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ABSTRACT
Influenza A virus is an important human pathogen causative of yearly epidemics and occasional
pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral
numbers for host-to-host transmission. This process requires multiple rounds of entering permissive
cells, replication, and virion assembly at the plasma membrane, the site of viral budding and
release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and
of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins
(vRNPs). The selective assembly of the 8-segment core remains one of the most interesting
unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to
contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic
puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of
clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs.
Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11,
the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling
sorting at an unknown step. Here, we speculate on the impact that such impairment might have in
host immunity, membrane architecture and viral assembly.
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Introduction

Influenza A virus (IAV) contains a segmented genome of
negative sense-RNA and encodes up to 18 identified pro-
teins.1 The genome is divided into 8 distinct independent
replication units composed of different RNAs in the form of
viral ribonucleoproteins, through encapsidation by the viral
heterotrimeric RNAdependent-RNA-polymerase (RdRp)2

and nucleoprotein (NP).3 Segmentation allows the forma-
tion of a genetic diverse pool of genomes each composed of
8-segments, on account of an error prone RdRp, which
might give rise to antigenic drift. It also permits genome
mixing of 2 parental strains in natural co-infections and
emergence of novel viral reassortants. There is a vast pool of
influenza subtypes, given the high genetic variability of the
antigenic viral transmembrane proteins (hemagglutinin and
neuraminidase). These subtypes can be found dispersed but
restricted to a series of hosts (humans, pigs, domestic poul-
try, and horses, among others) and be perpetuated in their
natural reservoir, the wild waterfowl.4 The mechanisms
described for attaining genomic diversity might contribute
to overcome host species barriers, allowing interspecies

transmission, acquisition of drug resistant traits and/or epi-
tope replacement, a process known as antigenic shift that
has been correlated with pandemic outbreaks in humans.
Hence, in-depth understanding of the mechanisms sustain-
ing the assembly of influenza A segmented genome is of
importance to human health. Formation of the 8-segment
genomic core has been subject of much interesting research.
A hierarchical network of RNA-RNA interactions has been
proposed by many research groups to sustain formation of
the genomic core and this has been extensively reviewed
elsewhere.5,6 Recently, one protein has been shown to be
required for this complex formation. The regulator of the
recycling endosome, the GTPase Rab11, was proposed to
transport vRNPs to the cell surface,7-10 by a process that
originated enlarged structures containing Rab11 and the
distinct vRNPs, as observed by confocal microscopy (Fig. 1).
These structures, located beneath the plasma membrane—
the site of viral assembly—place pools of different vRNPs in
close contact. These results led to the proposal of a model
(Model 1 in Fig. 1) in which Rab11 vesicular transport facili-
tates the association of the 8 different viral RNAs while on
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route to the plasmamembrane.11,12 In agreement, super-res-
olution studies have shown that the level of co-localization
of the different vRNPs significantly increase when segments
associate with active Rab11.11 Besides the outstanding ques-
tion stated in Figure 1, related with delivery of the assembled
genomic core from Rab11 vesicles to the plasmamembrane,
molecular details on how vRNPs are transported on Rab11
were still lacking.

In particular, the molecular mechanisms underlying
Rab11 remodeling, leading to the formation of the
enlarged structures have been poorly characterized and
their ultrastructural nature was not (until recently) avail-
able. Whether Rab11 enlarged structures result from coa-
lesced vesicles or vesicles that fuse and hence increase in
size, represents 2 distinct molecular processes and
involves different factors. Their discrimination provides
important clues on the process of assembly of influenza
A segmented genome. In relation to the molecular play-
ers involved in the transport of vRNPs to the cell surface,
2 points are pertinent. The first is to identify how vRNPs

bind to Rab11 vesicles. The viral polymerase PB2, con-
stituent of RdRp on vRNPs, was shown to promote this
binding, but it is still unclear whether binding is
direct.7,10 The second is to understand what happens to
host recycling at a molecular level once vRNPs attach to
Rab11 vesicles. Answering the second point would bene-
fit from the development of robust, quantitative methods
to compare amounts of factors bound to the recycling
endosome that are either involved in sorting or trans-
ported by vesicles in infected versus healthy cells, as well
as determining variations in the kinetics of the process.
An exhaustive analysis would require an in-depth knowl-
edge of the molecules governing the trafficking of recy-
cling in host cells from vesicular biogenesis until fusion
with acceptor membranes, and defining the cargo they
transport. Although the complete characterization of the
protein/lipid networks involved in each step (under dis-
tinct stimuli) is far from complete, there has been a lot of
progress in characterizing the molecular mechanisms
involved in host recycling that will be explored below.

Figure 1. Proposed model for assembly of 8-vRNPs on route to the plasma membrane using a Rab11-dependent pathway.
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The information provided shows that at least a partial
comparative analysis of the infected vs. the healthy cell is
attainable and should be informative regarding how
infection alters recycling to modulate cellular architec-
ture, and/or innate responses to infection.

