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INTRODUCTION 
 

Despite technological advances in diagnosis and 

treatment, gastric adenocarcinoma (GAC) remains the 
most frequently diagnosed type of malignant tumor in 

addition to it being the primary cause of cancer-related 

death worldwide [1]. The global 5-year survival rates 

remain unsatisfactory (~25–30%) [2], except for those 

in Japan and South Korea (>50%) [2]. Although some 

factors related to tumorigenesis and prognosis, 

including genes [3, 4] and the tumor microenvironment 
(TME), have been evaluated [5], it remains mostly 

unclear about the precise mechanisms and signaling 

pathways involved. There is an urgent need to get the 
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ABSTRACT 
 

Limited progress has been made in the treatment of gastric adenocarcinoma (GAC) in recent years, but the 
potential of immunotherapy in GAC is worthy of consideration. The purpose of this study was to develop a 
reliable, personalized signature based on immune genes to predict the prognosis of GAC. Here, we identified 
two groups of patients with significantly different prognoses by performing unsupervised clustering analysis of 
The Cancer Genome Atlas (TCGA) database based on 881 immune genes. The immune signature was 
constructed with a training set composed of 350 GAC samples from the TCGA and subsequently validated with 
431 samples from GSE84437, 432 samples from GSE26253, and 145 GAC samples from real-time quantitative 
reverse transcription polymerase chain reaction data. This classification system can also be used to predict 
prognosis in different clinical subgroups. Further analysis suggested that high-risk patients were characterized 
by low immune scores, distinctive immune cell proportions, different immune checkpoint profiles, and a low 
tumor mutational burden. Ultimately, the signature was identified as an independent prognostic factor. In 
general, the signature can accurately predict recurrence and overall survival in patients with GAC and may 
serve as a powerful prognostic tool to further optimize cancer immunotherapy. 
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novel molecular biomarkers which have the ability in 

precisely indicating the stage of the disease progression 

and also predicting clinical results. 

 

Traditional treatments for GAC include surgery, 

radiotherapy and chemotherapy. With the progress of 

medical technology, targeted therapy, angiogenic 

therapy and immunotherapy have become new 

treatments in addition to traditional therapy. As a new 

type of tumor therapy, immunotherapy has great 

potential in clinical application. Immunotherapy can 

achieve anti-tumor effect by acting on the patient's 

own immune system. With the continuous 

development of immunotherapy, its application in 

GAC has become a research hotspot. The emergence 

of non-specific immune enhancer therapy, immune 

checkpoint inhibitor therapy, adoptive immune cell 

therapy, oncolytic virus and tumor vaccine therapy 

have brought more choices and hopes to patients with 

GAC. Promoting the combined use of immunotherapy 

and other treatments, expanding the adaptation 

population and reducing adverse reactions can benefit 

more patients [6]. Immune-related genes are those 

genes identified through research that are significantly 

related to individual or partial pathways of immune 

response. In addition to screening the immune related 

genes which generate an effect on the prognosis, 

exploring the correlation among the immune cells, 

immune scores and immune checkpoints also has a 

certain clinical significance for the immunotherapy of 

GAC [7]. 

 

A comprehensive analysis in terms of the immune genes 

and TME in GAC and the development of a prognostic 

signature based on the immune gene sets (IBPS) for 

GAC can improve clinical risk stratification in patients 

with GAC and allow possible biotherapy targets to be 

explored. In the present study, we integrated 894 GAC 

patients with overall survival (OS) data and 432 patients 

who had recurrence-free survival (RFS) data from 5 

independent cohorts, including a dataset from The 

Cancer Genome Atlas (TCGA), GSE84433, GSE84426, 

GSE26253, and 145 frozen tissue samples, for a 

purpose of developing and validating a novel 

individualized IBPS. We also performed an 

investigation as to the pathological characteristics, 

immune landscape, and also the landscape of somatic 

mutations in the signature. 

 

RESULTS 
 

For the entire analysis process of this study, please see 

Figure 1. And for the clinicopathological data obtained 

from the TCGA, GSE84437, GSE26253, and the 

quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) datasets, please see Table 1. 

Immune genes were remarkably correlated with 

prognosis 

 

First, we merged the two datasets GSE84433 and 

GSE84426 and removed the batch effect 

(Supplementary Figure 1A). Then screen the matching 

IRGs in the TCGA, GSE84437 and ImmPort databases 

(Supplementary Figure 1B), and based on the 881 

differentially expressed IRGs, patients in the TCGA 

were classified into two groups by unsupervised 

clustering (Figure 2A, 2C, 2D). Prognostic analysis 

showed that compared with cluster-2, cluster-1 had 

more advantages in survival (Figure 2B). 

 

Differential expression analysis 

 

We conducted a differential expression analysis as to 

the GAC and normal specimens from the TCGA 

(Supplementary Figure 1C) before we ultimately 

obtained 378 differentially expressed IRGs. 

 

The IBPS composed of 9 IRGs could effectively 

evaluate prognosis in the TCGA cohort 

 

Through a univariate Cox survival analysis, there were 

43 IRG with P < 0.05 chosen from 378 IRG for follow-

up analysis (Figure 3A). Figure 3B indicated that via 

the least absolute shrinkage and selector operator 

(LASSO) regression analysis, there were 9 IRGs 

identified (“lambda.min” criteria). The results of 

multivariate COX analysis of the 9 IRGs are shown in 

Supplementary Table 2. Ultimately, 9 IRGs predictive 

of GAC patient survival, namely, ADM, APOD, 

CXCR4, ITGAV, NRP1, RFX5, STC1, TAP1, and 

ZC3HAV1, were identified. The formula of the IBPS 

was calculated: risk score = (0.0622 × exp of ADM) + 

(0.0771 × exp of APOD) + (0.1335 × exp of CXCR4) + 

(0.2369 × exp of ITGAV) + (0.0968 × exp of NRP1) - 

(0.2405 × exp of RFX5) + (0.0531 × exp of STC1) - 

(0.0892 × exp of TAP1) - (0.5188 × exp of 

ZC3HAV1). Via taking the median risk score as the 

cut-off point, a division of the patients in the training 

set into high-risk group and low-risk group was 

conducted (Supplementary Figure 3A). The expression 

levels of the 9 IRGs are shown in Supplementary 

Figure 2. The patients in the low-risk group had a 

significantly better OS than the high-risk group (Figure 

4B). Besides, there was an analysis of the receiver 

operating characteristic (ROC) performed, for an 

evaluation of the IBPS's prediction of the survival in 

terms of its accuracy (Figure 4A). The results suggest 

that there is an area of 0.736 (3 years) and 0.827 (5 

years), under the curve (AUC value) of IBPS, 
respectively, which is larger than the AUC value  

of the system of the TNM pathological staging 

(Supplementary Figure 4E). 
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The IBPS could effectively evaluate prognosis in the 

