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A pseudo‑softmax function 
for hardware‑based high speed 
image classification
Gian Carlo Cardarilli1, Luca Di Nunzio1,3, Rocco Fazzolari1,3, Daniele Giardino1,3, 
Alberto Nannarelli2,3, Marco Re1,3 & Sergio Spanò1,3*

In this work a novel architecture, named pseudo-softmax, to compute an approximated form of 
the softmax function is presented. This architecture can be fruitfully used in the last layer of Neural 
Networks and Convolutional Neural Networks for classification tasks, and in Reinforcement Learning 
hardware accelerators to compute the Boltzmann action-selection policy. The proposed pseudo-
softmax design, intended for efficient hardware implementation, exploits the typical integer 
quantization of hardware-based Neural Networks obtaining an accurate approximation of the result. 
In the paper, a detailed description of the architecture is given and an extensive analysis of the 
approximation error is performed by using both custom stimuli and real-world Convolutional Neural 
Networks inputs. The implementation results, based on CMOS standard-cell technology, compared to 
state-of-the-art architectures show reduced approximation errors.

The softmax function is one of the most important operators in the field of Machine Learning1. It is used in the 
last layer in classification Neural Networks (NN) and also in Convolutional Neural Networks (CNN) to normal-
ize the raw output of such systems.

The softmax function equation is:

where xi are the outputs of a machine learning network and i =, 1, . . . ,N  . In other words, the outputs of the 
network xi are processed to represent the probability of the inference output pi to belong to a certain class (Fig. 1).

In recent years, the literature proposed many hardware architectures for the inference process of NNs and 
CNNs both on ASIC and FPGA2–4, characterized by high speed and low power consumption. The optimization 
in the hardware architectures is obtained both by the use of approximation algorithms and by the integer quan-
tization of the arithmetic, usually by using 8 bits integers (INT8).

Unfortunately, the softmax function, unlike other operators used in Machine Learning5–8, cannot be easily 
implemented because of the exponential and division operators. Moreover, even off-the-shelf NN and CNN 
synthesis tools are not able to provide a hardware softmax implementation9,10, and the function is computed by 
using a standard software approach.

In this work, we introduce the pseudo-softmax architecture with the aim to allow for an efficient hardware 
implementation of the softmax layer in hardware implemented NNs and CNNs.

Different solutions for the hardware implementation of the softmax function can be found in the literature but, 
unfortunately, each work focuses on different aspects of the design process, making comparisons not too easy.

In the following, recent relevant work on the softmax function is summarized by highlighting the most 
innovative aspects of each work.

Yuan11 proposed an implementation that uses a logarithmic transformation to avoid the division, but no final 
conversion to the original domain is considered. The exponential operations are simply carried out via Look Up 
Tables (LUT). A comparison on the number of operations performed by a standard LUT-based divisor and his 
proposed method is given.

(1)pi =
exi

∑N
k=1 e

xk
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Geng et al.12 proposed two architectures that compute the exponential function both via LUT and linear 
approximation. The division is carried out by finding the closest power of 2, thus only shift operations are needed. 
The accuracy was tested on real CNNs and an ASIC implementation is presented.

Li et al.13 proved that LUT implementations for the exponential function are the best trade-off between pre-
cision and speed, if compared to Taylor’s series and CORDIC14 implementations. The division is performed by 
bit-shifting. They presented two serial implementations both in FPGA and ASIC giving data about clock speed 
and resources. No information is provided on the latency of the architecture.

Baptista et al.15 proposed a High Level Synthesis (HLS) FPGA implementation for a specific CNN application. 
The exponents of the softmax formula are split into integer and fractional parts. The integer parts are evaluated 
by using a ROM approach, while polynomial approximation is used for the fractional parts. The results are 
given as the global accuracy of the overall Machine Learning system, not focusing on the softmax computation.

Wang et al.16 proposed an interesting architecture that exploits the fact that every number can be split in 
integer and fractional part. The implementation avoids any straightforward division or exponential operation by 
using Leading One Detectors (LOD), bit shifters, and constant multipliers. The authors considered the output of 
their system correct if the difference with respect to the original softmax value lies below a given threshold. The 
architecture was implemented both on ASIC and FPGA and information about the clock frequency, hardware 
resources, power dissipation, and throughput are provided.

