
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports

A pseudo‑softmax function
for hardware‑based high speed
image classification
Gian Carlo Cardarilli1, Luca Di Nunzio1,3, Rocco Fazzolari1,3, Daniele Giardino1,3,
Alberto Nannarelli2,3, Marco Re1,3 & Sergio Spanò1,3*

In this work a novel architecture, named pseudo-softmax, to compute an approximated form of
the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural
Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning
hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-
softmax design, intended for efficient hardware implementation, exploits the typical integer
quantization of hardware-based Neural Networks obtaining an accurate approximation of the result.
In the paper, a detailed description of the architecture is given and an extensive analysis of the
approximation error is performed by using both custom stimuli and real-world Convolutional Neural
Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to
state-of-the-art architectures show reduced approximation errors.

The softmax function is one of the most important operators in the field of Machine Learning1. It is used in the
last layer in classification Neural Networks (NN) and also in Convolutional Neural Networks (CNN) to normal-
ize the raw output of such systems.

The softmax function equation is:

where xi are the outputs of a machine learning network and i =, 1, . . . ,N  . In other words, the outputs of the
network xi are processed to represent the probability of the inference output pi to belong to a certain class (Fig. 1).

In recent years, the literature proposed many hardware architectures for the inference process of NNs and
CNNs both on ASIC and FPGA2–4, characterized by high speed and low power consumption. The optimization
in the hardware architectures is obtained both by the use of approximation algorithms and by the integer quan-
tization of the arithmetic, usually by using 8 bits integers (INT8).

Unfortunately, the softmax function, unlike other operators used in Machine Learning5–8, cannot be easily
implemented because of the exponential and division operators. Moreover, even off-the-shelf NN and CNN
synthesis tools are not able to provide a hardware softmax implementation9,10, and the function is computed by
using a standard software approach.

In this work, we introduce the pseudo-softmax architecture with the aim to allow for an efficient hardware
implementation of the softmax layer in hardware implemented NNs and CNNs.

Different solutions for the hardware implementation of the softmax function can be found in the literature but,
unfortunately, each work focuses on different aspects of the design process, making comparisons not too easy.

In the following, recent relevant work on the softmax function is summarized by highlighting the most
innovative aspects of each work.

Yuan11 proposed an implementation that uses a logarithmic transformation to avoid the division, but no final
conversion to the original domain is considered. The exponential operations are simply carried out via Look Up
Tables (LUT). A comparison on the number of operations performed by a standard LUT-based divisor and his
proposed method is given.

(1)pi =
exi

∑N
k=1 e

xk

OPEN

1Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy. 2Department
of Applied Mathematics and Computer Science, Danmarks Tekniske Universitet, 2800 Kongens Lyngby,
Denmark. 3These authors contributed equally: Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Alberto
Nannarelli, Marco Re and Sergio Spanò. *email: spano@ing.uniroma2.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-94691-7&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

Geng et al.12 proposed two architectures that compute the exponential function both via LUT and linear
approximation. The division is carried out by finding the closest power of 2, thus only shift operations are needed.
The accuracy was tested on real CNNs and an ASIC implementation is presented.

Li et al.13 proved that LUT implementations for the exponential function are the best trade-off between pre-
cision and speed, if compared to Taylor’s series and CORDIC14 implementations. The division is performed by
bit-shifting. They presented two serial implementations both in FPGA and ASIC giving data about clock speed
and resources. No information is provided on the latency of the architecture.

Baptista et al.15 proposed a High Level Synthesis (HLS) FPGA implementation for a specific CNN application.
The exponents of the softmax formula are split into integer and fractional parts. The integer parts are evaluated
by using a ROM approach, while polynomial approximation is used for the fractional parts. The results are
given as the global accuracy of the overall Machine Learning system, not focusing on the softmax computation.

Wang et al.16 proposed an interesting architecture that exploits the fact that every number can be split in
integer and fractional part. The implementation avoids any straightforward division or exponential operation by
using Leading One Detectors (LOD), bit shifters, and constant multipliers. The authors considered the output of
their system correct if the difference with respect to the original softmax value lies below a given threshold. The
architecture was implemented both on ASIC and FPGA and information about the clock frequency, hardware
resources, power dissipation, and throughput are provided.

Sun et al.17 proposed a FPGA serial implementation that splits every exponential operation in more operations
to reduce the size of each ROM. The division is carried out via bit-shifting. The authors provided information
about the clock frequency, hardware resources, and power dissipation, but no data about the precision of the
system is provided.