GSE84437 cohort 

 

In order to validate the robustness of IBPS, we also 

analyze it with GSE84437 dataset (n = 431). The results 

suggest that it can also predict the prognosis in 

GSE84437 (Supplementary Figures 3B, 4C, 4D). 

 

The IBPS could effectively evaluate prognosis in 

different clinical subgroups 

 

In general, patients in the low-risk group had better OS 

than those in the high-risk group according to different 

pathological stages (Supplementary Figure 4A–4C). In 

the stage IV subgroup (P = 0.19) (Supplementary Figure 

4D), we could clearly see the same trend, but it was not 

statistically significant, potentially due to insufficient 

sample sizes. 

Although the pathological stage is one of the factors 

that most influences survival of GAC, other factors, 

such as age, grade, sex, and major histological 

phenotype, are also contributors [8]; therefore, we 

grouped the GAC patients in the TCGA training cohort 

according to the above clinical features. According to 

the results, in all subgroups (older (aged ≥ 62) and 

younger (aged < 62), grade 2 and grade 3, males and 

females, and intestinal type and diffuse type), the low 

risk groups had better OS than the high risk groups 

(Supplementary Figure 5, P < 0.05). Predictably, 

validation of these results was observed in the 

GSE84437 dataset (Supplementary Figure 6). 

Additionally, the WHO provides detailed descriptions 

of histological features and classifies GAC into tubular, 

papillary, mucinous (MUC), mixed, and signet ring cell 

(SRC) types. We analyzed the performance of the IBPS 

among these subtypes. The results showed a notable 

 

 
 

Figure 1. Entire analytical process of this study. 
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Table 1. Clinical information on patients in the training dataset, internal validation dataset and entire validation 
dataset. 

Characteristic 
Training dataset 

TCGA-STAD (n=350) 

Validation dataset 

GSE84437 (n=431) 

Validation dataset 

GSE26253 (n=432) 

Independent 

dataset (n=145) 

Age (y)     

<62 150 213 - 53 

≥62 197 218 - 59 

Not available 3 - - - 

Sex     

Male 226 294 - 85 

Female 124 137 - 27 

Survival status     

Alive (no recurrence) 208 224 255 67 

Dead (recurrence) 142 207 177 45 

pT stage     

T1 (T1; T1a; T1b) 16 (5; 2; 9) 11 - 15 (0; 10; 5) 

T2 (T2; T2a; T2b) 74 (55; 7; 12) 38 - 14 

T3 161 92 - 2 

T4 (T4; T4a; T4b) 95 (28; 45; 22) 290 - 81 (0; 48; 33) 

TX 4 - - - 

pN stage     

N0 103 80 - 47 

N1 93 187 - 37 

N2 72 132 - 24 

N3 (N3; N3a; N3b) 71 (25; 40; 6) 32 - 4 

NX 11 - - - 

M     

M0 312 - - 106 

M1 23 - - 6 

Not available 15 - - - 

AJCC stage     

Stage I (I; IA; IB) 46 (1; 12; 33) - 68 26 (0; 15; 11) 

Stage II (II; IIA; IIB) 110 (27; 34; 49) - 167 19 (0; 4; 15) 

Stage III (III; IIIA; IIIB; IIIC) 145 (3; 58; 51; 33) - 111 (IIIA); 19 (IIIB) 61 (0; 37; 23; 1) 

Stage IV 35 - 67 6 

Not available 14 - - - 

Grade     

1 9 - - 6 

2 125 - - 29 

3 207 - - 77 

Not available 9 - - - 

Histological type     

Signet ring cell type 11 - - - 

Diffuse type 61 - - - 

Mucinous type 19 - - - 

Papillary type 5 - - - 

Tubular type 67 - - - 

NOS 187 - - - 

 

concentration of the SRC type in high-risk scores group 

(Supplementary Figure 7A). Among patients with the 

tubular, MUC or papillary subtype, there was 

significantly shorter OS observed in the high-risk 

patients compared with the low-risk patients 

(Supplementary Figure 7B–7D, P < 0.05). Besides, 

among all GAC patients who received chemotherapy, 

there was longer OS time observed in the patients in the 
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low risk groups compared with the high risk groups 

(Supplementary Figure 7E, P < 0.0001). According to 

the results presented in Supplementary Figure 7F, 7G, 

there was significantly worse chemotherapy effect 

observed in the patients with high risk score (3-year OS 

rate: 35%) compared with the patients with low risk 

score (3-year OS rate: 70%). 

 

The IBPS could effectively evaluate prognosis in the 

GSE26253 cohort 

 

For an exploration of whether the IBPS can equally 

work in prediction of the RFS outcome of GAC 

patients, a similar analysis was performed for the 

GSE26253 cohort (n = 432, Supplementary Figure 8A, 

8B). The results showed that the IBPS could effectively 

evaluate the RFS outcome of GAC patients. Besides, we 

observed that the RFS duration of patients with 

advanced-stage disease was significantly shorter than 

that of patients with early-stage disease (Supplementary 

Figure 8C). It is worth noting that in pathological stage 

I and stage II subgroups, better RFS was seen in the 

patients in the low-risk groups compared with the high-

risk groups (Supplementary Figure 8D, 8E, P <0.01). 