Sun et al.17 proposed a FPGA serial implementation that splits every exponential operation in more operations 
to reduce the size of each ROM. The division is carried out via bit-shifting. The authors provided information 
about the clock frequency, hardware resources, and power dissipation, but no data about the precision of the 
system is provided.

Hu et al.18 proposed their Integral Stochastic Computation (ISC) to evaluate the exponent operator. The 
division is avoided by a logarithmic transformation. No data about the precision of the system is provided. They 
implemented the architecture by using an FPGA but the maximum achievable clock frequency is not provided.

Du et al.19 proposed a tunable precision block for the exponentiation based on a variable number of LUTs. 
The architecture has been implemented both in ASIC and FPGA and data about clock frequency, hardware 
resources, and power dissipation are provided.

Kouretas and Paliouras20 implemented an approximated equation that takes into account only the exponents 
of the softmax formula and that replaces the summation with the highest input value. They compute the accu-
racy by using custom inputs and they show the hardware resources needed for an ASIC implementation of the 
architecture.

Wang et al.21 showed a CNN application that makes use of software-tunable softmax layer in terms of preci-
sion, but no detailed data about the softmax implementation is provided.

Di Franco et al.22 proposed a straightforward FPGA implementation of the softmax by using a linear inter-
polating LUT for the exponential function. No information about the accuracy is provided.

Kouretas and Paliouras23 extended their previous work20 by improving the accuracy analysis by using real-
world CNNs and by adding information about the ASIC implementation.

At the time of the writing, the work in23 can be considered the state-of-the-art in hardware implementations 
of the softmax function, and it will be used for comparisons in the following sections.

Pseudo‑softmax function
In order to simplify the computation of the softmax function in Eq. (1), we introduce a new approximated 
expression named pseudo-softmax:

in which the exponent base e is replaced by 2. An extensive analysis of the error introduced is discussed in the 
following section. As in the case of the softmax function, the summation of the pseudo-softmax outputs is always 
equal to one. Consequently, the values p̃i can be interpreted as probabilities.

As stated in the Introduction, the hardware implementations of NN systems make use of the integer quan-
tization, typically 8-bit integers (INT8). The reason of using powers of two 2xi in Eq. (2) is that the integer 

(2)p̃i =
2xi
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Figure 1.   Example of a three classes CNN: Cats, Dogs, and Horses.
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numbers xi can be interpreted as the exponent of floating-point (FLP) numbers, allowing for an efficient hardware 
implementation.

According to the conventional base-2 FLP representation, a positive number a is represented as:

where b is the integer exponent and c is the fractional mantissa. Consequently, the numerator in Eq. (2) can be 
considered as a number ai = 2xi , where b = xi and c = 0 , and Eq. (2) can be rewritten as

Similarly, for the denominator in Eq. (4), the sum can be rewritten as

and the pseudo-softmax function as

Substituting back ai = 2xi in Eq. (5), we obtain

that can be rewritten as

The expression Eq. (7) of the pseudo-softmax function shows that the output p̃i is a FLP number with expo-
nent (xi − expsum) , and with mantissa 1/(1 ·mantsum) , i.e., the reciprocal of the mantissa of the summation. The 
mantissa is common (constant) for all p̃i s, and it is only computed once.

Hardware architecture.  The pseudo-softmax function in Eq. (7) is implemented by using the hardware 
architecture shown in Fig. 2.

As stated in the Introduction, the 8-bit integers inputs xi with range [−128, 127] are interpreted as the expo-
nents of FLP numbers. The denominator of Eq. (7) is the mantissa of the FLP number sum. The outputs are 
unsigned FLP numbers

represented by using 17 bits: 9-bit exponent, and 8-bit fractional mantissa with implicit integer bit (always 1). 
The 9-bit exponent (unbiased) guarantees for overflows for maximum values xi = 127 and number of inputs 
N < 128 . There is no representation for zero, that can be determined by comparing p̃i to a sufficiently small 
threshold value. The negative exponent makes the floating-point number smaller than 1.0, but all output numbers 
are positive. Therefore, the sign bit is not necessary.

(3)a = 2b · 1 · c,

(4)p̃i =
ai∑N
k=1 ak

.

sum =

N∑

k=1

ak = 2expsum · 1 ·mantsum,

(5)p̃i =
ai

2expsum · 1 ·mantsum
.

(6)p̃i =
2xi

2expsum
·

1

1 ·mantsum
.

(7)p̃i = 2xi−expsum ·
1

1 ·mantsum
.

