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Abstract 
The continuous monitoring of vital signs is a crucial aspect of medical care in neonatal intensive care units. Since cable-based 
sensors pose a potential risk for the immature skin of preterm infants, unobtrusive monitoring techniques using camera sys-
tems are increasingly investigated. The combination of deep learning–based algorithms and camera modalities such as RGB 
and infrared thermography can improve the development of cable-free methods for the extraction of vital parameters. In this 
study, a real-time approach for local extraction of temperatures on the body surface of neonates using a multi-modal clinical 
dataset was implemented. Therefore, a trained deep learning–based keypoint detector was used for body landmark predic-
tion in RGB. Image registration was conducted to transfer the RGB points to the corresponding thermographic recordings. 
These landmarks were used to extract the body surface temperature in various regions to determine the central-peripheral 
temperature difference. A validation of the keypoint detector showed a mean average precision of 0.82. The registration 
resulted in mean absolute errors of 16.4 px (8.2 mm) for x and 22.4 px (11.2 mm) for y. The evaluation of the temperature 
extraction revealed a mean absolute error of 0.55 ◦ C. A final performance of 31 fps was observed on the NVIDIA Jetson 
Xavier NX module, which proves real-time capability on an embedded GPU system. As a result, the approach can perform 
real-time temperature extraction on a low-cost GPU module.

Keywords Camera fusion · Deep learning · Infrared thermography · Neonatal intensive care unit

1 Introduction

Prematurity is the leading cause of death for children under 
the age of 5 years and shows increasing rates on a global 
scale. From the 15 million premature infants born every 

year, approx. one million children die due to various com-
plications of preterm birth [1], although three-quarters of 
these deaths could be prevented by proper neonatal care 
[2]. On a neonatal intensive care unit (NICU), immature 
patients receive medical care in an incubator, which offers a 
protected environment regarding temperature, humidity, and 
oxygen concentration. Furthermore, the health condition of 
the infant is monitored by measuring key vital signs such as 
heart rate (HR), respiration rate, temperature, and oxygen 
saturation. Therefore, clinical surveillance systems enable 
the diagnosis of complications, which can be a result of an 
immature organ system: Neonates, especially if born pre-
term, are highly susceptible to infections. As a result, infec-
tion remains one of the leading causes of mortality and mor-
bidity in early human life. The clinical picture in postnatal 
neonatal sepsis presents as systemic inflammatory response 
syndrome (SIRS), with a consecutive shock and rapid dete-
rioration of ventilation, circulation, and metabolism [3]. 
Although a crucial early detection of sepsis remains a chal-
lenge due to a subtle disease progression, infection-typical 
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symptoms such as a central-peripheral temperature differ-
ence (cpTD) offer potential to support the diagnosis [4].

Today, patient monitoring is conducted using adhesive 
sensors, which require direct contact with the patient’s skin. 
Although the cable-based vital sign measurement is a cru-
cial aspect of neonatal care, the attached electrocardiogram 
electrodes, temperature probes, and the pulse oximeter cuff 
can cause discomfort and stress for the infant. They can also 
lead to side effects such as medical adhesive-related skin 
injuries, which result in wounds and infections [5]. To over-
come these disadvantages and potential vital risks for the 
development of neonates, camera-based techniques provide 
an approach for unobtrusive monitoring. While sensitive 
CMOS cameras can be used to monitor heart rate [6] and 
respiration [7], an infrared thermography (IRT) device can 
be applied to measure the surface temperature distribution 
of a patient [8, 9]. Furthermore, the combination of several 
CMOS cameras and IRT devices (camera fusion) increases 
the number of simultaneously monitored vital signs and 
could improve the quality of specific signals due to redun-
dant measurements.