Hu et al.18 proposed their Integral Stochastic Computation (ISC) to evaluate the exponent operator. The
division is avoided by a logarithmic transformation. No data about the precision of the system is provided. They
implemented the architecture by using an FPGA but the maximum achievable clock frequency is not provided.

Du et al.19 proposed a tunable precision block for the exponentiation based on a variable number of LUTs.
The architecture has been implemented both in ASIC and FPGA and data about clock frequency, hardware
resources, and power dissipation are provided.

Kouretas and Paliouras20 implemented an approximated equation that takes into account only the exponents
of the softmax formula and that replaces the summation with the highest input value. They compute the accu-
racy by using custom inputs and they show the hardware resources needed for an ASIC implementation of the
architecture.

Wang et al.21 showed a CNN application that makes use of software-tunable softmax layer in terms of preci-
sion, but no detailed data about the softmax implementation is provided.

Di Franco et al.22 proposed a straightforward FPGA implementation of the softmax by using a linear inter-
polating LUT for the exponential function. No information about the accuracy is provided.

Kouretas and Paliouras23 extended their previous work20 by improving the accuracy analysis by using real-
world CNNs and by adding information about the ASIC implementation.

At the time of the writing, the work in23 can be considered the state-of-the-art in hardware implementations
of the softmax function, and it will be used for comparisons in the following sections.

Pseudo‑softmax function
In order to simplify the computation of the softmax function in Eq. (1), we introduce a new approximated
expression named pseudo-softmax:

in which the exponent base e is replaced by 2. An extensive analysis of the error introduced is discussed in the
following section. As in the case of the softmax function, the summation of the pseudo-softmax outputs is always
equal to one. Consequently, the values p̃i can be interpreted as probabilities.

As stated in the Introduction, the hardware implementations of NN systems make use of the integer quan-
tization, typically 8-bit integers (INT8). The reason of using powers of two 2xi in Eq. (2) is that the integer

(2)p̃i =
2xi

∑N
k=1 2

xk

CNN

Cat

Horse

Dog

Softm
ax

35.4

38.1

-5.0

0.06

0.94

0.00

Cat

Dog

Horse

Figure 1.   Example of a three classes CNN: Cats, Dogs, and Horses.

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

numbers xi can be interpreted as the exponent of floating-point (FLP) numbers, allowing for an efficient hardware
implementation.

According to the conventional base-2 FLP representation, a positive number a is represented as:

where b is the integer exponent and c is the fractional mantissa. Consequently, the numerator in Eq. (2) can be
considered as a number ai = 2xi , where b = xi and c = 0 , and Eq. (2) can be rewritten as

Similarly, for the denominator in Eq. (4), the sum can be rewritten as

and the pseudo-softmax function as

Substituting back ai = 2xi in Eq. (5), we obtain

that can be rewritten as

The expression Eq. (7) of the pseudo-softmax function shows that the output p̃i is a FLP number with expo-
nent (xi − expsum) , and with mantissa 1/(1 ·mantsum) , i.e., the reciprocal of the mantissa of the summation. The
mantissa is common (constant) for all p̃i s, and it is only computed once.

Hardware architecture.  The pseudo-softmax function in Eq. (7) is implemented by using the hardware
architecture shown in Fig. 2.

As stated in the Introduction, the 8-bit integers inputs xi with range [−128, 127] are interpreted as the expo-
nents of FLP numbers. The denominator of Eq. (7) is the mantissa of the FLP number sum. The outputs are
unsigned FLP numbers

represented by using 17 bits: 9-bit exponent, and 8-bit fractional mantissa with implicit integer bit (always 1).
The 9-bit exponent (unbiased) guarantees for overflows for maximum values xi = 127 and number of inputs
N < 128 . There is no representation for zero, that can be determined by comparing p̃i to a sufficiently small
threshold value. The negative exponent makes the floating-point number smaller than 1.0, but all output numbers
are positive. Therefore, the sign bit is not necessary.

(3)a = 2b · 1 · c,

(4)p̃i =
ai∑N
k=1 ak

.

sum =

N∑

k=1

ak = 2expsum · 1 ·mantsum,

(5)p̃i =
ai

2expsum · 1 ·mantsum
.

(6)p̃i =
2xi

2expsum
·

1

1 ·mantsum
.

