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TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein
of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in
Metazoa that controls organ size through regulating cell proliferation and apoptosis. To
acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated
protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the
signaling hub that relays the extracellular stimuli to the transcription of target genes.
Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent
manner through other signal pathways. Although TEAD4 plays an essential role in
determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by
enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has
been reported in several cancers, including colon cancer, gastric cancer, breast cancer,
and prostate cancer and serves as a valuable prognostic marker. Recent studies show that
TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial
dynamics and cell metabolism by modulating the expression of mitochondrial- and
nuclear-encoded electron transport chain genes. TEAD4’s functions including
oncogenic activities are tightly controlled by its subcellular localization. As a
predominantly nuclear protein, its cytoplasmic translocation is triggered by several
signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly,
TEAD4 is also localized in mitochondria, although the translocation mechanism remains
unclear. In this report, we describe the current understanding of TEAD4 as an oncogene,
epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be
discussed.
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INTRODUCTION

TEAD4 belongs to a family of TEA (Transcriptional Enhanced Associate) domain containing
transcription factors which include TEAD1, 2, 3 and 4. They share significant homology and
common functions, but also unique properties (Huh et al., 2019). TEAD4 carries a TEA DNA
binding domain near the N-terminus and a YBD (YAP-binding domain) at the C-terminus. The
DNA binding domain is highly conserved in four TEAD members and binds to the MCAT element
(5′- CATTCCA/T-3′) of DNA (Hwang et al., 1993; Jiang et al., 2000) (Figure 1). However, the DNA
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binding domain lacks a transactivation domain and generally
requires a coactivator to exert its transcription functions. In
contrast, the consensus sequence of YBD is more diverse
across four TEAD members, suggesting that it might have
different three-dimensional structures with differential affinity
toward co-activators for transcriptional regulation. By interacting
with these co-activators, TEAD4 modulates the expression of
distinct gene sets to affect different biological and disease
processes TEAD4 plays a notable role distinct from other
three TEADs in both embryonic development as well as
tumorigenesis (Chen et al., 2020). A major partner of TEAD4
in these processes is YAP (Yes-associated protein) or its homolog
TAZ (transcriptional coactivator with PDZ-binding motif, also
known as WW domain containing transcription regulator 1),
which forms a transcription complex with TEAD4 to reprogram
the transcriptome. The YAP/TEAD4 axis is negatively regulated
by Hippo pathway which responds to microenvironmental
factors, such as cell adhesion, cell-cell contact, or stress signal
(Moya and Halder, 2019). Hippo pathway acts as a gatekeeper of
cell growth, loss of Hippo pathway or overexpression of YAP/
TEADs is repeatedly observed in various cancers (Zanconato
et al., 2016). Recent studies showed that TEAD4 can also partner
with other coactivators to direct transcription in a YAP-
independent manner (Lin et al., 2017b). Furthermore, TEAD4

has multiple cellular locations including nucleus, cytosol and
mitochondria (Kaneko and DePamphilis, 2013) with a new found
role in transcriptional activation of OXPHOS genes in both
nucleus and mitochondria (Kumar et al., 2018; Chen et al.,
2021). In this review, we shall discuss TEAD4 as a
mitochondrial modulator and an oncogene, characterized by it
transcriptional potential as an epigenetic regulator and a signal
transducer.

TEAD4 as an Epigenetic Regulator of
Transcription
One striking feature of TEAD4 as a transcription factor is its
binding is closely aligned with “open chromatin” or “super
enhancer” as exemplified by the decoration of acetylated
histone H3K27ac. Several coactivators for TEAD4 have been
identified (Vassilev et al., 2001; Mahoney et al., 2005; Liu X.
et al., 2016) and see below), among which the most recognized is
YAP and TAZ (Totaro et al., 2018). TEAD4 recruits YAP/TAZ to
their DNA binding loci (Zanconato et al., 2015). Based on
ENCODE ChIP-Seq database, more than 75% of YAP/TAZ
binding sites comprise the TEAD4 binding sequence, and
about 78% of YAP/TAZ peaks are colocalized with TEAD4
peaks. Although TEAD4 regulates gene expression as a

FIGURE 1 | Schematic illustration of TEAD4’s functional domains. TEA domain (38–105) is named after TEF-1 and abaA, both of which contain this domain for DNA
binding. The basic amino acids (highlighted in red) are crucial for TEAD4 nuclear translocation. YBD, YAP-binding domain (222–431). S322 is the serine residue for
phosphorylation. C360 is the cysteine residue for palmitoylation. YAP, TAZ and VGLL4 are transcription factors which bind YAP domain.
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transcription factor, only a small fraction of its binding sites is
located in the promoter regions. Accumulating evidence shows
that most TEAD4 peaks reside in enhancers, which is farther than
10 kb of the nearest transcription start site and identified by the
bimodal distribution of H3K4me1 around its peaks. The
enhancer-enriched property is universal, since this pattern has
been observed across several cancer cell lines. These TEAD4-
enriched enhancers are transcriptionally active due to the co-
occupancy of H3K27ac in a YAP/TAZ dependent manner
(Zanconato et al., 2015). In a detailed study of TEAD4’s
association with open chromatin, Zemke et al. used ATAC-
seq, an approach to identify chromatin accessibility and
reported that the ATAC signals greatly overlapped with
H3K27ac super-enhancer peaks, which were highly enriched
with YAP/TEAD4 occupancy (Zemke et al., 2019). At the
same time, H3K4me1 peaks were shifted away from the center
of ATAC-sites, indicating that chromatin undergoes remodeling
following YAP and TEAD4 binding. These results suggest that
TEAD4 is involved in the de novo formation of super-enhancers,
perhaps by creating nucleosome-depleted regions for the
association of other transcriptional factors (Zemke et al.,
2019). TEAD4 also interacts with AP-1 (Activator protein 1)
to regulate gene expression (Liu X. et al., 2016; Obier et al., 2016).
AP-1 motif is found nearby the TEAD4 motif of most YAP/TAZ/
TEAD4 peaks. The ChIP-seq result shows that 78% of YAP/TAZ/
TEAD4-binding sites are co-occupied by JUN, a subunit of AP-1,
and more than 90% of the co-occupancies belong to active
enhancers. Similarly, two other AP-1 factors, FRA1/2 (Fos-
related antigen 1/2), also interact with TEAD4, and ChIP-seq
data showed that TEAD4 binding sequence is the most enriched
motif in FRA1/2 peaks, indicating a strong association between
AP-1- and TEAD4-mediated transcriptional module (Liu X. et al.,
2016). The interaction between TEAD4 and AP-1 is independent
of JNK (c-Jun N-terminal Kinase), the upstream kinase of AP-1;
but requires SRC (steroid hormone receptor co-activator). The
TEAD4/AP-1/SRC complex modulates a set of genes, including
DOCKs (Dedicator of cytokinesis), CDH2 (Cadherin 2), and
MACF1(Microtubule Actin Crosslinking Factor 1), to regulate
cancer metastasis. TEAD4 also cooperates with SMAD3 (SMAD
Family Member 3) to regulate epithelial-to-mesenchymal
transition (EMT) by activating mesenchymal-specific genes
under TGFβ (Transforming growth factor beta) stimulation. In
TGFβ-induced EMT, TEAD4 and SMAD3 co-occupy the
enhancers of SNAI2 (Snail Family Transcriptional Repressor
2) and ITGB3 (Integrin Subunit Beta 3) (Qiao et al., 2020).
Depletion of TEAD4 not only decreases its binding to
mesenchymal-specific enhancers but also significantly reduces
H3K27ac on these enhancers. This result shows that TEAD4-
SMAD3 complex promoting activation of the mesenchymal
enhancers by upregulating H3K27ac acquisition. Recently it
was further shown TEAD4 is coupled to RAD51 (RAD51
Recombinase) to form “oncogenic super enhancers” which
couples DNA repair to hyper activation of oncogenes (Hazan
et al., 2019). These data together provide strong evidence that
TEAD4 plays an important role in shaping the “super
enhancers” by histone acetylation and potently activating the
target genes.

