFT, distinct fixed points should be

either orthogonal to- or inverse of one another. We assume, without a rigorous proof, that

orthogonality approximately implies independence. Namely, events of having a fixed point at s
= s1 and at s = s2 are statistically independent for s1? s2. Now, we recall that fixed points

appear in pairs. Hence the number of pairs of fixed points is distributed binomially with

parameter n ¼ 2N

2
¼ 2N� 1 of possible pairs ±s� of a state and its inverse, and a probability

p = 2−N that a particular pair of points is fixed. In the limit of N!1 this distribution con-

verges to Poisson with parameter l ¼ pn ¼ 1

2
:

M
2
� Poisson

1

2

� �

: ð25Þ

To validate this theory numerically, we performed an exhaustive search for fixed points in

small, fully connected networks with 16� N� 22 nodes. For N> 22 an exhaustive search was

not feasible due to computational constraints. The results, shown in Fig 8, depict an approxi-

mate match to the theory which is not perfect, with inaccuracies exceeding the standard error.

We attribute these inaccuracies to the finite size of the networks, emphasizing that orthogonal-

ity of chaotic trajectories upon which our theory is built, is not achieved, even approximately,

for values of N small enough for exhaustive search. Future work may include numerical experi-

ments with larger and sparser networks using advanced search algorithms e.g. the method of

[46].
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For intermediate values of σh the picture is more complicated. Chaos is not suppressed but

the symmetry between ±s is broken by the drive (in the open loop setting only, since once the

loop is closed symmetry is restored). For σh� 1 one might repeat our reasoning for σh = 0, this

time with single fixed points rather than pairs, and therefore with Eq (25) being replaced by:

M � Poissonð1Þ: ð26Þ

Numerical observations on small networks reported in Table 1 tell us that while a sharp transi-

tion in the distribution of fixed points is observed once a drive is introduced, the distribution

of M does not immediately match Eq (26). Here again we tend to attribute such a discrepancy

with theory to finite size effects compromising the fixed point orthogonality.

Fig 8. Probability of number of fixed points in Boolean networks. ’+’—theoretical prediction. � and �—empirical

estimates for networks of size N = 16 and 19 based on 104 and 103 random network realizations respectively.

https://doi.org/10.1371/journal.pcbi.1007825.g008

Table 1. Numerical estimates for the distribution of M are shown as a function of external drive strength for an ensemble of dense random networks of size N = 16

with Gaussian i.i.d elements. Random Gaussian drive is scaled by σh. Poisson distribution with parameter l ¼ 1; 1

2
are provided for reference.

σh M: 0 1 2 3 4 5

0 0.679 0 0.206 0 0.069 0

0.1 0.563 0.205 0.097 0.048 0.028 0.020

0.5 0.505 0.248 0.117 0.062 0.027 0.025

1.0 0.435 0.305 0.149 0.065 0.024 0.008

3.0 0.279 0.481 0.185 0.043 0.009 0

10.0 0.112 0.780 0.095 0.012 0.001 0

λ x: 0 1 2 3 4 5

1

2
0.607 0 0.303 0 0.076 0

1 0.607 0.304 0.076 0.013 0.002 2 × 10−4

https://doi.org/10.1371/journal.pcbi.1007825.t001
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To conclude, we present strong evidence, that the event of having a fixed point in the

dynamical system (1) has probability of order one and it is the fixed point stabilities rather

than their existence that determines the convergence probabilities of dynamical numeric simu-

lations like in Fig 1.

Remarkably, this result is opposed to a case of continuous activation function (e.g. tanh)

where an exponentially large amount of fixed points appear in the chaotic regime [47]. An in-

depth analysis of these differences is beyond the scope of the current work.

Estimation of hub flipping time in perturbed closed loop network

To obtain a, fairly coarse, lower bound on Tflip one may argue as follows: the hub has approxi-

mately kh = mhki = O(1) incoming connections whose weighted sum determines its sign. Let

Hin denote the set of these nodes. Given a random perturbation of magnitude δ� 1 to the

fixed point s� the probability for a single node in Hin to be flipped is

p1 ¼ Pr fsingle flip in Hing ¼ d
kh
N
� 1 ð27Þ

and the probability of q flips is pq � pq
1 ¼ OðdqN � qÞ which can be neglected for small δ. Finally,

by the arguments developed above, the probability that the hub will flip due to a single node

flip is 2

p
arctan 1ffiffiffi

kh
p and consequently, the flip rate is given by:

Pr fhub flipsg ¼ d
kh
N

2

p
arctan

1
ffiffiffiffi
kh

p : ð28Þ

This corresponds to a typical flip time of:

Tflip �
N
ffiffiffiffi
kh

p
d

ð29Þ

Hence, the stability condition Eq (10) clearly holds for −logrd of order one.
Even in the critical regime, where logr! 0 is approached, condition Eq (10) translates into

1 � rd >
ffiffiffiffi
kh

p
d

N
log dN ð30Þ

which for our typical setting of N = 1500,< kh>� 20, and a reasonable small perturbed fraction

of δ = 0.1 of the nodes translates into a requirement of:

1 � rd < 1:5� 10� 3: ð31Þ

This is very close to criticality compared to other effects that may dominate inaccuracy of mean

field calculations even in open loop setting. (Compare to Fig 5 that depicts open loop and closed

loop setting, and Fig 6 which includes plot of convergence probability vs.rd).