The automatic and robust camera-based measurements 
of vital signs require advanced algorithms to extract regions 
in an image, which can be used for unobtrusive monitoring. 
However, classical approaches for head detection or body 
part segmentation in multi-modal datasets reach their limits 
due to great computational effort and strong dependencies 
on the recording conditions. Over the past years, the pro-
gress in the fields of deep learning (DL) and GPU computing 
facilitated the application of high-performing models, which 
are robust and real-time feasible. However, due to the lack of 
public neonatal image datasets, the availability of pre-trained 
models is crucial for algorithmic development. Furthermore, 
the fine-tuning of pre-trained approaches (transfer-learning) 
for multi-modal data can potentially improve camera-based 
monitoring by applying the results of a prediction from 
one modality to another. For instance, the availability of 
RGB datasets and pre-trained models for detection or seg-
mentation is much bigger than for the IRT modality, so the 
thermographic analysis could be improved by applying the 
RGB results to IRT images. This could be used for improved 
measurement of temperature distribution in thermograms, 
using an RGB-based DL model to predict locations on the 
skin and transform them into the IRT domain. Despite their 
potential, those approaches require image registration for 
proper analysis. Nevertheless, such techniques have not 
yet been covered in the literature on neonatal unobtrusive 
monitoring.

In this paper, a DL-based approach for temperature moni-
toring of neonates in a NICU using a multi-camera system is 
presented. A transfer-learned keypoint detector was used for 
the prediction of body landmarks in an RGB dataset, which 
was recorded in a clinical environment. After an image 

registration step, the transformation of the RGB landmarks 
to the IRT frames was performed, so the body surface tem-
perature was extracted in regions-of-interest (ROIs) around 
the detected body points. Subsequently, the cpTD on the 
body surface was computed. In a final step, a performance 
analysis was conducted to analyze the real-time capability 
of the algorithm on embedded GPU modules.

2  Related works

Since the very first camera-based measurement of dermal 
perfusion changes in 2000 [10], different modalities have 
been evaluated by many research groups [11]. Besides a 
large range of mono-modal approaches in the literature, the 
amount of studies in the field of camera fusion for neonatal 
monitoring has increased recently. In 2014, Cattani et al. 
used a multi-camera setup and maximum-likelihood detec-
tion for seizure prediction in neonatal patients [12]. While 
Lorato et al. used three low-cost IRT devices to improve 
the camera-based respiration extraction in 2020 [13], Paul 
et al. combined several (near infrared) monochrome and 
RGB cameras to evaluate the signal quality for monitoring 
the neonatal pulse rate [14]. In 2021, Lorato et al. published 
a multi-modal approach for respiration monitoring in infants 
using a combination of thermal and RGB videos [15]. Since 
camera fusion uses multi-modal data and therefore requires 
image registration, several approaches were investigated to 
relate RGB and IRT images. Here, the mutual information 
(MI) criterion (see Section 4.2) proved to be a suitable met-
ric of image matching to implement a registration method. 
Although MI is widely used for image registration of e.g. 
radiological data, it can be sensitive to outliers, which are 
visible in one of the two images. It also suffers from local 
and biased maxima [16]. While several techniques for robust 
MI-based image registration were published for intensity 
nonuniformity [17] and for time-shifted MRI recordings 
[18], the incidence of unmatchable outliers was expected 
to be low for the neonatal RGB/IRT dataset, because time-
synchronous images with similar viewing angles were 
registered.

In recent years, novel DL-based approaches showed 
potential to improve camera-based vital sign measurement. 
In 2019, Villarroel et al. published a DL-based algorithm to 
automatically segment skin areas of an infant and estimate 
vital signs only when the patient was present in the field 
of view [19]. Furthermore, in 2019, Chaichulee et al. used 
convolutional neural networks (CNNs) for cardio-respiratory 
signal extraction from RGB video recordings [20]. In the 
same year, Ornek et al. applied a CNN to IRT data to detect 
the health status of neonates [21]. In 2020, Navaneeth et al. 
published an approach to classify respiratory diseases in 
infants using a DL model in thermal imaging [22] and in 
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2021, Ervural et al. applied CNNs for a classification of 
neonatal diseases in thermograms [23]. Recently, Khanam 
et al. published an article where the DL-based object detec-
tor YOLOv3 was applied for the extraction of heart rate and 
respiration [24].