In addition to promoting gene expression through enhancing
H3K27ac, TEAD4 also suppresses gene expression by recruiting
EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2
Subunit) to promoters and are crucial for the maintenance of
trophoblast stemness (Meinhardt et al., 2020). During embryonic
development, TEAD4 plays a key role in determining the cell fate
of the villous cytotrophoblasts (vCTBs) (Haider et al., 2016;
Soncin et al., 2018). Together with YAP, TEAD4 promotes cell
proliferation by upregulating CCNA1 (Cyclin A1) and CDK6
(Cyclin Dependent Kinase 6) through binding to their promoter
and enhancer respectively. Meanwhile TEAD4-YAP complex
also interacts with EZH2 resulting in the upregulation of
repressive histone mark H3K27me3 in the promoters of CGB5
(Chorionic Gonadotropin Subunit Beta 5) and CGB7,
syncytiotrophoblast (STB)-specific genes, leading to
suppression of STBs differentiation (Meinhardt et al., 2020).

TEAD4 as a Transducer of Upstream
Signals
Being a DNA anchor protein, TEAD4’s ability to reprogram
transcription depends on upstream signals transmitted through
coactivators which bind TEAD4. They can be generally
categorized as YAP-dependent (Figure 2) and YAP-
independent (Figure 3). There are also other signals which
regulate the subcellular locations and functions of TEAD4.

YAP-Dependent (Hippo-Off)
As described above, YAP is considered as a major co-activator of
TEADs family including TEAD4 and their associations are firmly
established in several systems (Cao et al., 2008; Chen et al., 2010;
Hau et al., 2013; Kaan et al., 2017; Mesrouze et al., 2017; Shi et al.,
2017; Li et al., 2018; Niu et al., 2019). During the development of
mouse trophectoderm (TE), Hippo pathway determines the
cellular location of YAP (Nishioka et al., 2009). Unlike outer
cell mass where YAP translocates to nuclei and integrates with
TEAD4 to promote TE differentiation (Hippo-off), in inner cells,
Hippo pathway is activated and YAP is phosphorylated by Large
Tumor Suppressor kinases 1 and 2 (LATS1/2) and retained in
cytosol, diminishing TEAD4 functions (Nishioka et al., 2009;
Hirate et al., 2012; Meinhardt et al., 2020). This lineage
specification is determined by NF2 (Neurofibromatosis 2)/
Merlin (gene product of NF2)-LATS1/2 axis (Cockburn et al.,
2013). Another study showed that LATS1/2 mediates the
phosphorylation of YAP and its interaction with the tumor
suppressor RUNX3 (RUNX Family Transcription Factor 3),
which leads to dissociation of YAP/TEAD4 in the eye cell fate
determination (Jang et al., 2017). Frum et al. showed that YAP/
TAZ/TEAD4 suppresses Sox2 (SRY-Box Transcription Factor 2)
expression at the 4 to 8-cell stage and then the Hippo pathway is
activated at 16-cell stage, leading to phosphorylation of YAP/TAZ
and dissociation from TEAD4 (Frum et al., 2019).

In addition to stress signals, YAP/TEAD4 also receives signals
from membrane receptors including TGFβR, EPHR (Ephrin
receptor) and MET (MET Proto-Oncogene, Receptor Tyrosine
Kinase). TGFβ activates SMAD3 to form YAP/TEAD4/SMAD3/
p300 complex in regulating the expression of connective tissue
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growth factor (CTGF) in mesothelioma (Fujii et al., 2012).
Receptor tyrosine kinase EPHR activated in breast cancer
upregulates YAP/TAZ expression and increases YAP
accumulation and the expression of YAP/TEAD4 target genes
(Edwards et al., 2017). The tyrosine protein kinase, MET, induces
phosphorylation of β-catenin which binds and translocates YAP
into nucleus to form a transcriptional complex with TEAD4 in
breast cancer (Quinn et al., 2021).

Interestingly, several anti-viral signaling pathways modulate
the YAP/TEAD4 activity. Jiao et al. discovered that the virus
infection (Sendai virus, Vesicular Stomatitis Virus, and Hepatitis
C virus)-induced antiviral signaling (such as RIG-I-MAVS and
STING-cGAS pathways) suppresses the phosphorylation of YAP
and promotes its nuclear translocation. Moreover, these virus-
induced signals increase the expression of IRF3 (Interferon
Regulatory Factor 3), a key regulator of innate immunity,
which binds to YAP/TEAD4 complex and upregulates YAP
target genes in gastric cancer (Jiao et al., 2018). Luo et al.
uncovered HBV infection induces Toll-like receptor signaling
that suppresses Hippo pathway via TLR2-MYD88-URAK4 axis,
leading to YAP nuclear translocation to engage TEAD4 in
hepatocytes (Luo et al., 2021).