(7)p̃i = 2xi−expsum ·
1

1 ·mantsum
.

(8)p̃i = 2expouti · 1 ·mantout.

FLP
adder tree

PWL
reciprocal

x1

x2

xN

Subtractors
array

mantsum

expsum

mantout

expout1

expout2

expoutN

Figure 2.   Pseudo-softmax function top level architecture.

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

The unit in Fig. 2 is composed of three main blocks: a tree of FLP adders to compute
sum = 2expsum · 1 ·mantsum ; a piece-wise linear (PWL) interpolation block to compute the reciprocal, and an
array of integers subtractors computing (xi − expsum).

In the following subsections, more detail on the main blocks in Fig. 2 is given.
The wordlenght sizes in the circuits are represented in gray characters, thin arrows represent 1-bit signals.

Floating‑point adder tree.  We opted for a binary tree of FLP adders, that is modular and easy to design. If delay
(for throughput) is problematic, the binary tree can be easily pipelined, after each adder, to meet the timing
constraints.

The architecture of the FLP adder tree for N = 6 is shown in Fig. 3a.
The xi of Eq. (2) are the exponents of FLP numbers and their mantissas is 1.0.
The architecture of the FLP adder24 is shown in Fig. 3b. Since it operates on positive FLP numbers, its archi-

tecture is simplified.
First, the exponents difference d is computed to find the amount of shifting necessary for the alignment of the

mantissas. The largest exponent is selected as the exponent of the result. The alignment is performed by a barrel
shifter (block ≫ in Fig. 3b) by shifting d positions to the right the mantissa of the smallest number. If d ≥ 8 ,
the mantissa of the smallest number is flushed to zero, and no actual addition is performed. When d = 0 , same
exponent, the addition of the normalized mantissas results in an overflow ( mant ≥ 2.0 ) and the result must be
normalized by incrementing by one the exponent, and by dividing the mantissa by two, i.e., right-shifting the
result 1 position (block ≫ 1).

An additional simplification is done for the FLP adder in the first level of the adder tree (Fig. 3c). Since, the
input values xi are power of two’s numbers and their mantissas is 1.0, there is no need to swap the mantissas
(identical) according to d. The barrel shifter is also simplified because its input is the constant 1.0. When d = 0 ,
i.e., xi = xj , the result of the addition of the two mantissas is mant = 2.0 (overflow). However, since the fractional
bits are all zero, right-shifting is not necessary, and the normalization is done by incrementing the exponent of
the result only.

Piece‑wise linear reciprocal block.  In the computation of the probabilities p̃i , the mantissa is common to all
p̃i s, and consequently, a single reciprocal operation is sufficient. Moreover, because of the normalization, the
mantissa is in the range [1, 2).

For the reciprocal y = 1/x , we opted for a piece-wise linear (PWL) polynomial approximation in two intervals

Figure 3.   (a) Example of 6 8-bit inputs FLP adder tree. (b) Architecture of a FLP adder. (c) Architecture of the
optimized FLP adder used in the first level of the tree.

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

The coefficients of the polynomials were chosen, by incremental refinements, as the closest to powers of two
to simplify the hardware. By expressing in binary the coefficients of (9) and as powers of two, we have

The resulting reciprocal approximation unit is shown Fig. 4a.
Since the intervals in Eq. (10) are determined by mantsum being greater or smaller than 1.5, the MSB of the

fractional part of the mantissa, bit with weight 2−1 , is used to select the interpolating polynomial.
Figure 4b shows the plots of y = 1/x and of the interpolating polynomials in [1.0, 2.0).
The reciprocal approximation error is obtained by exhaustive simulation in fixed-point. The maximum abso-

lute error is 0.03125 < 2−5 obtained for x = 1.0 (Fig. 4b), while the average error is 0.011151 < 2−7 . This is a
good trade-off between error and hardware complexity (Fig. 4a).

Pseudo‑Boltzmann architecture for reinforcement learning hardware accelerators.  The proposed pseudo-soft-
max formula in Eq. (2) can be adapted to implement the Boltzmann action selection policy25 for Reinforcement
Learning (RL) systems. The design of an efficient architecture would allow for such policy to be implemented in
the state of the art of RL hardware accelerators26,27.