While the described literature was focused on neonatal 
applications, further research was recently conducted in 
the field of ROI tracking and signal fusion for vital signs 
extraction for adult data. In 2019, Pursche et al. analyzed the 
improvement of signal quality of camera-based HR monitor-
ing from human faces using CNN-based ROI tracking [25]. 
In 2021, Kurihara et al. published a method for non-contact 
HR estimation using adaptive fusion of RGB and near-infra-
red images based on the analysis of background illumination 
variations [26]. Furthermore, Liu et al. proposed a multi-
modal quasi-contactless sensor based on RGB images and 
a ballistocardiogram for HR measurement under extreme 
facial poses and large-motion disturbances using a novel 
landmark-based approach for a facial ROI [27].

Next to DL-based object detectors and computationally 
complex segmentation algorithms, the extraction of body 
landmarks using keypoint detection approaches is becoming 
more popular due to high accuracy and performance. These 
detectors are used to locate body parts and joints and there-
fore can support the extraction of ROIs for unobtrusive vital 
sign measurements. In 2017, Cao et al. introduced CMU-
Pose for real-time multi-person 2D body pose estimation 
(BPE) [28], which was further developed and published as 
the already well-known OpenPose algorithm in 2019 [29]. 
The features are analyzed by a multi-stage CNN to generate 
confidence maps (CMaps) and part affinity fields (PAFs) in 
RGB images. A CMap is a 2D representation of the likeli-
hood that a particular body part can be located in any given 
pixel. A PAF is a set of 2D vector fields, which encodes the 
degree of association between body parts of different people 
in an image [28]. In contrast to top-down approaches, which 
first detect a person and then detect the keypoints, Cao et al. 
used a bottom-up approach to find keypoints first to form 
the person skeleton. Therefore, the detection performance 
is independent of the number of people present in the image.

Since OpenPose was released, research groups have 
applied it to RGB images for neonatal motion analysis [31, 
32] and posture detection [33]. In this work, the keypoint 
detector was used in combination with multi-modal images 
for temperature monitoring of neonates.

3  Materials and methods

3.1  Experimental setup and dataset

The multi-modal dataset for this study was recorded in 
the NICU of Saveetha Medical College and Hospital, 

Chennai, India, while the trials were approved by the insti-
tutional ethics committee of Saveetha University (SMC/
IEC/2018/03/067). Written informed consent was obtained 
from the parents of all patients. In total, the study included 
19 stable patients with gestational ages at birth between 29 
and 40 weeks. The ages varied from 37 h to 56 days post-
birth and their weights ranged from 1500 to 3010 g. All 
infants were recorded with a multi-camera setup, which was 
equipped with the IRT camera VarioCAM HD head 820 S 
(InfraTec, Germany), an RGB camera of type Grasshop-
per 3 GS3-U3-23S6C-C (FLIR, USA), and a monochrome 
camera of type Grasshopper 3 GS3-U3-23S6M-C (FLIR, 
USA). The monochrome device was equipped with a green 
interference filter for unobtrusive heart rate measurement. 
However, these recordings will not be used in this work 
and are only mentioned for completeness. The temperature 
measurements were conducted with 1,024 × 768 IR pixels 
(16-bit), a temporal resolution of 10 Hz, and a thermal sensi-
tivity of 20 mK. Furthermore, the RGB and MONO cameras 
recorded at 60 Hz with a resolution of 1,920 × 1,200 pix-
els (12-bit) using fixed focal length lenses of type Fujinon 
CF12.5HA-1 (Fujifilm, Japan). All cameras were attached 
to a 3-mm-thin aluminum base plate. Four OLED panels 
of type Keuka warm white (OLEDWorks, Germany) were 
mounted on the base plate using self-designed 3D-printed 
acrylonitrile-butadiene-styrol (ABS) frames — printed with 
a Prusa i3 MK3S (Prusa, Czech Republic) — for a patient-
friendly illumination from several directions. The advan-
tages of using OLEDs instead of LEDs were described in 
[34]. The recordings were conducted in a dark environment 
using only OLED light illumination.

As illustrated in Fig. 1a, the cameras were arranged in 
a triangular formation. The setup was attached to a stable 
stand, which was positioned in a window-free room. The 
neonates were placed next to the setup in an open incubator 
with an attached radiant warmer. A Radical-7 pulse oximeter 
(Masimo, USA) was used to record reference data for HR and 
oxygen saturation. The infants were recorded for a length of 
10 min. The measurement setup is depicted in Fig. 1b.