YAP-Independent (Hippo-On)
While the major coactivator of TEAD4 is YAP, TEAD4 also
functions when Hippo pathway is active which accelerates the

degradation of YAP. For instance, various members of VGLL (the
vestigial-like protein) were found to directly interact with TEAD4
in the absence of YAP (Mesrouze et al., 2014; Gao et al., 2019). In
fact, VGLL was characterized as a YAP antagonist and a tumor
suppressor (Jiao et al., 2014). VGLL4 interrupts YAP/TEAD4
complex in liver cancer (Feng et al., 2020) and TEAD/TCF4
(Transcription Factor 4) complex to suppress Wnt/β-catenin
downstream targets (Jiao et al., 2017). Zhang et al. further
showed that TEAD4 suppresses adipogenesis by recruiting
VGLL4 and CtBP2 (C-Terminal Binding Protein 2) (Zhang
et al., 2018b). VGLL4 has a dual role in muscle regeneration.
At early stage, VGLL4 acts as an antagonist of YAP to induce
myoblast proliferation. Later, VGLL4 acts as a coactivator of
TEAD4 and form a transcription complex with MyoD (Myoblast
Determination Protein 1) to promote myoblast differentiation
(Feng et al., 2019). Figeac et al. found that another VGLL
member, VGLL3, also can regulate myogenesis via interacting
with TEAD1, 3 and 4 (Figeac et al., 2019). Another coactivator of
TEAD4 is glucocorticoid receptor which binds TEAD4 and acts,
in a YAP-independent manner, to promote transcription in
breast cancer (He et al., 2019; Park et al., 2019). A recent
study revealed that TEAD4 activates nuclear-encoded
mitochondrial OXPHOS genes by interacting with PGC-1α
(peroxisome proliferator-activated receptor gamma coactivator
1-alpha), a coactivator involved in mitochondrial biogenesis.
YAP was absent from the targeting complex and its

FIGURE 2 | TEAD4 upstream signals (YAP-dependent). Once the Hippo pathway is inactivated, the nuclear translocation of YAP can be modulated by several
signaling pathways, including HGF induced β-catenin pathway, TGFβ-induced SMAD pathway and Ephrin A2 induced Rho-dependent pathway. Several antiviral
associated pathways also can modulate YAP nuclear translocation or its binding activity of TEAD4.
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knockdown had no bearing on OXPHOS (Kumar et al., 2018;
Chen et al., 2021). Under arginine replete condition, mTOR
signaling pathway induces the recruitment of TEAD4 and
histone acetyltransferases to the promoters of OXPHOS genes,
pointing to the kinship of TEAD4 and histone acetylation (Chen
et al., 2021).

Other Regulatory Signals
TEAD4 can be regulated by the interactions with coactivators, but
also by its subcellular locations. TEAD4 is primarily a nuclear
protein and exerts its transcriptional functions in the nucleus.
There are however signals which regulate its nuclear-cytosolic
translocation. TEAD4 protein contains both a highly conserved
nuclear localization sequence (NLS) and nuclear export sequence
(NES) (Figure1). In Drosophila, it was shown that the conserved
bipartite NLS in the N-terminus of Sd (TEAD4 ortholog), and the
six basic amino acids in the NLS are mandatory for Sd nuclear
translocation by importin-α3 (Magico and Bell, 2011). In
HUVEC cells, the putative NLS of TEAD4 was mapped to the
N-terminal L105 to K109 (Liu et al., 2011), deletion of which
abolished its ability to activate VEGF induced angiogenesis.
Although TEAD4 cytoplasmic translocation is not observed
very often in routine cell culture, it has been reported in the

development of embryo, and the nuclear localization, not the
expression, of TEAD4 determines the cell lineage commitment
(Home et al., 2012). TEAD4 nuclear-cytoplasmic translocation is
triggered by several stimuli such as cytokine and environmental
stress. In human ESCs, BMP4 (Bone Morphogenetic Protein 4)
treatment causes nuclear translocation of TEAD4 and activates
TEAD4 target gene such as GATA3 (GATA-binding protein 3)
(Home et al., 2012). Hyperosmolality, overconfluent cell culture,
cell detachment, and arginine deprivation also induce TEAD4
nuclear export (Lin et al., 2017a; Chen et al., 2021). One
underlying mechanism could be the activation of stress
induced kinase p38 MAPK which triggers TEAD4 nuclear
export (Lin et al., 2017a). Both TEAD4-p38 interaction and
p38 kinase activity are required for hyperosmolality-induced
TEAD4 nuclear export, but direct phosphorylation by p38 was
not observed. The interaction is mediated directly through the
TEA DNA binding domain of TEAD4, which overlaps with NLS.
p38 thus may disrupt TEAD4-DNA interaction leading to the
expulsion of TEAD4 from its target sites and nucleus.

The functions of transcription factors are often modulated by
posttranslational modifications (PTM). The serine residue 322
(S322) on YBD was identified as a phosphorylation site; the
upstream kinase, however, remains unclear (Ueyama et al., 2000)

FIGURE 3 | TEAD4 upstream signals (YAP-independent). Once the Hippo pathway is activated by signals (such as environmental stress or extracellular contacts),
YAP is phosphorylated and restrained in cytosol. VGLL4 can act as YAP antagonist and TEAD4 coactivator as well. The nuclear glucocorticoid receptor (GR) and PGC1α
can directly bind to TEAD4 in a YAP-independent manner. mTOR and p38 signaling are involved in nuclear retention and cytosolic translocation of TEAD4.
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(Figure 1). The most well-studied PTM of TEADs is
palmitoylation. The conserved cysteine residues (C344, C380,
C371 and C360 for TEAD1 to 4 respectively) of TEAD members
for palmitoylation were identified by two different groups (Chan
et al., 2016; Noland et al., 2016). Palmitoylation is important for
protein folding and stability of TEADs (Noland et al., 2016) and
critical for the interaction of TEADs with its coactivators,
including YAP and VGLL4. This process is regulated by the
abundance of palmitate and its synthesizing enzyme, FASN (fatty
acid synthase), which is in turn negatively regulated by NF2
(Merlin) (Kim and Gumbiner, 2019). It is noteworthy that
TEAD4, not TEAD1, is particularly sensitive to cell-cell
contact and silencing of FASN. Since palmitoylation is so
crucial to TEAD4’s activity, its inhibitor currently evaluated
for cancer therapy represents another option (Li et al., 2018).