The formula of the Boltzmann policy is:

It is straightforward to see that Eq. (1) is a special case of Eq. (11) where the temperature coefficient τ = 1
(Kelvin). In order to avoid the division operation by τ , we can consider a power of two approximation τ = 2T
obtaining the pseudo-Boltzmann equation:

The corresponding hardware architecture is obtained with minor modifications of the pseudo-softmax archi-
tecture shown Fig. 2.

Results
In this section we provide extensive testings to analyze the precision of the proposed pseudo-softmax. An
analysis on the quantization of the architecture is also provided. The Psedo-Softmax operator is compared to
the hardware-based softmax design illutsrated in23. Then, we show the pseudo-softmax ASIC implementation
results based on a 90 nm standard-cell CMOS technology. The results are given in terms of propagation delay,
silicon area and power dissipation. Our results are compared with the implementation in23.

Approximation error analysis.  In order to validate the pseudo-softmax function, we performed extensive
simulations using both custom inputs and real data from Convolutional Neural Networks (CNN). We also com-
pared our results with those obtained by the hardware-based softmax implementation described in23.

(9)ỹ =

{
1.59375− 0.625 · x if x < 1.5
1.125− 0.3125 · x if x ≥ 1.5

.

(10)ỹ =

{
1.10011|2 − x(2−1 + 2−3) if x < 1.5
1.00100|2 − x(2−2 + 2−4) if x ≥ 1.5

.

(11)Bi =
exi/τ

∑N
k=1 e

xk/τ
.

(12)B̃i =
2xi/2

T

∑N
k=1 2

xk/2T
.

1 1.2 1.4 1.6 1.8 2
x

0.5

0.6

0.7

0.8

0.9

1

R
ec

ip
ro

ca
l v

al
ue

y=1/x
PWL approx.>>1

>>3

-

-

+1.59375

>>2

>>4

-

-

+1.125

M
U

X

0

1

in

out

MSB

8

6

4

8

8

8

8 8

8

(a) Reciprocal PWL architecture (b) Reciprocal PWL approximation error

Figure 4.   (a) Architecture of the PWL reciprocal block. (b) PWL reciprocal function for x in the range [1,2).

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

To easily compare the simulation results with those of23, the performance is evaluated by computing the
Mean Square Error (MSE)

Moreover, to be consistent with23, the tests were performed in floating-point by assuming quantized integer
inputs.

Custom generated inputs.  One test consisted in applying random uniformly distributed inputs in the range
[−2−7, 27 − 1] (INT8) to the pseudo-softmax module. The number of inputs N tested was in the range N =
[2,1000], being N the number of classes of a neural network. For every chosen N, we applied 10,000 random
patterns to the system’s inputs xi.

The MSE as a function of the number of inputs N, is shown in Fig. 5a.
The plot shows that the MSE decreases as the number of inputs increases.
We now compare our pseudo-softmax function to the design shown in23 by using the same network param-

eters: 10-bit inputs an N = 30 . The input values in23 are chosen in such a way to push the softmax hardware in
appropriate “corner cases”.

For the first test case, the input values xi are close to 5. These are shown in the second row of Figure 5b. The
other rows in Fig. 5b display the values pi for the softmax function, p̂i for the softmax approximation of23, and
p̃i for the pseudo-softmax.

Since the input values xi in Fig. 5b are close to each other, also the softmax values pi are rather close. The
outputs p̂i are much larger and their sum is larger than 1, violating the principle that the softmax is a probability
density function (PDF). In contrast, the outputs p̃i , preserve the features of PDFs and all values are close to pi.

The MSE value for p̃i is MSEp̃i = 2.7082× 10−4 , while MSEp̂i = 0.8502.
Figure 5c reports the results of the second test case using the same organization of Fig. 5b.
In this case, the first four inputs xi are significantly larger than the remaining xi < 1 . Also in this case, the sum

of p̂i outputs is larger than 1, while the p̃i mantains a PDF behavior. However, the MSE of the approximation are
almost the same, since MSEp̃i = 0.0019 and MSEp̂i = 0.0018.

Convolutional Neural Networks benchmarks.  The performance of the pseudo-softmax approximation algo-
rithm is also evaluated with real data using the set of tests performed in23 based on standard CNNs.

The test is based in the ImageNet dataset28 consisting in classifying 1000 images. The test is performed by
10,000 inferences on the following networks:

1.	 ResNet-5029,
2.	 VGG-1630,
3.	 VGG-1930,
4.	 InceptionV331,
5.	 MobileNetV232.

In Fig. 6 the histograms of the MSE are shown, overlapped with the error values obtained by23 in the same
test sets. To be consistent with the comparison, all the networks have been quantized to 10 bits. The histograms
for23 are derived from the figure in the paper and may not be very accurate.