Rab11-dependent vesicular trafficking in host cells

The recycling endosome or endocytic recycling compart-
ment (ERC) is defined by the presence of Rab11 and its
effectors. Rab11 regulates recycling from the ERC and of
specific cargo from the TGN to the plasma membrane. It
comprises the products of 3 genes, Rab11a, Rab11b and
Rab25 (reviewed in ref. 13). Rab11a (and to a minor extent
Rab11b), but not Rab25, have been implicated in IAV life-
cycle,7-10,14 and for this reason an overview on Rab11a reg-
ulated vesicular transport will be provided. The sequential
steps involved in Rab11a-mediated transport to the plasma
membrane in uninfected cells are depicted in Figure 2 and
have been detailed by us elsewhere.13 Importantly, the list
of molecular interactions required for each of these steps is
far from complete and has been described in refs. 15, 16.
Here, we provide a comprehensive description, at the
molecular level, highlighting identified players involved in
transporting cargo to the cell surface on Rab11 vesicles.

Rab11 is translated in the cytoplasm and requires prenyla-
tion for attachment to ERC membranes. Prenylation ren-
ders Rab11 prone to aggregation, thus requiring
association with guanine dissociation inhibitor factors
(GDI) for cytosolic solubility. Rab11 is recruited to ERC
membranes (step 1) that, as any other membrane of the
eukaryote cell, has a precise composition or identity,17

including the presence of guanine exchange factors (GEFs)
that promote GDP-GTP exchange on Rab11 thereby “acti-
vating” this GTPase (step 2). When active, Rab11 suffers a
conformational change and acquires affinity to a series of
effectors. Some effectors cooperatively work to transport
cargo along cytoskeletal tracks (step 3), by associating with
a series of identified molecular motors shown in Table 1.
Specifically, binding of some molecular motors to Rab11
vesicles was shown to require adaptor proteins. The adap-
tors include the Rab11-family-interacting-proteins (FIPs),
composed by 5 identified members (numbered 1 to 5) and,
in addition, some of the members contain distinct iso-
forms.18,19 For convenience, in Table 1 is indicated which
FIP is required for each molecular motor binding to Rab11
vesicles. Depending on the molecular motor type, cargo
can be transported either on microtubules using dyneins
(toward the MTOC) and kinesins (away from MTOC) or
on actin using myosins. However, this is not the case for

Figure 2. Rab11 cycle in vesicular transport (steps in Rab11 cycle are numbered from 1 to 6). Figure adapted from ref. 13.

Table 1. Modulators and effectors identified in Rab11 cycle in vesicular transport. Table from ref. 13.

Recruitment / activation Transport Tethering Fusion Inactivation / Recycling

Crag22 Myosin Vb (FIP2)23-27 Rab11b28 SNAP2529 Evi530

REI-131 KIF5a and KIF3 (Kinesin II) (FIP5)32 Sec15 (exocyst)33-36 SYN437 TBC1D9B38

PIP4KIII39 KIF13A20 Munc 13-440 VAMP841 Cholesterol42-44

DLIC1/2� (FIP3)45

�Binding of this effector to Rab11 has been shown to be indirect via Rab11-Family interacting proteins (FIPs)
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binding of all motors to Rab11 vesicles, with at least
one molecular motor, KIF13A, found to bind Rab11
independently of FIP adaptors as demonstrated by
yeast-2 hybrid and fluorescent resonance energy trans-
fer studies.20 Rab11 vesicles while on route, search,
dock (step 4) and then fuse (step 5) with acceptor
membranes. These processes are also controlled by
Rab11 effectors that operate downstream vesicular
movement. Docking involves tethering to acceptor
membranes. Fusion requires both the matching of pro-
teins called soluble NSF (N-ethylmaleimide sensitive
fusion proteins) attachment receptors (SNAREs) that
are located on vesicles and their acceptor membranes,
as well as energy. Energy is supplied in the form of
ATP and is produced by synaptosomal-associated pro-
teins (SNAP).21 Finally, Rab11 is switched off by
GTPase activating proteins (GAPs), for ending of its
activity, and is recycled back to the original membrane
(step 6). A list of all identified Rab11 effectors involved
in steps 1 to 6 is shown in Table 1, but readers are
remitted to ref. 13 and indicated papers for further
information regarding these factors.

Rab11-dependent vesicular trafficking in IAV
infected cells

The redistribution of Rab11 observed upon IAV infection
was recently shown by Vale-Costa et al.46 to be caused by
the binding of vRNPs to Rab11 vesicles, rather than by a
byproduct of viral gene expression. Although this work still
did not unequivocally show that the binding between
vRNP and Rab11 was direct, it made important contribu-
tions in characterizing the consequences of vRNP binding
to Rab11 vesicular trafficking. First, it showed that the effi-
ciency in host recycling significantly decreased as infection
progressed. Second, using an artificial system for targeting
Rab11 to the mitochondria and pull down assays, this
work confirmed previous reports on a competition model
between vRNP and FIPs for Rab11 binding.10 Importantly,
exogenous expression of a domain shared by all FIPs,
required for Rab11 binding but unable to recruit the cog-
nate molecular motors of FIPs, was able to mimic the
appearance of enlarged Rab11 structures in uninfected
cells, as observed by confocal microscopy. This strongly
indicates that there is a causal relationship between FIP-
mediated motor recruitment and redistribution of Rab11.
These results provide the molecular basis underlying a
viral-induced mechanism that culminates in increased co-
localization of all the vRNPs. Third, Vale-Costa et al.46

characterized alterations to Rab11-positive membranes
during infection at an ultrastructural level.