TEAD4 as a Mitochondrial Modulator
TEAD4, but not other members of this family, has another novel
property of modulating the expression of both nuclear and
mitochondrial-encoded OXPHOS (oxidative phosphorylation)

genes. Kaneko and DePamphilis first reported the unique
function of TEAD4 in mitochondrial homeostasis (Kaneko and
DePamphilis, 2013). They showed that Tead4 is localized in
mitochondria, in addition to nucleus. Knocking out Tead4 in
mouse embryonic fibroblasts reduced mitochondrial membrane
potential and increased ROS (reactive oxygen species) production.
Subsequently, Kumar et al. showed that in mouse trophoblast stem
cells, Tead4 was translocated to mitochondria and in those cells,
mitochondria were more elongated with increased cristae and more
active (Kumar et al., 2018). Silencing of TEAD4 not only suppressed
cristae formation but also causedmitochondrial dysfunction, such as
reduction in OXPHOS, loss of mitochondrial membrane potential,
and surge in mitochondrial ROS (Kumar et al., 2018). TEAD4
promotes the expression of mtDNA (mitochondrial DNA)-encoded
OXPHOS genes by increasing mitochondrial RNA polymerase
(POLRMT) binding to mtDNA. TEAD4 recognizes the
consensus TEA motif on mtDNA and interacts with POLRMT
to drive mtDNA transcription (Kumar et al., 2018). It is noteworthy
that knocking down of YAP does not alter themtDNA transcription,
indicating that TEAD4 regulates mtDNA transcription in a YAP-

FIGURE 4 | List of OXPHOS loci which contain TEAD4 peaks based on ChIP-seq results from the ENCODE Transcription Factors Targets dataset.
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independent manner. In addition, we showed that TEAD4 is also a
master regulator of nuclear-encoded OXPHOS genes, and its
function is induced by amino acid arginine (Chen et al., 2021).

Arginine induces the chromatin remodeling via histone
acetylation, which results in TEAD4 recruitment to TEA motifs
present in >46% of the promoter/enhancer of OXPHOS genes with
consequent gene activation and enhanced mitochondrial respiration.
Significantly, ENCODE ChIP-seq dataset shows that 90% of
OXPHOS genes (71/79) are direct targets of TEAD4 (i.e., with
TEAD4 occupancy at the promoter/enhancer), implicating
TEAD4 as a key regulator of OXPHOS genes (Figure 4). We also

found that TEAD4-driven transcription of nuclear encoded
OXPHOS genes is YAP-independent and PGC-1αdependent. The
mitochondrial OXPHOS complexes consists of 88 proteins, 13
encoded by mitochondrial genome and the rest by nuclear
genome. It is thus remarkable that TEAD4 is able to coordinately
regulate the transcription of bothmitochondrial and nuclear-encoded
OXPHOS genes with profound impact on mitochondrial activities.

TEAD4 as an Oncogene
There is considerable evidence implicating TEAD family
transcription factors in cancer development. Copy number

TABLE 1 | TEADs overexpression and clinical relevance in various cancer types.

TEADs Cancer Type Clinical Association Signals and Its
Oncogenic Targets

References

TEAD1 Melanoma Poor prognosis - Yuan et al. (2015)
Prostate cancer Lower survival rate - Knight et al. (2008)
Renal cell carcinoma Tumor growth, migration YAP/TEAD1/CTGF/MYC/EDN1/EDN2 Schutte et al. (2014)
Thyroid cancer Tumorigenesis YAP/TEAD1/Ras/MEK/ERK Garcia-Rendueles et al.

(2015)
TEAD2 Liver cancer Lower survival rate and poor

prognosis
TEAD2/VGLL4/EMT Joo et al. (2020)

Ovarian serous carcinoma Lower survival rate and progression-
free survival

- Ren et al. (2021)

TEAD3 Liver cancer Higher overall survival - Xia et al. (2017)
Pancreatic Cancer Poor prognosis - Hashimoto et al. (2019)
Renal cell carcinoma - SAV↓/YAP1↑/TEAD3↑ Matsuura et al. (2011)

TEAD4 Bladder cancer Induction of EMT, poor prognosis TEAD4/CDH1/CDH2/FN1/TWIST1/2 Huang et al. (2021)
Bladder cancer Poor prognosis - Wang J. et al., 2021
Breast cancer - Han et al. (2008)
Breast cancer Metastasis, recurrence TEAD4/KLF5/p27 Wang C. et al., 2015
Breast cancer Poor prognosis GR/TEAD4/CDH2/ANKRD1/BIRC5 He et al. (2019)
Colorectal cancer Metastasis, poor prognosis TEAD4/SIX1/CDH1 Yu et al. (2021)
Colorectal cancer Metastasis, poor prognosis TEAD4/CDH1/VIM Liu X. et al., 2016
Colorectal cancer Poor prognosis YAP/TEAD4/RANBP1 Zheng et al., 2022
Esophageal Cancer Tumor growth, migration, invasion YAP1/TEAD4/SGK1/MMP2/MMP9 He et al. (2019)
Gastric cancer Poor prognosis TEAD4/ADM/ANG/ARID5B/CALD1/

EDN2/FSCN1/OSR2
Lim et al. (2014)

Gliomas Poor prognosis Yuan et al. (2021)
Head neck squamous cell carcinoma Induction of EMT TGFb/TEAD4/CDH1/CDH2/VIM/

SNAI1
Zhang et al., 2018a; He et al.
(2021)

Liver cancer Poor prognosis YAP/TEAD4/Jag-1/Hes-1 Tschaharganeh et al. (2013)
Liver cancer Tumor growth TEAD4/HSPA6/HSPA1A Coto-Llerena et al. (2021)
Lung cancer Poor prognosis TEAD4/PKM2/HIF1a Hu et al., (2021)
Melanoma Poor prognosis - Yuan et al. (2015)
Ovarian cancer Poor prognosis YAP/TEAD4/CDH1/SNAI1 Xia et al., 2014a
Ovarian cancer Metastasis, poor prognosis TEAD4/RPS27A/RPS2 Ren et al. (2021)
Ovarian cancer, fallopian tube carcinoma - - Nowee et al. (2007)
Prostate cancer Lower survival rate and tumor

recurrence
mTOR/TEAD4/KATS/OXPHOS Chen et al. (2021)

Renal cell carcinoma Tumor grade and lower survival - Li et al. (2022)
Thyroid cancer Suppression of tumor progression

and metastasis
TEAD4/Wnt3a/CDH1/CDH2/VIM Zhang et al. (2022)