All the MSE values lay in the range [0, 10× 10−4] . The results of the Pseudo-Softmax inference shows that
this method is one order of magnitude better in approximation error than the method used in23.

(13)MSE =
1

n

∑(
y − ỹ

)2
.

(a) Random uniformly distributed (b) Test case 1

(c) Test case 2

0 200 400 600 800 1000
N.. of inputs

0

0.5

1

1.5

2

M
ea

n
Sq

ua
re

 E
rro

r

10-6

Computed MSE

Figure 5.   (a) MSE of random uniformly distributed inputs vs number of inputs. (b) Inputs and outputs for test
case n. 1; MSE comparison between23 and proposed architecture. (c) Inputs and outputs for test case n. 2; MSE
comparison between23 and proposed architecture.

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

Inputs quantization analysis.  As stated in the Introduction, typical hardware implementations of NNs are
based on INT8 quantization. To see the impact of the NN quantization in the ImageNet test, the softmax MSE
error histogram is evaluated while reducing the wordlenght of the inputs values xi . In Fig. 7a the MSE values for
8 and 10 bits quantized VGG-16 networks are very similar. and therefore, Psuedo-Softmax architecture is quite
insensitive for the quantization in that range of bits.

Similar results are obtained for the other tested networks.
By further reducing the input wordlenght, we obtain the minimum MSE achieved in23 ( 10−3 ) for the 10 bits

quantization when the inputs to our pseudo-softmax unit are 3 bits. The comparison of the MSE for the 10,000
patterns of the two methods applied to VGG-16 is illustrated in Fig. 7b. The histogram for23 is derived from the
figure in the paper and may not be very accurate.

Implementation results.  We implemented the pseudo-softmax architecture by using a 90 nm 1.0 V CMOS
standard-cell library. Since the standard-cell library is the same feature size than the one used in23, although the
vendors may be different, the comparison of the implementation results is sufficiently fair. The synthesis was
performed by using Synopsis Design Compiler. We considered 10 classes (N = 10) architectures.

(a) ResNet-50

0 2 4 6 8
MSE values 10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

(b) VGG-16

0 2 4 6
MSE values 10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

(c) VGG-19

0 2 6
10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

(d) InceptionV3

0 2 4 6
MSE values 10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

(e) MobileNetV2

0 2 4 6 8 10
MSE values 10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

4
MSE values

[23] results
Pseudo-softmax results

Figure 6.   (a) ResNet-50, (b) VGG-16, (c) VGG-19, (d) InceptionV3, (e) MobileNetV2 classification results.

(a) 8 and 10 bits wordlenght

0 2 4 6 8 10
MSE values 10-4

0

1000

2000

3000

4000

N
. o

f i
nf

er
en

ce
s

8 bits
10 bits

(b) 3 bits and 10 bits [23] wordlenght

0 2 4 6
MSE values 10-3

0

2000

4000

6000

8000

10000

N
. o

f i
nf

er
en

ce
s

3 bits
10 bits [23]

Figure 7.   VGG-16 classification results for different quantizations: (a) 8 bits and 10 bits, (b) 3 bits and 10 bits
of23.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

The first implementation of the pseudo-softmax unit is for a INT8 input and N = 10 architecture. The results
are reported in Fig. 8a. The input to output delay is 3.22 ns (the unit is not pipelined). The power dissipation is
evaluated at the maximum operating frequency of 310 MHz.

Based on the result of the quantization analysis, the second implementation is a pseudo-softmax unit with
3-bit inputs. This unit gives a similar MSE ∝ 10−3 as the unit in23.

The result of the comparison are displayed in Fig. 8b. For “Architecture in23”, we rewrote the values from
the paper for the fastest architecture identified as “Figure 2a”. The power dissipation was evaluated at 300 MHz.

By comparing the results in Fig. 8b, the delay is the same, the area of the pseudo-softmax is about 30% larger
than the unit in23, and the power is not really comparable because we do not have any info on the clock frequency
used to evaluate the power dissipation in23.

However, since the pseudo-softmax unit requires only 3-bit inputs for the same MSE, it is reasonable to
assume that the neural network driving it can be quantized at a narrower bitwidth and be significantly smaller
than a network producing 10-bit pis.