Using correlative light and electron microscopy, where
Rab11 or NP were individually tagged with GFP, this work

showed that IAV infection induced clustering, rather than
fusion and enlargement, of vesicles. These clusters, found
scattered throughout the cytoplasm and near the apical
plasma membrane by electron microscopy, were composed
of heterogeneous vesicles in size and harboured coiled-coil
string-like structures attached to their exterior that spatially
matched vRNP or Rab11 confocal staining. Vesicular clus-
tering is in agreement with impairment in vesicular sorting,
which was also elucidated in this work. In addition, areas
positive for Rab11 and vRNPs by confocal microscopy con-
tained U-shaped and double membrane vesicles. The cur-
rent resolution of the technique does not allow to
unequivocally state that these are Rab11 vesicles, and future
work should address this. However, the increase in the num-
bers of U-shaped and double vesicles observed at later time
points of infection might be an indication that Rab11-posi-
tive vesicles suffer rearrangements by mechanisms other
than impaired sorting. Overall, the formation of Rab11-
dependent vRNPhotspots showed in theModel 2 of Figure 3
could, nevertheless, facilitate the assembly of the genomic
core proposed by others.9,11,12 However, so far, the func-
tional significance of vesicular clustering awaits experimen-
tal support, as with the microscopy techniques currently
available it has not been possible to resolve assembled sets
with 8-segments in the cytoplasm of IAV infected cells.

Future perspectives

Whether Rab11 is directly involved in promoting the
assembly of IAV segmented genome remains unclear,
with many unresolved questions. Clearly the most press-
ing outstanding issues relate with how/where the 8-
vRNPs assemble and the delivery of vRNPs from Rab11
vesicles to the plasma membrane (highlighted in Fig. 3).
The results in ref. 46 and reported by other groups9,47

suggest that vRNPs might be released from Rab11
vesicles before reaching the plasma membrane. In this
regard, it is pertinent to identify host factors mediating
their delivery from Rab11 agglomerates. Assembly of the
genomic core on Rab11 vesicles deserves revisiting with
appropriate set of approaches and is still a fundamental
open question. Even though Rab11 per se does not seem
to mediate interactions between the different vRNPs, it
might be crucial by placing them in close contact and
thus facilitate the assembly of the genomic core. Vale-
Costa et al.46 proposed a mechanistic model explaining
at a molecular level the formation of the vRNP hotspots,
constituted of clustered vesicles harboring protruding
vRNPs (Model 2, Fig. 3). Binding of vRNPs to Rab11
vesicles competes with binding of FIPs and leads to an
impairment of recycling sorting. Whether impairment
operates at the level of transport, tethering or fusion of
vesicles to the plasma membrane remains to be
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identified. Transport on microtubules does not seem to
be impaired;7,8,10 however, no study has unequivocally
compared Rab11 vesicular transport on microtubules of
infected cells to that occurring in normal circumstances.
Regardless of the transport efficiency, the molecular
motor(s) involved in vRNP transport in Rab11 vesicles
are not yet known. Given that vesicular transport
involves a series of sequential processes where binding of
a specific factor impacts in downstream steps, it is possi-
ble that inhibition of FIP binding affects several down-
stream events. Also, inhibiting FIP binding might only
partially explain vesicular clustering with the contribu-
tion of other yet unidentified factors, including vRNP-
vRNP interactions bound to take place and increase the
cohesion of clustered vesicles. In addition, given the
complexity in Rab11-mediated transport depicted in
Figure 2, it is very unlikely that Rab11 will be the only
factor in this pathway important for IAV infection.

In agreement, the levels of Rab11 were shown to increase
in the membranes of infected cells, indicating that
infection alters Rab11 regulation. In this regard, the
identification of Rab11 GEFs and GAPs should provide
invaluable information on mechanisms controlling IAV
infection. Also, during IAV infection alterations in the
levels of cholesterol in Rab11 vesicles were reported,48

suggesting that the lipid metabolism is remodeled by
infection. Interestingly, the presence of U-shaped and
doubled membrane vesicles reported by Vale-Costa
et al.,46 might be a consequence of lipid reshaping in
membranes. However, if these are indeed positive for
Rab11, or the mechanisms by which they are formed
remains to be understood. Regardless of their nature, the
functional significance of vesicular clustering during
infection remains uncharacterized. In other viral infec-
tions, namely positive sense RNA viruses, vesicular clus-
tering has been associated with mechanisms of viral

Figure 3. Proposed model for Rab11 vesicular impairment during IAV infection.
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assembly, escaping host innate immunity, and mem-
brane recruitment (reviewed for example in ref. 49).
Whether clustering plays any of these roles in IAV infec-
tions is currently being investigated.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

Funding is provided by the Fundaç~ao para a Cîencia e a Tecno-
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