 

The IBPS could effectively evaluate prognosis in the 

qRT-PCR group 

 

For a validation of the IBPS in terms of its robustness, 

we conducted the same analysis with the qRT-PCR 

validation cohort (n = 145) (Figure 5A, 5B). The AUCs 

for the prediction of 3- and 4-year survival by the IBPS 

reached 0.769 and 0.831, respectively (Figure 5C), 

which were larger compared to the system of the 

traditional TNM pathological staging (Figure 5D, 5E). 

Furthermore, when applied to subcategories of patients 

with GAC in different pathological stages at the time of 

diagnosis and other different clinical subgroups, the risk 

score was predictive of significantly different OS 

outcomes (Supplementary Figure 9, P < 0.05). We 

compared the expression of 9 IRGs in gastric cancer 

tissues to their corresponding normal tissues (Figure 

5F). We also compared the differential expression of 9 

IRGs between the two groups (Figure 5G). 

 

 
 

Figure 2. Unsupervised clustering analysis of 881 IRGs. (A, D, E) Classification of the TCGA-STAD cohort into two groups. (C) Landscape 
of the expression of 881 IRGs in the TCGA-STAD cohort. (B) Kaplan-Meier OS curves in the training cohort based on clusters. 
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Patients in the High-risk group had the below 

features, namely, low immune scores, distinctive 

immune cell proportions, and different immune 

checkpoint profiles 

 

To explore the potential mechanism between the IBPS 

and OS in GAC patients, we performed multiple 

analyses related to the immune profile. The stromal, 

immune, and ESTIMATE scores showed significant 

differences between the two groups (Supplementary 

Figure 10A, 10B). Kaplan-Meier analysis of data on 

GAC patients in the TCGA cohort showed that different 

stromal and ESTIMATE scores produced differential 

OS outcomes (Supplementary Figure 10C, 10E). And, 

we obtained similar results in the GSE84437 cohort 

(Supplementary Figure 10D, 10F). 

 

Since there was a close relation of the risk score with 

the immune infiltration score, we analyzed the high-risk 

group and the low-risk group in terms of their 

 

 
 

Figure 3. Identification of prognostic immune-related genes in GAC. (A) Univariate Cox regression analysis revealed 43 immune-

related genes significantly associated with OS. (B) LASSO regression analysis was performed to screen the most useful prognostic genes. 
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differences in immune cell infiltration and immune 

checkpoints. The results obtained from the TCGA and 

Gene Expression Omnibus (GEO) datasets are shown in 

Supplementary Figure 11A. M1 macrophages, M0 

macrophages, memory CD4 T cells, M2 macrophages, 

and CD8 T cells constituted a large proportion of the 

GAC-infiltrating immune cells. Besides, the two group 

showed most of the differential immune cells, which 

were predominantly M1 macrophages, monocytes, CD8 

T cells, follicular helper T cells, memory CD4 T cells, 

and M2 macrophages (Supplementary Figure 11B, 

11C). Furthermore, as observed, the 9 IRGs had a 

Pearson correlation with varied immune cells 

(Supplementary Figure 12). We also compared the 

differences in 49 immune checkpoints, and the results 

obtained from the TCGA and GEO datasets are shown 

in Supplementary Figure 13A, 13B, respectively. 

Overall, the expression of VTCN1, ENTPD1, and FGL1 

was obviously upregulated while that of LGALS9 was 

dramatically downregulated in the high-risk group of 

patients in both cohorts (Supplementary Figure 14, P < 

0.05). Besides, good correlations were observed 

between the 9 IRGS and various differentially 

expressed immune checkpoints, especially those for 

TAP1 and CXCR4 (Supplementary Figure 15). 

 

Patients in the High-risk group were characterized 

with a low tumor mutational burden (TMB) 

 

Then, we used the maftools software package to analyze 

the difference in the distribution of somatic mutations 

between the low-risk score group and the high-risk 

score group in the TCGA-STAD cohort. Supplementary 

Figure 16A shows the top 30 gene mutations in the 

TCGA-STAD cohort. The top 30 gene mutations in the 

high-risk score group and the low-risk score group are 

shown in Figure 6A, 6B, respectively. Somatic 

mutations were altered in 355 of 427 samples (83.14%). 

The well-known oncogenes TP53, ERBB2, EGFR, 

FGFR2, MET, and KRAS [9] in GAC were altered in 

182 of 427 samples (42.62%) (Supplementary Figure 

16B), especially TP53 (Figure 6C, 6D). Kaplan-Meier 

 

 
 

Figure 4. Application of the IBPS in predicting the survival of GAC patients. Kaplan‐Meier survival curves of the hub RNAs in the 

ceRNA network. (A) ROC curve analysis of the immune-related gene signature for the prediction of OS at 1, 2, 3, 4, and 5 years in the TCGA 
cohort; (B) Kaplan-Meier curves of OS in all GAC patients in the TCGA cohort based on the risk score; (C) ROC curve analysis of the immune-
related gene signature and TNM stage for the prediction of OS at 3 years in the TCGA cohort; (D) ROC curve analysis of the immune-related 
gene signature for the prediction of OS at 1, 2, 3, 4, and 5 years in the GEO cohort; (E) Kaplan-Meier curves of OS in all GAC patients in the 
GEO cohort based on the risk score; (F) ROC curve analysis of the immune-related gene signature and TNM stage for the prediction of OS at 5 
years in the TCGA cohort. 
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curve analysis suggests that patients with a high TMB 

have significantly better OS than patients with a low 

TMB (Figure 6E). And there was lower TMB observed 

in the high risk score group compared to the low risk 

score group (P < 0.0001, Figure 6F). What's more, the 

high TMB group had lower risk scores compared to the 

low TMB group (Figure 6G). Besides, we explored that 

the mutational rates of the 9 IRGs in the IBPS were 

very low (Supplementary Figure 16C), supporting their 

use as diagnostic or prognostic biomarkers. 