In Fig. 8c,d we provide the area and power dissipation for different INT8 and INT3 implementations, vary-
ing the number of inputs. We set the synthesis tool to a timing constraint of 100 MHz, which is the maximum
achievable frequency of the larger architecture (INT8, 32 inputs). The power dissipations were evaluated con-
sidering this frequency.

Except for the PWL reciprocal block, the hardware resources are strictly related to the number of inputs and
the quantization. Moreover, it can be observed how the area required for the I/O registers, the FLP adder tree,
and the array of subtractors, doubles when we double the number of inputs.

Discussion
In this paper, we proposed a pseudo-softmax approximation of the softmax function and its hardware archi-
tecture. The approximation error, measured by the MSE, is smaller than other softmax approximations recently
presented.

Moreover, the pseudo-softmax function follows the property of probability distributions and its output values
can be interpreted as probabilities.

Beside artificial NNs, the pseudo-softmax approximation method can be adapted to implement the Boltzmann
action selection policy used in Reinforcement Learning.

The pseudo-softmax architecture has been implemented in VHDL and synthesized in standard-cells. The
implementation results show that although the area of the pseudo-softmax unit is larger than the unit in23, its
reduced inputs bitwidth can lead to an area reduction of the driving NN.

In a future extension of this work, the pseudo-softmax architecture could be rearranged to work with serial
or mixed parallel–serial inputs. This would allow its hardware implementation in networks with a high number
of output classes.

Figure 8.   (a) Pseudo-softmax implementation results for a INT8, N = 10 classes architecture. (b) Pseudo-
softmax implementation results for a 3 bit quantized, N = 10 classes architecture, and comparison with23. (c)
Pseudo-softmax INT8 architectures implementation results for different number of inputs. (d) Pseudo-softmax
INT3 architectures implementation results for different number of inputs.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

Received: 30 April 2021; Accepted: 8 July 2021

References
	 1.	 Bishop, C. M. Pattern Recognition and Machine Learning, Chapter 2 (Springer, 2006).
	 2.	 Capra, M. et al. An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks. Future

Internet 12, 113 (2020).
	 3.	 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized neural networks: Training neural networks with low

precision weights and activations. J. Mach. Learn. Res. 18, 6869–6898 (2017).
	 4.	 Guo, K., Zeng, S., Yu, J., Wang, Y. & Yang, H. [dl] a survey of fpga-based neural network inference accelerators. ACM Trans.

Reconfigurable Technol. Syst. (TRETS) 12, 1–26 (2019).
	 5.	 Alwani, M., Chen, H., Ferdman, M. & Milder, P. Fused-layer CNN accelerators. in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 1–12 (IEEE, 2016).
	 6.	 Cardarilli, G. C. et al. A parallel hardware implementation for 2-D hierarchical clustering based on fuzzy logic. IEEE Trans. Circ.

Syst. II Express Briefs. 68, 1428–1432 (2021).
	 7.	 Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient processing of deep neural networks. Synth. Lect. Comput. Arch. 15, 1–341

(2020).
	 8.	 Anguita, D., Boni, A. & Ridella, S. A digital architecture for support vector machines: Theory, algorithm, and FPGA implementa-

tion. IEEE Trans. Neural Netw. 14, 993–1009 (2003).
	 9.	 Xilinx, Inc. Vitis AI User Guide—UG1414. Chapter 4, Version 1.3. (2021). https://​www.​xilinx.​com/​suppo​rt/​docum​entat​ion/​sw_​

manua​ls/​vitis_​ai/1_​3/​ug1414-​vitis-​ai.​pdf. Accessed 29 April 2021.
	10.	 The MathWorks, Inc. Deep Learning HDL ToolboxUser’s Guide, 1.1 edn. Chapter 7, Version 1.1. (2021). https://​it.​mathw​orks.​

com/​help/​pdf_​doc/​deep-​learn​ing-​hdl/​dlhdl_​ug.​pdf. Accessed 29 April 2021.
	11.	 Yuan, B. Efficient hardware architecture of softmax layer in deep neural network. in 2016 29th IEEE International System-on-Chip

Conference (SOCC), 323–326 (IEEE, 2016).
	12.	 Geng, X. et al. Hardware-aware softmax approximation for deep neural networks. in Asian Conference on Computer Vision, 107–122