Lung cancer, colon cancer, neuroblastoma,
endometrial cancer

Metastasis YAP/TEAD4/AP-1/SRC/CDH2/
MACF1

Liu X. et al., 2016

Lung cancer, liver cancer Metastasis TEAD4/SMAD3/SNAI2/ITGB3 Qiao et al. (2020)
TEAD1/4 Gastric cancer Poor prognosis miR-4269↓/miR-377-3p↓/miR-1343-

3p↓/TEAD4↑
Zhou et al. (2017)

TEAD2/4 Gliomas Lower survival rate TAZ/TEAD2/mesenchymal genes Bhat et al. (2011)
TEAD1/
3/4

Ovarian cancer Chemoresistance YAP/TEADs/GSK3A/ABCB1 Xia et al., 2014b

TEAD1/2/
3/4

Esophageal Cancer Tumor progression YAP/TEADs/JNK/c-Jun/IRS2 Xu et al. (2021)

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8904197

Hsu et al. TEAD4 Oncogene and Mitochondrial Regulator

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


amplification, single nucleotide polymorphism (SNP) and
overexpression of TEADs are observed in many cancers with
clinical relevance (Table 1). Among the four TEADmembers, the
elevated TEAD4 expression is the most frequently observed in
various types of cancers and highly associated with clinical
significance, such as cancer progression or patient’s survival
rate. Based on Pan-Cancer analysis of whole genomes, 6% of
2,565 cancer patients analyzed in that study possess TEAD4
abnormality (ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium, 2020). Gene amplification is the most
common alteration in 30 different cancer types (Figure 5). For
general discussion on the role of TEAD family in cancers, readers
are referred to recent excellent reviews (Zhou et al., 2016; Huh
et al., 2019). In this article, we will focus specifically on the unique
roles of TEAD4 in oncogenesis. As described below, through the
activation of different target genes, TEAD4 has the potential to
induce proliferation, anti-apoptosis, EMT, migration, and
metastasis, depending on the upstream signals and the
coactivators associated with.

Liver Cancer
The Hippo pathway plays a vital role in the normal functions in
liver, including metabolic homeostasis, cell proliferation and
regeneration. It goes without saying that the deviant
regulations of Hippo signaling are frequently observed in liver
cancer (Nguyen-Lefebvre et al., 2021). In human hepatoma cells,
TEAD4 exerts the antiapoptotic activity by upregulating Jag-1

expression, a Notch ligand (Tschaharganeh et al., 2013). By
competing out HNF4a, a tumor suppressor involved in
hepatocyte differentiation, YAP forms complex with TEAD4
to up-regulate genes associated with cell proliferation (Cai
et al., 2017). YAP/TEAD4 also binds FOXM1 (Forkhead Box
M1) to induce the chromosome instability (Weiler et al., 2017)
and targets PAI-1 (plasminogen activator inhibitor-1) to control
the senescence in liver cancer (Marquard et al., 2020). Thomann
et al. further showed that YAP/TEAD4 induces osteopontin,
which stimulates c-Met expression and alters the tumor niche
(Thomann et al., 2020). It also induced a macrophage
chemoattractant CCL2 (C-C Motif Chemokine Ligand 2)
expression to modulate the innate immunity and tumor
microenvironment (Thomann et al., 2021). It is worth
mentioning that TEAD4 also can modulate the liver cancer
progression in a YAP-independent manner. Upon TGFβ
stimulation, TEAD4 can form a complex with SMAD 2/3 on
mesenchymal-specific enhancers, resulting in EMT process in
liver and lung cancers (Qiao et al., 2020). In a YAP-independent
manner, TEAD4 induces the expression of 70-kDa heat shock
protein (HSP70) family members, a key driver for liver tumor
growth (Coto-Llerena et al., 2021). In liver cancer, TEAD4 is not
the only TEAD member implicated in oncogenesis. TEAD2 is
significantly overexpressed in tumor samples with lower overall
survival rate in TCGA Liver Hepatocellular Carcinoma database
(Joo et al., 2020). Intriguingly, VGLL4, but not YAP/TAZ, is
correlated with TEAD2 in tumor samples, suggesting TEAD2

FIGURE 5 | Transcriptomic profiles of TEAD4 in various cancers. (A) In the Pan-Cancer analysis (ICGC/TCGA, Nature 2020), 6% of samples possess TEAD4
abnormality. (B) Most common alteration is gene amplification found in ovarian cancer, non-small cell lung cancer, and pancreatic cancer. In ovarian cancer, 20% of
tumors contain TEAD4 amplification.
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modulates HCC progression in a YAP-independent manner. By
contrast, two SNPs of TEAD3 (rs11756089 CT/TT, rs2076173
TC/CC) are associated with superior survival rate in cancer
patients (Xia et al., 2017). However, the expression level of
TEADs was not evaluated in this study and the possible
mechanism involved requires further investigated.

Breast Cancer
Although targeting the estrogen receptor (ER) or epithelia growth
factor receptor (EGFR) signaling is a foremost strategy for breast
cancer therapy, emerging data shows that the Hippo pathway
promotes the breast cancer progression in various aspects,
including cancer cell proliferation, migration, evasion and
most importantly therapy resistance (Lamar et al., 2012; Wu
and Yang, 2018). Increased copy number and upregulated
expression of TEAD4 were reported in triple negative breast
cancers (TNBC) (Han et al., 2008). It has been shown that YAP/
TEAD4 complex acts as ERα cofactor and regulates E2/ERα target
genes to enhancer activation in a non-canonical Hippo pathway
(Zhu et al., 2019). In addition, TEAD4 also binds to the enhancer
region of TRAM2 (Translocation Associated Membrane Protein
2), a key regulator of cell proliferation and invasion (Li L. et al.,
2021). TEAD4 interacts with KLF5 (Kruppel Like Factor 5) to
suppress CDK inhibitor p27 expression, resulting in the cancer
cell growth (Wang C. et al., 2015). KLF5 also induces the
expression of a lncRNA IGFL2-AS1 (IGFL2 Antisense RNA 1)
to form a transcriptional complex with TEAD4 and promotes the
IGFL1 (Insulin growth factor-like family member 1) gene
expression (Wang H. et al., 2021). He et al. showed that
glucocorticoids via glucocorticoid receptor (GR)
transcriptionally activates TEAD4 independent of YAP/TAZ.
TEAD4 expression correlates not only positively with GR
expression in breast cancer, but also with poor survival and
metastasis (He et al., 2019). These studies suggest the
contribution of TEAD4 to the breast cancer progression,
especially therapy resistance, hence targeting TEAD4 should
be a new avenue to improve the breast cancer therapy.