 

The IBPS is an independent risk factor for GAC 

patients 

 

Through univariate and multivariate Cox regression 

analysis of various clinical factors in the TCGA cohort 

(Table 2), we screened out the independent prognostic 

risk factors such as age, histological type, TNM stage, 

IBPS and so on. The specific variables significantly 

related to survival included age > 62 years (hazard 

ratio (HR)=1.89, P< 0.001), the MUC type (HR=0.25, 

P= 0.02), stage IV (HR=3.86, P=0.0005), stage III 

(HR=2.28, P=0.017), and a rising risk score (HR=2.31, 

P<0.0001). Besides, the results obtained from the 

GSE84437 cohort confirmed the value of the IBPS for 

OS (P = 0.0037) in GAC patients (Table 3). 

Additionally, Supplementary Table 3 showed that the 

IBPS was also an independent risk factor for RFS 

(P=0.0300). As expected, there were similar results 

observed in the qRT-PCR cohort (Supplementary 

Table 4). 

 

In addition, an investigation was performed as to the 

IBPS in terms of its comprehensive prognostic value in 

 

 
 

Figure 5. Validation of the prognostic performance of the immune-related gene signature in an independent group based on 
145 frozen tissues. (A) Distribution of the risk score, survival status, and gene expression panel. (B) Kaplan-Meier curves of OS in all GAC 
patients based on the risk score. (C) ROC curve analysis of the immune-related gene signature for the prediction of OS at 2, 3, and 4 years in 
the independent cohort. (D) ROC curve analysis for the prediction of OS at 3 years in an independent cohort based on multiple clinical 
features. (E) ROC curve analysis for the prediction of OS at 4 years in an independent cohort based on multiple clinical features. (G) The 
expression of 9 immune genes in gastric cancer tissues and their corresponding normal tissues. (F) We also compared the differential 
expression of 9 immune genes between the high- and low-risk groups. 
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all groups by prognostic meta-analysis (n = 893). 

According to the results, the IBPS was a significant risk 

factor for OS in GAC patients (combined HR = 2.218, 

95% CI = 1.804–2.727, P < 0.0001) (Supplementary 

Figure 17). 

 

Multiple immune and tumor-related pathways 

associated with the IBPS 

 

GSEA identified 20 significant KEGG pathways 

associated with the risk score, including cell adhesion 

molecules (CAMs), the MAPK signaling pathway, 

DNA replication, nucleotide excision repair, the cell 

cycle, cytokine-receptor interaction, the P53 signaling 

pathway, mismatch repair, ECM-receptor interaction, 

and pathways in cancer (Supplementary Figure 18). 

 

DISCUSSION 
 

GAC accounts for approximately 95% of the 

histological types of all malignant tumors that originate 

in the stomach. Although patients with early-stage GAC 

(stage I) have a five-year survival rate of 95% [10], the 

median survival time of patients with advanced-stage 

GAC, which cannot be treated by surgery, is 

approximately 9-10 months [11]. It is urgently 

necessary to find out reliable early screening methods 

for identifying early GAC. In this study, we performed 

 

 
 

Figure 6. Tumor somatic mutational landscape of the IBPS. (A) The top 35 gene mutations in the high-risk score group. (B) The top 35 
gene mutations in the low-risk score group. (C, D) Mutations in the commonly mutated genes TP53, ERBB2, EGFR, FGFR2, MET, and KRAS in 
the high-risk and low-risk score groups, respectively. (E) Kaplan-Meier curves of OS in all GAC patients based on TMB. (F) Difference in TMB 
between the high- and low-risk groups. (G) Difference in risk scores between the high and low TMB groups. 
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Table 2. Univariable and multivariable Cox regression analyses of the IBPS and correlations with OS 
in the TCGA cohort. 

Variable 

Overall survival 

Univariate Cox  Multivariate Cox 

p value HR 95% CI  p value HR 95% CI 

Age        

  ≥62 vs <62 0.0075 1.6050 1.1350-2.2700  0.0009 1.8900 1.2976-2.7528 

Sex        

  Male vs Female 0.1760 1.2780 0.8954-1.8250  0.4200 1.1630 0.8055-1.6800 

Histological type        

  NOS        

  Signet ring cell type 0.0565 2.0307 0.9806-4.2054  0.6783 1.1780 0.5438-2.5505 

  Diffuse type 0.2685 0.7689 0.4827-1.2247  0.1812 0.7087 0.4278-1.1741 

  Mucinous type 0.0152 0.2395 0.0755-0.7592  0.0206 0.2520 0.0785-0.8094 

  Papillary type 0.5446 1.4284 0.4507-4.5277  0.1640 2.4470 0.6940-8.6276 

  Tubular type 0.2558 0.7702 0.4910-1.2083  0.7323 0.9184 0.5640-1.4957 

TNM stage        

  I         

  II 0.1857 1.5830 0.8017-3.1280  0.1553 1.6560 0.8260-3.3188 

  III 0.0144 2.2300 1.1734-4.2380  0.0170 2.2790 1.1584-4.4817 

  IV 0.0004 3.6980 1.7921-7.6310  0.0005 3.8550 1.7978-8.2680 

  NA 0.0002 5.1930 2.1954-12.2840  0.0008 4.7050 1.9007-11.6448 

Grade        

  1        

  2 0.4690 1.6870 0.4097-6.9480  0.2812 2.2500 0.5148-9.8341 

  3 0.2910 2.1300 0.5240-8.6590  0.1229 3.2190 0.7289-14.2170 

  NA 0.2280 2.8420 0.5201-15.5360  0.0662 5.4690 0.8923-33.5155 

Risk score        

  Increasing <0.0001 2.4650 1.7420-3.4880  <0.0001 2.3050 1.5836-3.3562 

IBPS, immune gene set-based prognostic signature; HR, hazard ratio; CI, confidence interval.  