(8)p̃i = 2expouti · 1 ·mantout.
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Figure 2.   Pseudo-softmax function top level architecture.
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The unit in Fig.  2 is composed of three main blocks: a tree of FLP adders to compute 
sum = 2expsum · 1 ·mantsum ; a piece-wise linear (PWL) interpolation block to compute the reciprocal, and an 
array of integers subtractors computing (xi − expsum).

In the following subsections, more detail on the main blocks in Fig. 2 is given.
The wordlenght sizes in the circuits are represented in gray characters, thin arrows represent 1-bit signals.

Floating‑point adder tree.  We opted for a binary tree of FLP adders, that is modular and easy to design. If delay 
(for throughput) is problematic, the binary tree can be easily pipelined, after each adder, to meet the timing 
constraints.

The architecture of the FLP adder tree for N = 6 is shown in Fig. 3a.
The xi of Eq. (2) are the exponents of FLP numbers and their mantissas is 1.0.
The architecture of the FLP adder24 is shown in Fig. 3b. Since it operates on positive FLP numbers, its archi-

tecture is simplified.
First, the exponents difference d is computed to find the amount of shifting necessary for the alignment of the 

mantissas. The largest exponent is selected as the exponent of the result. The alignment is performed by a barrel 
shifter (block ≫ in Fig. 3b) by shifting d positions to the right the mantissa of the smallest number. If d ≥ 8 , 
the mantissa of the smallest number is flushed to zero, and no actual addition is performed. When d = 0 , same 
exponent, the addition of the normalized mantissas results in an overflow ( mant ≥ 2.0 ) and the result must be 
normalized by incrementing by one the exponent, and by dividing the mantissa by two, i.e., right-shifting the 
result 1 position (block ≫ 1).

An additional simplification is done for the FLP adder in the first level of the adder tree (Fig. 3c). Since, the 
input values xi are power of two’s numbers and their mantissas is 1.0, there is no need to swap the mantissas 
(identical) according to d. The barrel shifter is also simplified because its input is the constant 1.0. When d = 0 , 
i.e., xi = xj , the result of the addition of the two mantissas is mant = 2.0 (overflow). However, since the fractional 
bits are all zero, right-shifting is not necessary, and the normalization is done by incrementing the exponent of 
the result only.

Piece‑wise linear reciprocal block.  In the computation of the probabilities p̃i , the mantissa is common to all 
p̃i s, and consequently, a single reciprocal operation is sufficient. Moreover, because of the normalization, the 
mantissa is in the range [1, 2).

For the reciprocal y = 1/x , we opted for a piece-wise linear (PWL) polynomial approximation in two intervals

Figure 3.   (a) Example of 6 8-bit inputs FLP adder tree. (b) Architecture of a FLP adder. (c) Architecture of the 
optimized FLP adder used in the first level of the tree.
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The coefficients of the polynomials were chosen, by incremental refinements, as the closest to powers of two 
to simplify the hardware. By expressing in binary the coefficients of (9) and as powers of two, we have

The resulting reciprocal approximation unit is shown Fig. 4a.
Since the intervals in Eq. (10) are determined by mantsum being greater or smaller than 1.5, the MSB of the 

fractional part of the mantissa, bit with weight 2−1 , is used to select the interpolating polynomial.
Figure 4b shows the plots of y = 1/x and of the interpolating polynomials in [1.0, 2.0).
The reciprocal approximation error is obtained by exhaustive simulation in fixed-point. The maximum abso-

lute error is 0.03125 < 2−5 obtained for x = 1.0 (Fig. 4b), while the average error is 0.011151 < 2−7 . This is a 
good trade-off between error and hardware complexity (Fig. 4a).

Pseudo‑Boltzmann architecture for reinforcement learning hardware accelerators.  The proposed pseudo-soft-
max formula in Eq. (2) can be adapted to implement the Boltzmann action selection policy25 for Reinforcement 
Learning (RL) systems. The design of an efficient architecture would allow for such policy to be implemented in 
the state of the art of RL hardware accelerators26,27.

The formula of the Boltzmann policy is:

It is straightforward to see that Eq. (1) is a special case of Eq. (11) where the temperature coefficient τ = 1 
(Kelvin). In order to avoid the division operation by τ , we can consider a power of two approximation τ = 2T 
obtaining the pseudo-Boltzmann equation:

The corresponding hardware architecture is obtained with minor modifications of the pseudo-softmax archi-
tecture shown Fig. 2.