Eighteen of all 19 patients were in a supine position dur-
ing the measurements. Since one patient was in a prone 
position and removed from the incubator several times for 
medical care, the data of this specific neonate was excluded 
from training and validation. A dataset was created from all 
RGB recordings by randomly sampling 150 frames from 
every patient to train and validate the DL-based keypoint 
detector. As shown in Table 1, this resulted in a dataset of 
2,700 RGB images (DL dataset).

In Fig. 2, an overview of the DL-based algorithm and the 
use of the described datasets are presented. The RGB-trained 
keypoint detector should be applied to IRT recordings for 
temperature extraction. Therefore, an additional subset of 
data was created termed cpTD dataset. It consists of 20 
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randomly selected RGB frames and 20 corresponding IRT 
frames per subject.

3.2  Data preprocessing

For the transfer learning step, a pre-trained keypoint detec-
tor was adapted to the neonatal RGB dataset. Therefore, the 
sampled images from the DL dataset (see Table 1) needed 
to be labeled with body landmarks: the ground truth (GT) 
keypoint labeling was performed using the tool “COCO 
Annotator” [35], which is a web-based image annotation tool 

from Brooks et al. to export annotations in the well-known 
Microsoft Common Objects in Context (COCO) format 
[36]. In each frame, the following 17 person keypoints were 
labeled (if available): nose, left eye, right eye, left ear, right 
ear, left shoulder, right shoulder, left elbow, right elbow, left 
wrist, right wrist, left hip, right hip, left knee, right knee, left 
ankle, right ankle.

Since the evaluation step of COCO datasets requires GT 
keypoints and the area of the detected subject, a patient mask 
was annotated in the frames. A labeled example with the 
patient mask, all keypoints, and corresponding point connec-
tions, which show the body pose of the patient, is illustrated 
in Fig. 3.

As the approach used in this work further predicted the 
neck location, this keypoint was added using the center of 
both shoulder points. In addition to the labeling of the RGB 
frames for training and validation of the DL approach, the 
IRT dataset and the corresponding RGB images (see cpTD 
Dataset in Table 1) were annotated for performance analysis 
of the later conducted keypoint transformation and measure-
ment of GT body surface temperature.

3.3  Keypoint detection

In this work, the NVIDIA AI IOT project trt_pose was used, 
which enables a real-time BPE in RGB images on embedded 
GPUs in Python by applying the NVIDIA tool TensorRT 
(NVIDIA, USA) [37]. With TensorRT, trained neural net-
works can be optimized to maximize performance for infer-
ence deployment. The trt_pose architecture is based on the 
model structures of both CMU-Pose and OpenPose and was 
optimized by NVIDIA for real-time applications.

In contrast to CMU-Pose (see Section 2), trt_pose adapted 
the model architecture. Since Xiao et al. proposed residual 
neural networks (ResNets, [38]) as a superior network archi-
tecture to extract image features for pose estimation [39], 
a ResNet-18 backbone instead of the initial VGG-19 lay-
ers was used. Furthermore, the architecture was adapted 

Fig. 1  a Patient view of the 
camera setup modified from 
[34]. b Recording setup at a 
radiant warmer in the NICU

Radiant Warmer

Trigger Box

OLED Modules

Camera System

Patient

Incubator

Stand

Patient Monitor

b)

OLED Panel

Aluminium Plate

Camera Hole

3D-printed ABS Parts RGB Camera
MONO Camera
IRT CameraStand

a)