an unsupervised clustering analysis of 350 GAC 

patients from the TCGA before we made a confirmation 

that there was a remarkable correlation of the immune 

genes with the OS. Nine immune genes (ADM, APOD, 

CXCR4, ITGAV, NRP1, RFX5, STC1, TAP1, and 

ZC3HAV1) were applied to construct a prognostic 

signature for GAC. The 431 GAC patients in the 

GSE84437 cohort were used to validate the stability of 

the IBPS. To avoid false positives in sequencing data, 

another verification was performed based on the qRT-

PCR results of 145 frozen tissue samples from GAC 

patients, confirming our previous findings and 

evaluating the utility of this signature in the Chinese 

population. In addition, by analyzing the GSE26253 

dataset, we identified that the combination of IRGs can 

also be used to accurately predict recurrence in GAC 

patients. We found a report that established a signature 

of GAC based on immune cells and related genes [12], 

but compared with previous signatures, our signature 

has some novelty: (1) The ability of our signature (AUC 

= 0.827) in predicting the 5-year OS rate of patients 

with GAC is higher than that of Qiu et al [13] (AUC = 

0.761), Peng [14] (AUC = 0.737), Yang [15] (AUC = 

0.802), and Peng [16] (AUC = 0.728). (2) Our signature 

can accurately predict survival and recurrence at the 

same time. (3) The signature includes only 9 immune 

genes instead of 14 [17], making it easier for us to 

implement our model. (4) A validation cohort based on 

the qRT-PCR was employed for ensuring the robustness 

of our signature, and all the immune genes contained in 

the signature were confirmed by qRT-PCR to be 

significantly differentially expressed in GAC and 

corresponding normal tissues, which further confirms 

the accuracy of our signature. (5) We found little 

research on TAP1 and APOD in the context of GAC. 

These molecules may serve as therapeutic targets for 

gastric cancer. 

 

Besides, for different Patients with various stages of 

GAC, their immune statuses are different. Their 
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Table 3. Univariable and multivariable Cox regression analyses of the IBPS and correlations 
with OS in the GSE84437 cohort. 

Variable 

Overall survival 

Univariate Cox  Multivariate Cox 

p value HR 95% CI  p value HR 95% CI 

Age        

≥62 vs <62 0.0022 1.5387 1.1670-2.0290  0.0007 1.6171 1.2235-2.1370 

Sex        

Male vs Female 0.1660 1.2395 0.9151-1.6790  0.2367 1.2038 0.8854-1.6370 

T stage        

1        

2 0.9463 0.9474 0.1968-4.5610  0.7378 0.7624 0.1577-3.7330 

3 0.1904 2.5859 0.6238-10.7200  0.4621 1.7180 0.4016-7.2680 

4 0.0547 3.9247 0.9729-15.8330  0.2187 2.4322 0.5900-10.0260 

N stage        

0        

1 0.1020 1.4487 0.9287-2.2600  0.2378 1.3131 0.8354-2.0640 

2 <0.0001 2.9315 1.8826-4.5650  0.0004 2.2971 1.4547-3.6270 

3 <0.0001 3.7702 2.1294-6.6750  0.0027 2.4691 1.3683-4.4550 

Risk score        

Increasing <0.0001 1.8140 1.3730-2.3970  0.0037 1.5264 1.1474-2.0310 

IBPS, immune gene set-based prognostic signature; HR, hazard ratio; CI, confidence interval. 

responses to immunotherapy are different, too [18] we 

identified that the ability of IBPS to predict the 

prognosis of GAC is independent of pathological stage. 

Histological phenotypes and tumor differentiation grade 

are closely associated with prognosis and the tumor 

immune microenvironment [18]. As expected, the IBPS 

performed stably in all differentiation/grade subgroups 

and tumor subtypes. Additionally, we analyzed the 

performance of the IBPS among the histological 

subtypes of GAC, which include mixed, papillary, 

MAC, tubular, and SRC types [8]. In all subtypes 

except for SRC, there was significantly better OS 

observed in the low-risk group compared with the high-

risk group. According to reports, there were shorter OS 

times observed in the patients with the SRC and MAC 

subtypes compared to those with the other subtypes 

 [19, 20]. Interestingly, as we observed, there was 

significantly lower average risk score in the GAC 

patients with the SRC and MAC subtypes compared to 

the GAC patients with the other two subtypes, possibly 

confirming our signature in terms of its favorable 

prognostic value. Moreover, in the qRT-PCR cohort, the 

IBPS was used to perform an accurate risk stratification 

among the four subtypes of GAC (Supplementary 

Figure 19). In addition, the patients with high risk score 

(3-year OS rate was 35%) had significantly worse 
chemotherapy effect compared to the patients with low 

risk score (3-year OS rate was 70%). In order to better 

guide immunotherapy, we applied this signature to the 

data of skin melanoma in TCGA to test its efficacy. 

According to the results, there was worse 

immunotherapeutic effect on cutaneous melanoma 

patients with high risk scores compared to those with 

low risk scores (5-year OS: 51% vs 85%, 

Supplementary Figure 20B), and the AUC of the 

signature for predicting the 3-year survival of patients 

who received immunotherapy reached as high as 0.877 

(Supplementary Figure 20A). Besides, we found that in 

the anti-CTLA-4 immunosuppressive therapy cohort 

(GSE63557) and the anti-MAGE-A3 immuno-

suppressive therapy cohort (GSE35640), the non-

responders to immunotherapy had significantly higher 

risk scores compared to the responders (Supplementary 

Figure 20C, 20D). This signature may have great 

significance in guiding stratified treatment in the clinic. 

The intensity of treatment can be adjusted down for 

low-risk patients, who should consider adjuvant 

immunotherapy and chemotherapy before and after 

surgery. There is a need for the high-risk patients to 

think about surgical total resection more actively and 

undergo frequent checkups to monitor recurrence and 

allow any further treatment to be carried out promptly. 

 

Age and sex also work on the prognosis of GAC patients 

[21]. The incidence of GAC is approximately two times 
higher in men than in women [22]. Compared with male 

patients, female patients with gastric cancer (GC) were 

found to be significantly younger. The signature had a 
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convincingly well performance in all subgroups. These 

findings further convince us on our signature's ability in 

identifying high-risk patients in any clinical subgroup of 

GAC patients and better guide clinical treatment. 

 

VTCN1, ENTPD1, and FGL1 levels were obviously 

upregulated while the LGALS9 level was dramatically 

downregulated in the high-risk group of patients. 