Results
In this section we provide extensive testings to analyze the precision of the proposed pseudo-softmax. An 
analysis on the quantization of the architecture is also provided. The Psedo-Softmax operator is compared to 
the hardware-based softmax design illutsrated in23. Then, we show the pseudo-softmax ASIC implementation 
results based on a 90 nm standard-cell CMOS technology. The results are given in terms of propagation delay, 
silicon area and power dissipation. Our results are compared with the implementation in23.

Approximation error analysis.  In order to validate the pseudo-softmax function, we performed extensive 
simulations using both custom inputs and real data from Convolutional Neural Networks (CNN). We also com-
pared our results with those obtained by the hardware-based softmax implementation described in23.

(9)ỹ =

{
1.59375− 0.625 · x if x < 1.5
1.125− 0.3125 · x if x ≥ 1.5

.

(10)ỹ =

{
1.10011|2 − x(2−1 + 2−3) if x < 1.5
1.00100|2 − x(2−2 + 2−4) if x ≥ 1.5

.

(11)Bi =
exi/τ

∑N
k=1 e

xk/τ
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Figure 4.   (a) Architecture of the PWL reciprocal block. (b) PWL reciprocal function for x in the range [1,2).
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To easily compare the simulation results with those of23, the performance is evaluated by computing the 
Mean Square Error (MSE)

Moreover, to be consistent with23, the tests were performed in floating-point by assuming quantized integer 
inputs.

Custom generated inputs.  One test consisted in applying random uniformly distributed inputs in the range 
[−2−7, 27 − 1] (INT8) to the pseudo-softmax module. The number of inputs N tested was in the range N =
[2,1000], being N the number of classes of a neural network. For every chosen N, we applied 10,000 random 
patterns to the system’s inputs xi.

The MSE as a function of the number of inputs N, is shown in Fig. 5a.
The plot shows that the MSE decreases as the number of inputs increases.
We now compare our pseudo-softmax function to the design shown in23 by using the same network param-

eters: 10-bit inputs an N = 30 . The input values in23 are chosen in such a way to push the softmax hardware in 
appropriate “corner cases”.

For the first test case, the input values xi are close to 5. These are shown in the second row of Figure 5b. The 
other rows in Fig. 5b display the values pi for the softmax function, p̂i for the softmax approximation of23, and 
p̃i for the pseudo-softmax.

Since the input values xi in Fig. 5b are close to each other, also the softmax values pi are rather close. The 
outputs p̂i are much larger and their sum is larger than 1, violating the principle that the softmax is a probability 
density function (PDF). In contrast, the outputs p̃i , preserve the features of PDFs and all values are close to pi.

The MSE value for p̃i is MSEp̃i = 2.7082× 10−4 , while MSEp̂i = 0.8502.
Figure 5c reports the results of the second test case using the same organization of Fig. 5b.
In this case, the first four inputs xi are significantly larger than the remaining xi < 1 . Also in this case, the sum 

of p̂i outputs is larger than 1, while the p̃i mantains a PDF behavior. However, the MSE of the approximation are 
almost the same, since MSEp̃i = 0.0019 and MSEp̂i = 0.0018.

Convolutional Neural Networks benchmarks.  The performance of the pseudo-softmax approximation algo-
rithm is also evaluated with real data using the set of tests performed in23 based on standard CNNs.

The test is based in the ImageNet dataset28 consisting in classifying 1000 images. The test is performed by 
10,000 inferences on the following networks: 

1.	 ResNet-5029,
2.	 VGG-1630,
3.	 VGG-1930,
4.	 InceptionV331,
5.	 MobileNetV232.

In Fig. 6 the histograms of the MSE are shown, overlapped with the error values obtained by23 in the same 
test sets. To be consistent with the comparison, all the networks have been quantized to 10 bits. The histograms 
for23 are derived from the figure in the paper and may not be very accurate.

All the MSE values lay in the range [0, 10× 10−4] . The results of the Pseudo-Softmax inference shows that 
this method is one order of magnitude better in approximation error than the method used in23.