Beyond convergence: Dynamical properties of lumped hub approximation

Most of the analysis in the main text focused on the probability of convergence to quasi fixed

points. Here we demonstrate that even when the networks do not converge, some of their

dynamical properties are still captured by the lumped hub approximation. First, we computed

the participation ratio as a measure of the dimensionality of dynamics in the non-converging

case. The correspondence between SFO and lumped-hub approximation is seen in Fig 9, simi-

lar to the match of convergence fraction shown in Fig 4.
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Second, we computed the autocorrelation functions of dynamic trajectories. Like other sta-

tistics, they greatly vary from one realization to the next in SFO ensembles. Nevertheless, aver-

age correlations functions—also, like other statistics—show a favorable comparison to the

corresponding lumped-hub ensemble (Fig 10). This is quantified by the exponential fit to the

autocorrelation function, after selecting only trajectories with low asymptotic autocorrelation.

Constructing samples of heterogeneous network ensembles

To construct network samples from an ensemble with a SFO dgree distribution, the adjacency

matrix is constructed by first randomly sampling a sequence of N degrees from a scale-free dis-

tribution, and assigning a degree, k, from that sequence randomly to each node in the network.

For each such node a set of k random outgoing connection is chosen. This procedure results in

a scale-free outgoing distribution and Binomial incoming distribution as there are no con-

straint on the incoming distribution and the choice of incoming degrees is purely random. SFI

ensembles where constructed by transposing SFO networks created as described above.

The scale-free sequences are obtained by a discretization to the nearest integer of the con-

tinuous Pareto distribution PðkÞ ¼
ðg � 1Þkðg� 1Þ

min

kg
. This is implemented by the continuous

MATLAB Generalized Pareto random number generators with Generalized Pareto parameters

k = 1/(γ − 1), σ = kmin/(γ − 1) and θ = kmin.

Sign function

Networks with sparse connectivity often have entire rows that are zero; namely, nodes are cre-

ated that receive zero input. With the definition Eq (2), such nodes retain their value of zero

Fig 9. Trajectory dimensionality captured by lumped hub approximation. The participation ratio of trajectories, defined as
ðtrCÞ2

trðC2Þ
with C the

covariance matrix of the trajectories s(t), is compared between scale free network and Lumped-hub approximations of increasingly coarser graining.

Notations and methods are similar to Fig 4.

https://doi.org/10.1371/journal.pcbi.1007825.g009
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and therefore effectively do not participate in the dynamics. The effective network thus has

slightly modified size and statistical parameters. We have verified by simulation that all our

results are weakly affected by this modification. In particular, the changes induced inrd are

smaller than the finite-size effects.

Other definitions of the sign function, for example

signðxÞ ¼
1; if x >¼ 0

� 1 if x < 0;

(

ð32Þ

do not effectively prune these source nodes. Instead, these source nodes become effectively

equivalent to an external drive and thus increase the stability of the dynamics.

Fig 10. Autocorrelation of SFO ensembles vs. their lumped hub approximation. Top: Log of mean autocorrelation is shown for scale free (left) and

corresponding lumped-hub (right) networks. The mean is obtained by averaging only over trajectories with asymptotic autocorrelation below 0.3.

Insets show 100 individual trajectories obtained for γ = 2.4. Bottom: Exponential fits for the autocorrelation functions in the range 0� t� 5 (γ color

coded accordingly to the top panel.

https://doi.org/10.1371/journal.pcbi.1007825.g010
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Probability of convergence to fixed points and quasi fixed points (QFPs)

The networks’ frozen cores were determined by running the dynamics for an initial conver-

gence period of 4000 time steps, with 10% of networks nodes being updated at each step, and

then measuring the fraction of nodes which were frozen within an additional time interval of

1000 steps (altogether 5000 time steps). Some simulations were run for double the time steps

(a of total 10000 time steps, 2000 of which used for determining frozen core). No detectable

difference was observed with such longer times. QFPs were defined as states with a frozen core

larger than 90%, while fixed points are networks with a frozen core of 100%. The probability of

convergence to a fixed point or QFP was calculated by simulating the dynamics of a an ensem-

ble of 500 networks, unless stated otherwise, and measuring the fraction of networks in the

ensemble which reached the relevant frozen core criterion.
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