VTCN1, also called B7-H4, is a vital immune 

checkpoint molecule, and a member of the B7 family 

[23]. B7-H4 may promote gastric cancer progression by 

inhibiting the antitumor immune response. Cai et al 

found that the overexpression of ENTPD1 in patients 

with GAC predicted a poor outcome [24]. Research has 

also shown that fibrinogen-like-protein 1 (FGL1) 

expression is upregulated in GC tissues and that OS is 

significantly shorter in patients with high FGL1 

expression compared to those with low FGL1 

expression. In addition, in vitro tests have shown that 

FGL1 promotes the invasion and metastasis of gastric 

cancer cells [25]. Upregulation of LGALS9, also known 

as galectin-9, can inhibit cell invasion, migration, and 

epithelial–mesenchymal transition (EMT) in intestinal-

type gastric cancer [26]. According to this study, 

combinations of immune genes may activate or inhibit 

the development of GAC by inhibiting or increasing the 

expression of these immune checkpoints. To further 

verify this possibility, we performed a correlation 

analysis of 9 IRGs and immune checkpoints in each 

cohort. The results showed a strong correlation between 

the IRGS and immune checkpoints, especially TAP1 

and CXCR4. 

 

There have been a large number of studies on a variety 

of tumors showing that patients with a high TMB tend 

to enjoy good survival rates [27]. In the present study, 

patients with a high TMB have significantly better OS 

than patients with a low TMB. And there was lower 

TMB seen in the high-risk score group compared to the 

low-risk score group. As observed, most of the genes in 

the IBPS were involved in tumor immune 

microenvironment remodeling and tumor progression 

[23, 28–32]. Previous studies have demonstrated that 

CXCR4 can contribute to EMT, migration, and 

invasion in gastric cancer through immune and 

inflammatory pathways [33]. Both TAP1 and APOD 

are closely related to antitumor immunity, and studies 

have shown that TAP1 plays an important role in a 

variety of cancers [34–36]. It is worth noting that 

research on TAP1 and APOD in the context of GAC is 

lacking, and thus, these molecules require further 

exploration. 

 
Overall, this study offers new insights into the 

correlation of the immunotherapy with GAC, which 

could better guide the clinical treatment of GAC. 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

Training sets, including the mRNA expression profiles 

with FPKM format of GAC specimens and the 

corresponding clinical follow-up data, were downloaded 

from the TCGA (https://portal.gdc.cancer.gov/) database. 

The data employed in this study were in line with the 

below criteria: (1) mRNAs with nonzero expression levels 

accounted for 75% of all samples; and (2) the patients had 

exact follow-up times. After excluding 24 patients with an 

OS time of 0, 5 without OS data, and 64 without RNA 

expression matrix information, a total of 350 gastric 

cancer patients remained. Thirty-two normal gastric 

specimens from the TCGA database were also included. 

 

The GSE84437 and GSE26253 datasets, which were 

regarded as the validation cohort, were downloaded 

from the GEO (https://www.ncbi.nlm.nih.gov/gds/) 

database and were first log2 transformed and quantile 

normalized. The GSE84437 dataset consists of the two 

subsets GSE84433 and GSE84426. The combination 

function of R software package "SVA" is used for 

eliminating the batch effect when combining GSE84433 

and GSE84426 data sets. After excluding 2 patients 

with an OS time of 0, 431 GAC specimens were 

ultimately included. The GSE26253 dataset contains 

432 GAC patients with RFS data. 

 

In addition, 145 samples were obtained from 

pathologically confirmed GAC patients between June 

2012 and August 2014 at the Colorectal Surgery 

Department of National Cancer Center. 

 

We retrieved and downloaded the IRG list from the 

ImmPort database (https://immport.niaid.nih.gov). 

 

Unsupervised clustering analysis of IRGs in the TCGA 

 

We use the mRNA matrix data downloaded from the 

TCGA and GEO databases and the IRGS to intersect. 

The patients were analyzed by unsupervised cluster 

analysis according to the expression of IRGS. The 

consistent clustering algorithms were adopted for 

determining the clusters in terms of their quantity and 

stability [37]. We performed the above analysis using 

the ConsensusClusterPlus package [38] and repeated the 

analysis for 1000 times for ensuring the classification 

stability. 

 

Differential analysis 

 

The edgeR package [39] was used to analyze the 

difference in coincident IRGs in 350 gastric cancer 

tissues and 32 normal tissues from the TCGA. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://immport.niaid.nih.gov/
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Evaluation of prognosis by IBPS 

 

We use R packages "glmnet," "survminer," and 

"survival." to perform the univariate and multivariate 

COX regression analysis. The ROC curves and the 

corresponding AUC were generated with the R package 

“survivalROC”. 

 

Exploration of the relationships between the IBPS 

and immunity or the TME 

 

The immune score of each sample was determined by 

R software using estimation algorithm, and the 

difference of immune score between high risk group 

and low risk group was further compared with 

Wilcoxon test [40]. The proportion of 22 immune cell 

subtypes was evaluated by CIBERSORT software 

package according to the expression profile [41]. The 

difference of immunocyte subtypes between high-risk 

and low-risk groups was analyzed by Mann-Whitney 

U test. 49 immune checkpoint included the B7-CD28 

family (TMIGD2, CD274 (PD-L1), ICOS, PD-1, B7-

H3, CTLA4, PD-L2, ICOSLG, and HHLA2) [20, 42], 

the TNF superfamily (CD40LG, TNFRSF18, 

TNFRSF4, TNFSF4, TNFRSF25, TNFRSF14, CD27, 

TNFRSF8, CD40, TNFSF15, TNFSF14, TNFSF9, 

TNFRSF9, TNFSF18, and CD70) [43], and  

several other immune checkpoint members  

(CD244, CD44, IDO1, CD160, IDO1, TIGIT,  

CD200, KIR3DL1, LAG3, LAIR1, CD80, CD28,  

NRP1, NCR3, CD48, ENTPD1, FGL1,  

HAVCR2, BTNL2, CD86, IDO1, IDO2, and 

ADORA2A)) [44–46]. 

 

GSEA 

 

Based on the software GSEA v4.0.3, we performed 

GSEA (http://www.broadinstitute.org/gsea). We input 

the expression profile of the mRNAs, group of samples, 

and enriched background file. 
 

qRT-PCR 

 

The extraction, reverse transcription and amplification 

of RNA refer to the methods in our previous study [47]. 