Colon Cancer
Under normal circumstance, YAP plays a major role in digestive
system, especially in tissue regeneration for maintaining the
intestinal homeostasis (Yu et al., 2015). Cai et al. showed that
YAP is upregulated in regenerating crypts. Vice versa, the
regeneration is impaired in knockout YAP crypts, suggesting
the oncogenic role of YAP in colon cancer (Cai et al., 2010). In
colorectal cancer, YAP/TEAD4 cooperates with AP-1 and the
p160 family of steroid receptor coactivator SRC1-3 to regulate the
genes associated with tumor migration and invasion (Liu X. et al.,
2016). Interestingly, TEAD4 is able to transcriptionally induce
YAP expression to form a feedforward loop and promote
tumorigenesis (Tang et al., 2018). YAP/TEAD4 induces the
RAN binding protein 1 (RANBP1), which is a critical
regulator of pre-miRNA nuclear exporter, exportin-5.
Overexpression of exportin-5 increases the level of microRNAs
that target LATS1/2, resulting in a negative feedback on Hippo
signal pathway (Zheng et al., 2022). Nevertheless, TEAD4 also
can modulate the colon cancer progression in a YAP-

independent manner. In colorectal cancer, TEAD4 targets
EMT genes and promotes metastasis. In this case, YAP was
apparently not involved as TEAD4 Y429H mutant which fails
to bind YAP can stimulate vimentin expression and promote
metastasis like the wild type (Liu Y. et al., 2016). TEAD4’s nuclear
expression can be used as a biomarker for colorectal cancer
progression and poor prognosis (Liu Y. et al., 2016). Similarly,
the overexpression of TEAD4 direct target gene SIX1 (sine oculis
1) correlates with poor prognosis of colorectal cancer patients (Yu
et al., 2021). The underlying mechanism of both YAP-dependent
and independent nodules on TEAD4 regulation should further
elucidated to improve the cancer treatment.

Gastric Cancer
In gastric cancer, TEAD4 promotes cell cycle G1/S progression by
increasing the expression of cyclins (D1 andE1) andCDKs (CDK2, 4,
6) (Teng et al., 2016). It also augments the transcription of a lncRNA
MNX1-AS1 which sequesters BCL2-targeting miR-6785-50, leading
to up-regulation of pro-survival BCL2 (B-cell lymphoma 2) protein
(Shuai et al., 2020). An additional direct target of YAP/TEAD4 is a
nucleotide sugar transporter, SLC35B4, which plays a key role in
cancer metabolism and cancer cell proliferation (Liu J. et al., 2019).
Hypo-methylation at CpG sites of TEAD4 promoter causing TEAD4
overexpression in gastric cancer tissues resulted in larger tumor size
and lower survival rates (Lim et al., 2014). The reduced expression of
TEAD4-targeting miR-4269 leads to increased nuclear TEAD4 and
contributes to poor prognosis (Zhou et al., 2017). It should be noted
that, both TEAD1 and TEAD4 are overexpressed in gastric cancer
TCGA cohort in this study (Zhou et al., 2017). However,
overexpressed TEAD1 is only observed in two subtypes of gastric
cancer, Epstein–Barr virus-positive subtype and microsatellite
instability subtype. By contrast, TEAD4 overexpression is observed
in all four gastric cancer types, including additional gnomically stable
subtype and chromosomal instability subtype, suggesting TEAD4
may have higher impact on gastric cancer progression.

Brain Tumor
The Hippo pathway plays a key role and can be regulated by
multiple signaling pathways in brain tumor (Masliantsev et al.,
2021). In gliomas, the ortholog TAZ is a dominant form and
frequently overexpressed and associated with its aggressiveness
(Zhang et al., 2016). In high grade gliomas, TAZ binds TEAD4
and modulates the expression of cyclin D1, Bcl-2 and MMP-9
(Matrix metallopeptidase 9), leading to cell proliferation and
migration (Li et al., 2016). Additionally, high TEAD4 DNA
copy number variation with isocitrate dehydrogenase
mutations in low grade glioma correlates with a shorter overall
survival and disease-free survival (Yuan et al., 2021). In addition
to TEAD4, TEAD2 also can interact with YAP/TAZ and
modulate the malignancy in brain tumor (Bhat et al., 2011; Lu
et al., 2017). Indeed, disrupting the interaction of YAP with
TEADs suppresses the tumor progression (Saunders et al., 2021).

Ovarian Cancer
Elevated YAP expression has been reported in different subtypes
of ovarian cancer and associated with poor prognosis (Xia et al.,
2014a). It has been reported that copy number increase and
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overexpression of TEAD4 are detected in ovarian cancer and
fallopian tube carcinoma (Nowee et al., 2007). More importantly,
among four TEAD members, TEAD4 is co-expressed with YAP
in all subtypes of ovarian cancer. Silencing of YAP in ovarian
cancer cell lines increases the drug sensitivity in both in vitro and
in vivo xenograft model (Xia et al., 2014a). By contrast,
overexpression of YAP/TEAD4 contribute to chemo-drug
resistance, migration, and growth of ovarian cancer (Xia et al.,
2014b). Ren et al. showed that TEAD4 expression not only has a
higher diagnostic value with better sensitivity and lower false
positive rate than TEAD1-3 in ovarian serous carcinoma patients,
but also negatively correlates with the tumor-infiltrating immune
cells (Ren et al., 2021). These results suggest that disrupting the
interaction of YAP/TEAD4 or direct targeting TEAD4 could be a
potential strategy for ovarian cancer therapy.

Bladder Cancer
Increasing evidence shows that the Hippo pathway plays a key
role in bladder cancer progression (Xia et al., 2018). YAP is
overexpressed and associated with poor prognosis of bladder
cancer (Liu et al., 2013). Inhibition of YAP activity suppresses
bladder cancer growth and invasion (Dong et al., 2018). The
multivariate Cox regression analysis showed that TEAD4 is an
independent prognostic factor for bladder cancer. Intriguing,
infiltrating immune cells including CD4+ T cells, NK (natural
killer) cells, macrophages, and neutrophils were positively
correlated with the expression of TEAD4 that implicates
immune cells in bladder tumor microenvironment play a
promoting role in tumor progression (Wang J. et al., 2021).
Furthermore, knockdown of TEAD4 Inhibits bladder cancer
cells migration and invasion (Huang et al., 2021).