(13)MSE =
1

n

∑(
y − ỹ
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.
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Figure 5.   (a) MSE of random uniformly distributed inputs vs number of inputs. (b) Inputs and outputs for test 
case n. 1; MSE comparison between23 and proposed architecture. (c) Inputs and outputs for test case n. 2; MSE 
comparison between23 and proposed architecture.
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Inputs quantization analysis.  As stated in the Introduction, typical hardware implementations of NNs are 
based on INT8 quantization. To see the impact of the NN quantization in the ImageNet test, the softmax MSE 
error histogram is evaluated while reducing the wordlenght of the inputs values xi . In Fig. 7a the MSE values for 
8 and 10 bits quantized VGG-16 networks are very similar. and therefore, Psuedo-Softmax architecture is quite 
insensitive for the quantization in that range of bits.

Similar results are obtained for the other tested networks.
By further reducing the input wordlenght, we obtain the minimum MSE achieved in23 ( 10−3 ) for the 10 bits 

quantization when the inputs to our pseudo-softmax unit are 3 bits. The comparison of the MSE for the 10,000 
patterns of the two methods applied to VGG-16 is illustrated in Fig. 7b. The histogram for23 is derived from the 
figure in the paper and may not be very accurate.

Implementation results.  We implemented the pseudo-softmax architecture by using a 90 nm 1.0 V CMOS 
standard-cell library. Since the standard-cell library is the same feature size than the one used in23, although the 
vendors may be different, the comparison of the implementation results is sufficiently fair. The synthesis was 
performed by using Synopsis Design Compiler. We considered 10 classes (N = 10) architectures.
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Figure 6.   (a) ResNet-50, (b) VGG-16, (c) VGG-19, (d) InceptionV3, (e) MobileNetV2 classification results.
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The first implementation of the pseudo-softmax unit is for a INT8 input and N = 10 architecture. The results 
are reported in Fig. 8a. The input to output delay is 3.22 ns (the unit is not pipelined). The power dissipation is 
evaluated at the maximum operating frequency of 310 MHz.

Based on the result of the quantization analysis, the second implementation is a pseudo-softmax unit with 
3-bit inputs. This unit gives a similar MSE ∝ 10−3 as the unit in23.

The result of the comparison are displayed in Fig. 8b. For “Architecture in23”, we rewrote the values from 
the paper for the fastest architecture identified as “Figure 2a”. The power dissipation was evaluated at 300 MHz.

By comparing the results in Fig. 8b, the delay is the same, the area of the pseudo-softmax is about 30% larger 
than the unit in23, and the power is not really comparable because we do not have any info on the clock frequency 
used to evaluate the power dissipation in23.

However, since the pseudo-softmax unit requires only 3-bit inputs for the same MSE, it is reasonable to 
assume that the neural network driving it can be quantized at a narrower bitwidth and be significantly smaller 
than a network producing 10-bit pis.

In Fig. 8c,d we provide the area and power dissipation for different INT8 and INT3 implementations, vary-
ing the number of inputs. We set the synthesis tool to a timing constraint of 100 MHz, which is the maximum 
achievable frequency of the larger architecture (INT8, 32 inputs). The power dissipations were evaluated con-
sidering this frequency.

Except for the PWL reciprocal block, the hardware resources are strictly related to the number of inputs and 
the quantization. Moreover, it can be observed how the area required for the I/O registers, the FLP adder tree, 
and the array of subtractors, doubles when we double the number of inputs.

Discussion
In this paper, we proposed a pseudo-softmax approximation of the softmax function and its hardware archi-
tecture. The approximation error, measured by the MSE, is smaller than other softmax approximations recently 
presented.

Moreover, the pseudo-softmax function follows the property of probability distributions and its output values 
can be interpreted as probabilities.

Beside artificial NNs, the pseudo-softmax approximation method can be adapted to implement the Boltzmann 
action selection policy used in Reinforcement Learning.

The pseudo-softmax architecture has been implemented in VHDL and synthesized in standard-cells. The 
implementation results show that although the area of the pseudo-softmax unit is larger than the unit in23, its 
reduced inputs bitwidth can lead to an area reduction of the driving NN.

In a future extension of this work, the pseudo-softmax architecture could be rearranged to work with serial 
or mixed parallel–serial inputs. This would allow its hardware implementation in networks with a high number 
of output classes.

Figure 8.   (a) Pseudo-softmax implementation results for a INT8, N = 10 classes architecture. (b) Pseudo-
softmax implementation results for a 3 bit quantized, N = 10 classes architecture, and comparison with23. (c) 
Pseudo-softmax INT8 architectures implementation results for different number of inputs. (d) Pseudo-softmax 
INT3 architectures implementation results for different number of inputs.
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