Supplementary Table 1 provides the primers used in this 

study. 

 

Statistical analysis 

 

Correlation coefficients between TME-infiltrating 

immune cells, immune checkpoints, and the 

expression of IRGs were computed by Pearson 
analyses. One-way ANOVA and Kruskal–Wallis tests 

were used to assess differences between three or more 

groups [48, 49]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Data processing and screening differences IRGS between stomach adenocarcinoma and para-
carcinoma tissues. (A) The boxplot shows that we have merged the two datasets GSE84433 and GSE84426 and removed the batch effect. 
Then, as the Venn diagram shows, IRGS coincident in the TCGA, GSE84437, and ImmPort databases were screened. (B) The difference 
analysis was performed in the TCGA gastric adenocarcinoma and normal specimens. (C) Red indicates high expression and blue indicates low 
expression. 
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Supplementary Figure 2. Different expression of immune genes in high- and low-risk groups in TCGA and GSE84437 cohort. 
(A) TCGA dataset. (B) GSE84437 dataset. *, **, *** and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively. 
 

 
 

Supplementary Figure 3. The distribution of risk score, survival status, and gene expression panel. Correlation between the 

prognostic signature and the overall survival of patients in the TCGA (A) and GEO (B) cohort. The distribution of risk scores (upper), survival 
time (middle), and IRGS expression levels (lower). The black dotted lines represent the median risk score cut-off dividing patients into low- 
and high-risk score groups. The red dots and lines represent the patients in the high-score groups. The green dots and lines represent the 
patients in the low-score groups. 
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Supplementary Figure 4. Kaplan-Meier curves of OS in different stages (A–D) of GAC based on risk score, respectively. 
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Supplementary Figure 5. Kaplan-Meier curves of OS in the different clinical subtype of GAC based on risk score, respectively. 
(A–C) Kaplan-Meier curves of OS in different grades of differentiation of GAC based on risk score, respectively. (D, E) Kaplan-Meier curves of 
OS in different histological phenotypes of GAC based on risk score, respectively. (F, G) Kaplan-Meier curves of OS in different age of GAC 
based on risk score, respectively. (H, I) Kaplan-Meier curves of OS in different sex of GAC based on risk score, respectively. 
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Supplementary Figure 6. Survival analysis of all GAC patients stratified by gender and age in the GSE84437 cohort. Kaplan-
Meier curves of OS in female (A), male (B), younger (C), and older (D) patients based on risk score in GAC population. 
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Supplementary Figure 7. Survival analysis of all GAC patients stratified by different histological phenotypes (A–D) of WHO standards in the 

TCGA cohort. The effect of chemotherapy is different between high and low risk groups (E–G). 
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Supplementary Figure 8. Validation of the prognostic performance of immune related gene signature in GSE26253. (A) the 
distribution of risk score, recurrence status, and gene expression panel. The distribution of signature scores (top), recurrence time (middle), 
and gene expression levels (bottom). The black dotted lines represent the median risk score cut-off dividing patients into the low- and high-
risk groups. The red dots and lines represent the patients in the high-score group. The green dots and lines represent the patients in the low-
score group. (B) Kaplan-Meier curves of RFS in all GAC patients based on the risk score. (C) Kaplan-Meier curves of RFS in all GAC patients 
based on stage. (D) Kaplan-Meier curves of RFS in stage I GAC patients based on the risk score. (E) Kaplan-Meier curves of RFS in stage II GAC 
patients based on the risk score. 
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Supplementary Figure 9. Survival analysis of all GAC patients stratified by stage (A–D), grade (E–G), gender (H, I), and age (J, K) in the 

independent cohort. 
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Supplementary Figure 10. The relationship between immune immersion scores and risk scores and prognosis. (A, B) 
Differences in the stromal, immune, and ESTIMATE score between high and low risk groups in TCGA and GSE84437 cohorts, respectively.  
(C–F) Impact of stromal, immune, and ESTIMATE score on overall survival of GAC based on KM analysis in TCGA and GSE84437 cohorts, 
respectively. *, **, *** and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively. 
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Supplementary Figure 11. The relationship between risk score and immune cell expression in GAC. (A) estimated immune cell 

expression in TCGA and GSE84437, respectively. Different expression of immune cells in high- and low-risk groups in TCGA (B) and GSE84437 
(C), respectively. *, **, *** and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively. 
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Supplementary Figure 12. The Pearson correlation coefficients of 9 IRGS with various differential expressed immune cells in 
TCGA and GSE84437 cohort. (A) TCGA dataset. (B) GSE84437 dataset. *, **, *** and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 
0.0001, respectively. 

 

 
 

Supplementary Figure 13. The expression profile of costimulatory/coinhibitory immune checkpoints landscape in TCGA and 
GSE84437, respectively. (A) TCGA; (B) GSE84437. 
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Supplementary Figure 14. Different expression of immune checkpoints in high- and low-risk groups in TCGA and GSE84437, 
respectively. (A) TCGA dataset. (B) GSE84437 dataset. *, **, *** and **** represent p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, 

respectively. 
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Supplementary Figure 15. The Pearson correlation coefficients of 9 IRGS with various differential expressed immune 
checkpoints in TCGA and GSE84437 cohort. (A) TCGA dataset. (B) GSE84437 dataset. *, **, *** and **** represent p < 0.05, p < 0.01, p 

< 0.001 and p < 0.0001, respectively. 

 

 
 

Supplementary Figure 16. Tumor somatic mutation landscape of the IBPS. (A) The top 30 of gene mutations in the TCGA-STAD 
cohort. (B) The mutations of the commonly mutant genes TP53, ERBB2, EGFR, FGFR2, MET, and KRAS in the TCGA-COAD cohort. (C) The 
mutation landscape of the 9 IGRs in IBPS. 
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Supplementary Figure 17. Prognostic meta-analysis among three cohorts. 