Table 1  Dataset sampling for training and evaluation

Usage Modality Patients Images Total

DL dataset RGB 18 150 2,700
cpTD dataset RGB 18 20 360

IRT 18 20 360

Transfer Learning for

Keypoint Detector

Keypoint Detection 

in RGB

Image Registration +

Point Transformation

cpTD Extraction

in IRT 

cpTD Dataset RGB

cpTD Dataset IRT

DL Dataset

Fig. 2  Overview of the dataset usage for the DL-based approach
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from NVIDIA according to the OpenPose model: instead 
of using a two-branch multi-stage CNN where the stages 
in both branches were interconnected, the interdependen-
cies were removed and both the CMap and PAF branches 
were adapted. Therefore, deconvolutional layers were added 
in both branches as upsampling stages to generate high-
resolution feature maps as proposed in [39]. Subsequently, 
convolutional layers generate the keypoints and connections 
of body parts, which were passed into a greedy algorithm 
written in C++ to receive the body pose. The associations 
between localized body parts and the assignment of these 
parts to a unique person are performed using a bipartite 
graph. This leads to a NP-hard graph matching problem, 
which is solved using the Munkres (Hungarian) algorithm 
[40]. Therefore, the edges in the graph (body points) are first 
weighted by computing the line integral along the vector 
connecting two nodes to evaluate the PAF output tensor of 
the model. Finally, the total score of the graph is maximized, 
which results in the human pose.

4  Implementation

4.1  Detector training and validation

Since the size and variability of the neonatal dataset were 
not sufficient to train a robust model for BPE from scratch, 
transfer learning was conducted using provided model 
weights from trt_pose, which were pre-trained on the COCO 
2017 keypoint dataset (including over 150,000 people and 
1.7 million labeled keypoints in RGB images) [36]. For the 
transfer learning step, a high-performance desktop com-
puter was used, running Ubuntu 18.04 and featuring an Intel 
Xeon E5-2620 processor, an NVIDIA Quadro RTX5000, 
and 64 GB RAM. The GPU was deployed in combina-
tion with CUDA 11.0, cuDNN 8.0.5, OpenCV 4.4.0, and 

Torchvision 0.8.1 in Python 3. The training process can 
be described as follows: the ColorJitter functionality from 
Torchvision was used as a data augmentation tool that ran-
domly changed the brightness, contrast, saturation, and hue 
of an image. Due to the invariable measurement conditions 
and the resulting low variability in recording perspective 
and distance, it was assumed that the training process would 
not benefit from additional, classical augmentation meth-
ods, such as rotation, flipping, or scaling, which was already 
observed in previous publications [41]. Thus, no additional 
augmentation strategies were investigated.

A patient-wise 18-fold leave-one-out cross-validation 
(LOOCV) was performed to measure the keypoint detec-
tion performance during the training steps. In contrast to 
a patient-wise cross-validation (CV), where one fold con-
tains several patients in the training and in the test set, the 
patient-wise LOOCV is a configuration in which the data 
of only one patient forms the test set while the remaining 
data is used for the training process. Although the computa-
tional costs of a LOOCV can be higher compared to a CV, 
it was preferred since the neonatal dataset was relatively 
small compared to the COCO dataset, which was used to 
pre-train the detection model. Therefore, overfitting as a 
challenge for small datasets and related biased estimates of 
model performance were addressed. However, the test errors 
in LOOCVs can have a higher variance as only one fold is 
used for prediction [42].

The training was conducted during a maximum of 250 
epochs on a high-performance GPU, whereby the learning 
rate was reduced after 75 and 100 epochs from the initial 
value of 0.001 by a factor of ten. Furthermore, early stop-
ping was used to prevent overfitting by evaluating the loss 
during the training process. After the training, the model was 
optimized using TensorRT (see Section 3.3) and the COCO 
evaluation tool was used to analyze the performance of the 
keypoint detector. The average precision (AP) and average 

Fig. 3  Annotation example with 
18 keypoints and connections 23

45

67
8 9

11
1213

1415

1617

18

Patient Mask

1:Nose
2:Left eye

3:Right eye
4:Left ear

5:Right ear

6:Left shoulder

7:Right shoulder
8:Left elbow
9:Right elbow

10:Left wrist
11:Right wrist

12:Left hip

13:Right hip
14:Left knee
15:Right knee

16:Left ankle

17:Right ankle

18:Neck

1

10

9

1791Medical & Biological Engineering & Computing (2022) 60:1787–1800



1 3

recall (AR) were computed in analogy to the intersection 
over union (IoU) in the validation of object detectors. The 
IoU serves as a similarity metric between GT and predic-
tion to specify if a prediction is correct using a threshold for 
overlap, which allows calculating AP and AR. In analogy, 
the object keypoint similarity (OKS) was defined in [43] as 
a metric for keypoint detection. It takes euclidean distances 
between each corresponding GT and detected keypoint, a 
visibility flag, a per-keypoint constant, and the object scale 
into account. By thresholding the OKS to define a prediction 
as correct or incorrect, AP and AR can be computed. While 
AP uses the mean AP over 10 OKS thresholds (.50:.05:.95), 
the metric AP75 describes the AP for the threshold of 0.75.