(Springer, 2018).
	13.	 Li, Z. et al. Efficient fpga implementation of softmax function for DNN applications. in 2018 12th IEEE International Conference

on Anti-counterfeiting, Security, and Identification (ASID), 212–216 (IEEE, 2018).
	14.	 Volder, J. The cordic computing technique. in Papers Presented at the March 3–5, 1959, Western Joint Computer Conference, 257–261

(1959).
	15.	 Baptista, D., Mostafa, S. S., Pereira, L., Sousa, L. & Morgado-Dias, F. Implementation strategy of convolution neural networks on

field programmable gate arrays for appliance classification using the voltage and current (VI) trajectory. Energies 11, 2460 (2018).
	16.	 Wang, M., Lu, S., Zhu, D., Lin, J. & Wang, Z. A high-speed and low-complexity architecture for softmax function in deep learning.

in 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 223–226 (IEEE, 2018).
	17.	 Sun, Q. et al. A high speed softmax VLSI architecture based on basic-split. in 2018 14th IEEE International Conference on Solid-

State and Integrated Circuit Technology (ICSICT), 1–3 (IEEE, 2018).
	18.	 Hu, R., Tian, B., Yin, S. & Wei, S. Efficient hardware architecture of softmax layer in deep neural network. in 2018 IEEE 23rd

International Conference on Digital Signal Processing (DSP), 1–5 (IEEE, 2018).
	19.	 Du, G. et al. Efficient softmax hardware architecture for deep neural networks. in Proceedings of the 2019 on Great Lakes Symposium

on VLSI, 75–80 (2019).
	20.	 Kouretas, I. & Paliouras, V. Simplified hardware implementation of the softmax activation function. in 2019 8th International

Conference on Modern Circuits and Systems Technologies (MOCAST), 1–4 (IEEE, 2019).
	21.	 Wang, K.-Y., Huang, Y.-D., Ho, Y.-L. & Fang, W.-C. A customized convolutional neural network design using improved softmax

layer for real-time human emotion recognition. in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 102–106 (IEEE, 2019).

	22.	 Di Franco, F., Rametta, C., Russo, M. & Vaccaro, M. An hardware implementation of the softmax function on FPGA. In Proceedings
of the International Conference for Young Researchers in Informatics, Mathematics, and Engineering 2020 Vol. 2768 (ed. Wozniak,
M. C. G.) 21–25 (CEUR-WS, 2020).

	23.	 Kouretas, I. & Paliouras, V. Hardware implementation of a softmax-like function for deep learning. Technologies 8, 46 (2020).
	24.	 Patterson, D. A. & Hennessy, J. L. Computer Organization and Design MIPS Edition: The Hardware/Software Interface. Chapter 3

6th edn. (Morgan Kaufmann, 2020).
	25.	 Sutton, R. S. & Barto, A. G. Reinforcement Learning: An introduction (MIT Press, 2018).
	26.	 Cardarilli, G. et al. An action-selection policy generator for reinforcement learning hardware accelerators. Lect. Notes Electr. Eng.

738, 267–272 (2021).
	27.	 Spano, S. et al. An efficient hardware implementation of reinforcement learning: The q-learning algorithm. IEEE Access 7, 186340–

186351 (2019).
	28.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252. https://​doi.​org/​

10.​1007/​s11263-​015-​0816-y (2015).
	29.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 770–778 (2016).
	30.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

(2014).
	31.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826 (2016).
	32.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520 (2018).

Author contributions
G.C.C. supervised the research, the other authors contributed equally to this work.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_3/ug1414-vitis-ai.pdf
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_3/ug1414-vitis-ai.pdf
https://it.mathworks.com/help/pdf_doc/deep-learning-hdl/dlhdl_ug.pdf
https://it.mathworks.com/help/pdf_doc/deep-learning-hdl/dlhdl_ug.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
www.nature.com/reprints

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:15307 | https://doi.org/10.1038/s41598-021-94691-7

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021, corrected publication 2021

http://creativecommons.org/licenses/by/4.0/

	A pseudo-softmax function for hardware-based high speed image classification
	Pseudo-softmax function
	Hardware architecture.
	Floating-point adder tree.
	Piece-wise linear reciprocal block.
	Pseudo-Boltzmann architecture for reinforcement learning hardware accelerators.

	Results
	Approximation error analysis.
	Custom generated inputs.
	Convolutional Neural Networks benchmarks.
	Inputs quantization analysis.

	Implementation results.

	Discussion
	References