 

 
 

Supplementary Figure 18. GSEA (A–D). ES, enrichment score; NES, normalized enrichment score; P, P-value; FDR, adjusted P-value. 
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Supplementary Figure 19. Survival analysis of all GAC patients stratified by in different molecular sub-types in the 
independent cohort. (A) Kaplan–Meier curves of overall survival in patients with MSI in the independent cohort. (B) Kaplan–Meier curves 

of overall survival in patients with the chromosome unstable (CIN) type in the independent cohort. (C) Kaplan–Meier curves of overall 
survival in patients with the genomic stable (GS) type in the independent cohort. (D) Kaplan–Meier curves of overall survival in patients with 
EBV in the independent cohort. 
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Supplementary Figure 20. Application of signature in immunotherapy. (A) Receiver operating characteristic (ROC) curves for 

signature in the TCGA-SKCM cohort. (B) Kaplan–Meier curves of overall survival of patients treated with immunotherapy in TCGA-SKCM 
cohort. (C) Risk score in patients with response (blue) versus those without response(red) (Wilcoxon P =4.3e-05) to anti-CTLA-4 treatment. (D) 
Risk score in patients with response (blue) versus those without response(red) (Wilcoxon P =1.2e-05) to anti-MAGE-A3 treatment.2. 
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Supplementary Tables 
 

Supplementary Table 1. Primer sequences for qRT-PCR. 

Gene name Forward primer Reverse primer bp 

ADM 5'- TGGGTTCGCTCGCCTTCCTAG-3' 3'- ACATCCGCAGTTCCCTCTTCCC-5' 114 

APOD 5'- TGCTGCTGCTGCTGCTTTCC-3' 3'- ACCGGAGGATTGGGGCACTTC-5' 91 

CXCR4 5'- ACCTCTACAGCAGTGTCCTCATCC-3' 3'- GATCCAGACGCCAACATAGACCAC-5' 131 

ITGAV 5'- TGTGGCTGTCGGAGATTTCAATGG-3' 3'- TTCCCAAAGTCCTTGCTGCTCTTG -5' 80 

NRP1 5'- CTCCCGCCTGAACTACCCTGAG -3' 3'- CCCGACAGCCGTGACAAAGC-5' 106 

RFX5 5'- CACCTGGAAGAGCACACTGACAC -3' 3'- GGCGGCAACAGGCAAGACTC -5' 91 

STC1 5'- CCATGAGGCGGAGCAGAATGAC -3' 3'- GCCGACCTGTAGAGCACTGTTG -5' 106 

TAP1 5'- TACCGCCTTCGTTGTCAGTTATGC -3' 3'- GAAGCCGACGCACAGGGTTTC -5' 119 

ZC3HAV1 5'- AGGCTCGTCCAAGGCTACTGATC -3' 3'- AGGTCCTCTTGACTGCCGTTCTC -5' 87 

GAPDH 5'- GAAAGCCTGCCGGTGACTAA -3' 3'- GCCCAATACGACCAAATCAGAG -5' 150 

qRT-PCR, quantitative real-time polymerase chain reaction. 

Supplementary Table 2. The 9 genes in prognostic model in TCGA 
cohort. 

 β HR lower .95 upper .95 z Pr (>|z|) 

ADM 0.0622 1.0642 0.9079 1.2473 0.4428 

APOD 0.0771 1.0801 0.9939 1.1739 0.0695 

CXCR4 0.1335 1.1428 0.9603 1.3598 0.1326 

ITGAV 0.2369 1.2674 0.9774 1.6434 0.0739 

NRP1 0.0968 1.1016 0.8458 1.4347 0.4730 

RFX5 -0.2405 0.7862 0.5410 1.1426 0.2073 

STC1 0.0531 1.0546 0.8820 1.2609 0.5601 

TAP1 -0.0892 0.9147 0.7624 1.0974 0.3371 

ZC3HAV1 -0.5188 0.2146 0.3908 0.9066 0.0157 

 

Supplementary Table 3. Univariable and multivariable Cox regression analysis of IBPS 
and characteristics with RFS in GSE26253 cohort. 

Variable 

Recurrence free survival 

Univariate cox  Multivariate cox 

p value HR 95%CI  p value HR 95%CI 

TNM stage        

IB         

II 0.0097 2.5480 1.2540-5.1770  0.0117 2.4890 1.2249-5.0590 

IIIA <0.0001 5.1090 2.5280-10.3240  <0.0001 4.8790 2.4104-9.8740 

IIIB <0.0001 6.5320 2.7510-15.5090  <0.0001 5.7740 2.4119-13.8230 

IV <0.0001 9.0410 4.4290-18.4560  <0.0001 8.5870 4.1984-17.5630 

Risk score        

Increasing 0.0027 1.5840 1.1730-2.1400  0.0310 1.3520 1.1020-1.8340 

IBPS, immune gene set-based prognostic signature; HR, hazard ratio; CI, confidence interval. 
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Supplementary Table 4. Univariable and multivariable Cox regression analysis of IBPS and 
characteristics with OS in independent cohort. 

Variable 

Overall survival 

Univariate cox  Multivariate cox 

p value HR 95%CI  p value HR 95%CI 

Age        

≥62 VS <62 0.3390 1.2900 0.7138-2.3320  0.6621 1.1447 0.6244-2.0980 

Sex        

Male VS Female 0.8730 1.0590 0.5232-2.1440  0.6137 0.8244 0.3894-1.7450 

TNM stage        

I         

II 0.6696 1.3100 0.3791-4.5250  0.7762 1.1974 0.3457-4.1470 

III 0.0183 3.1480 1.2144-8.1610  0.0794 2.3727 0.9053-6.2310 

IV <0.0001 57.4890 15.4370-214.1000  <0.0001 50.6699 12.1610-211.1100 

Grade        

1        

2 0.4270 1.3520 0.6429-2.8420  0.4571 1.3361 0.6226-2.8670 

3 0.2600 1.5230 0.7326-3.1670  0.3546 1.4539 0.6583-3.2110 

Risk score        

Increasing <0.0001 6.2300 2.8860-13.4500  <0.0001 6.0282 2.6909-13.5040 

IBPS, immune gene set-based prognostic signature; HR, hazard ratio; CI, confidence interval. 