4.2  Image registration

Since the body points were predicted in the RGB frames, an 
image registration needed to be done to transform the RGB 
keypoints to the thermographic recordings for temperature 
measurement. Although both cameras recorded from the 
same angle and distance to the neonates, the translational 
displacement and the optical distortion due to the different 
camera lenses required a registration to map the body points 
from RGB to IRT. In general, image registration is the pro-
cess of transforming different datasets into one coordinate 
system.

As the multi-modal images had different properties for 
feature extraction (e.g., colorful objects could be invisible in 
IRT images due to their temperature), which complicated the 
feature matching, basic concepts to extract a projective trans-
formation (homography) such as the findHomography func-
tionality from OpenCV failed. Therefore, a custom approach 
for intensity based image registration was implemented, 
which is based on the mutual information (MI) criterion. 
This metric is a measure of image matching that allows the 
signal to be different in both images. It measures the predic-
tion quality of the signal in the second image, given just the 

signal intensity in the first, using the joint (2D) histograms. 
The MI of two variables is defined by

where p(x) and p(y) in Eq. 1 are the marginal probability 
mass functions and p(x, y) is the joint probability mass func-
tion [44]. A high MI corresponds to a good match of the 
images. However, as described in Section 2, MI can be sen-
sitive to outliers visible in one image. Because the images 
were recorded simultaneously, time-shifted outliers were not 
expected in the neonatal dataset.

Since an affine transformation step was necessary for the 
registration, an optimization problem to maximize the MI 
was defined to derive the entries of the matrix. The optimiza-
tion was solved using the Python tool hyperopt [45]. Further-
more, two crop variables for x and y directions were added 
as parameters, because a high MI could only be achieved by 
matching images with the same field of view. As illustrated in 
Fig. 4, the optimization used both the RGB and IRT images 
as input and finds the optimal crop in the RGB image and the 
transformation matrix by maximizing the MI. As a result, the 
transformed RGB image and the IRT frame can be overlaid. 
The optimization step was conducted during 500 epochs. The 
transformation matrix and the crop parameters were used to 
register the RGB and IRT images. Furthermore, the RGB 
points could be transformed into the IRT frame.

Although the measurement setup had a fixed position 
for all recordings, the distance between the camera system 
and the subjects varied among the neonates. This can be 
explained by the fact that the infants were carried in an 
open incubator from the patient room to the measurement 
setup, whereby the exact same position could not be restored 
between the measurements. Furthermore, the position of 
the patient in the incubator varied. Thus, a registration per 
patient was necessary.

(1)I(X, Y) =
∑

x,y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

,

Fig. 4  Overview of the image 
registration algorithm. The final 
overlay image was resized for 
illustration

Transformation
Result

OverlayRGB Image

IRT Image

Parameter Optimization
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4.3  Vital signs extraction

The proposed approach uses camera fusion to automatically 
detect the cpTD on the body surface of neonates from IRT 
data by applying the results of a BPE in RGB to thermo-
grams. An overview of the algorithm is presented in Fig. 5.

In an initial step, the RGB and IRT frames were loaded. 
While the RGB frame was preprocessed for the detection 
model (rescaling and GPU upload), the IRT frame was 
stored in a buffer. Subsequently, the inference step was con-
ducted on the GPU, which resulted in the body keypoints. 
To exclude a training effect during prediction and enable a 
proper evaluation of the algorithm, the model weights from a 
LOOCV fold were used, in which the particular patient was 
not in the training dataset. The RGB keypoints were then 
transformed using the affine transformation matrix described 
in Section 4.2. The resulting IRT points determined the ROI 
center locations for the following temperature measurement. 
As depicted in Fig. 6, the body points from RGB detection 
were classified as central or peripheral in the IRT frame. 
While facial points and landmarks in the upper body region 
were marked as central, the remaining keypoints formed the 
peripheral group. In the next step, all available ROIs in the 
IRT frame were used to determine the maximum tempera-
ture value in the region. A size of 10 × 10 px2 was used for 
the ROIs. Finally, a mean temperature was computed for 

central and peripheral regions to compute the cpTD on the 
skin surface of the neonates.