Prostate Cancer
The Hippo pathway plays a key role in prostate cancer
progression at different stages (Salem and Hansen, 2019). At
the early stage, ETS-regulated gene (ERG) induces YAP
expression, which drives the YAP/TEAD4 transcriptional
complex to induce the development of prostate cancer.
Moreover, Wnt signaling induces the interaction of YAP with
AR (androgen receptor) to drive the expression of downstream
targets (Seo et al., 2017). Whether TEADmembers were involved
in AR mediated oncogenesis is not clear in this study. Recent
work further showed that TEAD4 expression correlated with
prostate cancer progression (Chen et al., 2021). The authors also
demonstrated that the overexpressed TEAD4 regulates OXPHOS
gene expression and modulates the mitochondrial functions in a
YAP-independent manner. In addition to TEAD4, TEAD1
expression is also associated with prostate cancer progression
(Knight et al., 2008). Silencing of TEAD1 suppresses the PCa cell
proliferation in vitro.

Head and Neck Cancer
In the genomic profiling of head and neck cancer patients, the
Hippo pathway is one of common pathways with most frequent
genomic mutation and highly associated with metastasis and
recurrence (Nisa et al., 2018). The overexpression of YAP is
observed in HNSCC (head and neck squamous cell carcinomas)

patients (Ge et al., 2011). TEAD4 expression is associated with
HNSCC poor progression, such as pathological grade, clinical
stage and metastasis (Zhang et al., 2018a). This study further
showed that TEAD4 expression is induced by TGFβ1 to promote
EMT in HNSCC.

Endometrial Cancer
TAZ is dominantly overexpressed in different subtypes of
endometrial cancer to regulate the malignancy of endometrial
cancer (Romero-Perez et al., 2015). Several studies show that the
Hippo pathway modulate the endometrial cancer progression via
cross talk with other signaling pathways (Wang et al., 2016a;
Wang et al., 2017; Wen et al., 2020). Inactivation of YAP activity
by verteporfin treatment suppressed cell proliferation and
invasion and induced apoptosis in endometrial cancer cells
(Dasari et al., 2017). Hu et al. showed that ARID1A (AT-rich
interactive domain-containing protein 1A), a key subunit of SWI/
SNF complex, recruits FOXA1 (Forkhead Box A1) and TEAD4 to
regulate ER binding on circadian rhythm genes in ER-positive
endometrial cancer (Hu et al., 2020). The transcriptional complex
of TEAD4 and AP-1 controls cell migration and invasion by
regulating its downstream targets such as CDH2 (Cadherin 2)
and MACF1 (Microtubule Actin Crosslinking Factor 1) in
endometrial cancer and other cancers (Liu X. et al., 2016).

Esophageal Cancer
The role of Hippo pathway in esophageal cancer (EC) progression
has been recognized recently. Xu et al. demonstrated YAP is
overexpressed in different EC datasets, including those of cancer
patients and EC cancer cell lines. The transcriptional YAP/TEAD
complex induces IRS2 (Insulin Receptor Substrate 2) expression
through JNK/c-Jun pathway (Xu et al., 2021) However, which
TEADmember is involved in this machinery was not identified in
this study. Silencing of serum/glucocorticoid regulated kinase 1
(SGK1) disrupts the transcriptional YAP/TEAD4 complex,
leading to the suppression of cancer cell growth and migration
in vivo and in vitro (He et al., 2021). Another study showed that
KIF4A (Kinesin FamilyMember 4A), a prognostic marker for EC,
is driven by YAP/TEAD4 complex, which contributes to the EMT
and anti-apoptotic property (Li Y. et al., 2021).

Renal Cell Carcinoma
YAP is reported to be overexpressed in clear cell renal cell
carcinoma (ccRCC), the major type of renal cell carcinoma,
and associated with cancer progression and poor prognosis
(Rybarczyk et al., 2017). Schütte et al. found that elevated
YAP expression is co-expressed with TEAD1 in ccRCC cell
lines (Schutte et al., 2014). In this study, YAP and TEAD1 are
co-localized at the promoter regions of CTGF (CCCTC-Binding
Factor), MYC, EDN1 (Endothelin 1), and EDN2, leading to
cancer cell proliferation and migration in vitro as well as
tumor growth in xenograft model. Another study showed that
tumor suppressor SAV1 is downregulated, which results in the
activation the YAP1-TEAD3 complex in high-grade renal cell
carcinoma (Matsuura et al., 2011). Of note is a recent study of
ccRCC TCGA datasets analysis, which reveals that TEAD4,
compared to other three TEAD members, shows the most
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significant correlation with ccRCC malignancy and cancer
progression (Li et al., 2022). Silencing of TEAD4 suppresses
cell proliferation in ccRCC cells in vitro and tumor growth in vivo.

Thyroid Cancer
In thyroid cancer, YAP expression is associated with poor
prognosis and YAP controls cancer cell proliferation (Liu
et al., 2017; Liu Z. et al., 2019). It was shown that the Ras
expression is transcriptionally regulated by YAP/TEAD1
complex, which leads to thyroid tumorigenesis (Garcia-
Rendueles et al., 2015). By contrast, Zhang et al. showed that
TEAD4 seems to play a tumor suppressor role in thyroid cancer.
Overexpressed TEAD4 suppresses thyroid cancer progression
and metastasis via maintaining an appropriate Wnt signaling
by upregulating Wnt3a (Zhang et al., 2022). The role of each
TEAD member and its interaction with YAP or other co-factors
would be necessary to clarify the role of TEADs in thyroid cancer.

TEAD4 as a Potential Therapeutic Target
As a DNA anchoring protein without enzyme activity, TEAD4 is
considered “non-druggable” in the traditional sense. Several
strategies have been developed to get around this issue
(Table 2). Given the overwhelming role of YAP in activating
TEAD4’s transcriptional prowess, agents which disrupts YAP/
TEAD4 interactions have been developed. One example is cyclic
YAP-like peptides (Peptide 17 or Peptide 10), based on YAP-
binding site to TEADs (YAP81-100

PQTVPMRLRKLPDSFFKPPE) (Zhang et al., 2014; Zhou et al.,
2015). As VGLL4 is also a major coactivator of TEAD4, super-
TDU was designed to mimic TEAD4 binding domains (TDU
domain) of VGLL4, which competes the binding activity of YAP/
TEAD4 (Jiao et al., 2014). The second strategy is target TEAD’s
palmitoylation site, as this post-translational modification is
required for TEAD activities. Pobbati et al. showed that
NSAIDs (Non-steroidal anti-inflammatory drugs), such as
flufenamic acid and niflumic acid inhibitors that bind to this

site to decrease TEAD transcriptional activity without disrupting
TEAD-YAP interaction (Pobbati et al., 2015). Bromofenamic acid
also targets the TEAD palmitate-binding pocket and interrupts
the interaction of TEAD2 and YAP (Pobbati et al., 2015). TED-
347 and K-975 covalently bind to a cysteine residue in the
palmitate-binding pocket of TEAD, which also inhibits
protein-protein interaction between TEAD and YAP (Bum-
Erdene et al., 2019; Kaneda et al., 2020). VT3989 (Vivace
Therapeutics, Inc.) targets TEAD allosteric site, resulting in
active site conformational change which inhibits
palmitoylation and thus disrupts YAP/TEAD transcriptional
activity. It is currently under clinical trial for metastatic solid
tumors enriched for tumors with NF2 gene mutations
(NCT04665206) (Barry et al., 2021). A third strategy targets
YAP for degradation or reduced activity and expression.
Verteporfin, a photosensitizing agent derived from porphyrin,
was initially a regime for macular degeneration, then identified as
an inhibitor for YAP/TEAD4 interaction (Liu-Chittenden et al.,
2012). Wang et al. later showed that verteporfin suppresses YAP
function through the induction of 14-3-3σ, resulting in YAP
degradation (Wang et al., 2016b). Verteporfin has been shown the
anti-tumor effect in various cancers (Wei and Li, 2020) and
currently under the clinical trial for recurrent glioblastoma
(NCT04590664) (Vigneswaran et al., 2021). Similarly,
Pazopanib, MF-438 and XAV939 inhibit YAP function by
induction of YAP degradation (Wang W. et al., 2015; Noto
et al., 2017). Dasatinib, Pazopanib and Cerivastatin induce
YAP phosphorylation to suppress YAP activity (Oku et al.,
2015). CA3 downregulates YAP protein expression and its
transcriptional activity (Song et al., 2018). C19 induces
phosphorylation and activation of MST1 (Macrophage
Stimulating 1) and LATS1/2 of Hippo pathway, which results
in the degradation of the YAP homolog, TAZ (Basu et al., 2014).
A combination of epigenetic regulators’ inhibitors, BET
(bromodomain and extraterminal protein) and HDAC
(histone deacetylase), suppresses YAP and AKT expression

TABLE 2 | Summary of TEADs inhibitors.

Drug (brand Name) Functions References

Cyclic YAP-like peptides (Peptide 17 or 10) Targets YAP’s binding site to TEADs Zhang et al. (2014), Zhou et al. (2015)
Super-TDU Mimicking TEAD4 binding domain (TDU) of VGLL4 and interrupts

YAP-TEAD4 interaction
Jiao et al. (2014)

Flufenamic acid (TED-346), Niflumic acid TEAD palmitate-binding pocket NO effect on YAP/TEAD interaction Pobbati et al. (2015)
Bromofenamic acid TEAD palmitate-binding pocket YAP-TEAD2 interaction Pobbati et al. (2015)
TED-347 TEAD palmitate-binding pocket YAP-TEAD interaction Bum-Erdene et al., 2019
K-975 TEAD palmitate-binding pocket YAP-TEAD interaction Kaneda et al. (2020)
VT3989 TEAD palmitate-binding pocket YAP-TEAD interaction Barry et al. (2021)
Verteporfin (Visudyne, Norvatis) Up-regulation of 14-3-3σ sequestering YAP Liu-Chittenden et al., 2012, Wang et al., 2016b,

Vigneswaran et al. (2021)
Dasatinib, Pazopanib Both induce YAP phosphorylation. Pazopanib induces YAP

degradation
Oku et al. (2015)

MF-438 YAP/TAZ degradation Noto et al. (2017)
XAV939 YAP degradation Wang W. et al., 2015, Kurppa et al. (2020)
Cerivastatin YAP phosphorylation Sorrentino et al. (2014)
CA3 Inhibits YAP expression Song et al. (2018)
C19 Activates MST1 and LATS1/2 Basu et al. (2014)
BET151 (BET inhibitor) +Panobinostat
(HDAC inhibitor)

Downmodulates AKT and YAP signaling pathways Heinemann et al. (2015)
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and induces apoptosis in melanoma cells (Heinemann et al.,
2015).

CONCLUSION AND PERSPECTIVES

Based on the accumulated evidence described above, it is clear
that TEAD4 is a pivotal transcription factor in development and
disease. In this review, we have emphasized the unique roles of
TEAD4 and as such, TEAD4’s shared functions with other
TEADs are not described. TEAD4 thus has even larger role in
these processes. As cited above, there are several excellent reviews
on this topic. TEAD4’s ability to transcribe both mitochondrial
and nuclear-encoded OXPHOS genes is unique, which plays a key
role in maintaining mitochondrial OXPHOS integrity to avoid
excessive ROS production, in the face of strong “Warburg effect”
in cancer cells. This property is specific to cancer cells and
targeting TEAD4 would preferentially kill cancer cells. The
current therapies targeting TEAD4 action largely focus on the
disruption of YAP/TEAD4 interaction or YAP pathway, which is
understandable, as YAP is the major coactivator of TEAD4. Yet,
there are also YAP-independent action of TEAD4, including the
activation of OXPHOS gene, which would not be affected.
Strategy to degrade TEAD4 itself or diminish its expression
could be considered. As TEAD4 knockout mice are viable
after embryo implantation stage and with functional
redundancy with other TEAD members (Yagi et al., 2007),
TEAD4 knockout may specifically affect cancer cells. In
preclinical studies, targeting TEAD4 by CRISPR or shRNA
provides proof of concept evidence that this may work (Chen
et al., 2021). In clinics, an emerging modality is the application of
ASO (antisense oligos) techniques, encouraged by recent success
in the treatment of spinal muscular atrophy (Corey, 2017) and the
efficient delivery of mRNA-based COVID vaccine into cells

(Corbett et al., 2020; Polack et al., 2020). This strategy
deserves more attention. Another outstanding question is how
TEAD4, but not other TEAD family members, is translocated
into mitochondria, and how it uniquely affects mitochondrial
functions and biogenesis. In vitro studies showed that the
mitochondrial morphology of TEAD4 knock-out cancer cells
is severely damaged and mitochondrial functions suppressed.
There is a growing interest in targeting mitochondrial pathways
for cancer therapy (DeBerardinis and Chandel, 2020). Targeting
TEAD4’s translocation ability can also be considered. Finally, the
strong link between TEAD4 and super-enhancers are
provocative. Knowledge about the molecular details of this
process will increase our fundamental understanding of super
enhancers or oncogenic super enhancers.
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