4.4  Real‑time feasibility on embedded GPUs

To show the feasibility of real-time performance of the 
trained detector, the inference time of the algorithm on dif-
ferent (embedded) GPU systems was analyzed. The NVIDIA 
low-cost system-on-modules Jetson Xavier NX (approx. 
400$, 08/21) and the higher performant Jetson AGX Xavier 
(approx. 700$, 08/21) (NVIDIA, USA) were used for infer-
ence. Both development boards provide a 64-bit CPU and 
use a NVIDIA Volta GPU, including tensor cores and 16 GB 
(AGX Xavier) and 8 GB (Xavier NX) of RAM. Since these 
modules provide high performant GPUs on a low-cost single 
chip, they can be used for the implementation of efficient 
embedded systems for real-time camera-based monitoring 
[46]. The performance analysis is presented in Section 5.1.

5  Results

5.1  Keypoint detection performance

The results of a patient-wise 18-fold LOOCV for the key-
point detection algorithm in RGB images are presented in 
Table 2. For every fold, the data of one patient was excluded 
from the training process and used for validation.

Additionally, the detection results for CMU-Pose, 
OpenPose, and PRTR (a state-of-the-art regression-based 
approach, which uses cascade transformers [47]) on the 
COCO 2017 keypoint validation set were provided to 

RGB Frame IRT Frame

Preprocesing

Inference on GPU

Body Keypoints

Thermographic Landmarks

Temperature Measurements

Camera-Based Central-Peripheral 
Temperature Difference

Buffer

Image Registration

10  10 px² ROIs for Landmarks

Fig. 5  Overview of the algorithm for temperature measurement

26

28

30

32

34

36

38

°C[ [

Scaled RGB Image

IRT Image

Central ROIs

Peripheral ROIsBody Pose Keypoints
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classify the results in the context of keypoint detection. In 
general, the results show a mean AP of 81.8 and mean AP75 
of 93.2. The mean AR was obtained as 84.1. While for some 
patients very high values for AP and AR were observed, e.g., 
fold 13 (AP: 99.4, AP75 : 100, AR: 99.6), the results for folds 
8 and 11 in contrast show only weak results for the keypoint 
detection. This can be explained by highly divergent patient-
specific characteristics in these folds (see Section 6.1). As 
expected for a LOOCV, this resulted in corresponding high 
values for the standard deviation (SD) (AP: 16.4, AR: 16.0). 
The varying APs and ARs also indicated that overfitting was 
prevented during the training process.

In comparison to the results of CMU-Pose, OpenPose, 
and PRTR, which were trained and evaluated using the 
COCO keypoint dataset, the proposed transfer learning pro-
cess showed superior results. These outcomes were expected 
because the neonatal recordings were reduced in size and 
variability compared to the COCO dataset.

The inference process of keypoint detection was con-
ducted on embedded GPU systems. In Table 3, the perfor-
mance for keypoint inference and the total algorithm on dif-
ferent GPU modules were presented in frames per second. 
As expected, the highest performance was achieved using 
the NVIDIA Quadro RTX 5000 (98 fps in total). Neverthe-
less, both Jetson modules also showed real-time feasibility 

for the algorithm. While for the Xavier NX, a total perfor-
mance of 31 fps was obtained, the AGX Xavier achieved 
47 fps. A comparison of the total computation time with the 
inference performance revealed that the keypoint detection 
was conducted much faster than the entire algorithm. This 
can be explained by the CPU-based pre-processing of the 
images and post-processing for temperature measurement in 
the body ROIs (see Fig. 6). Due to the (NumPy) mean opera-
tions for up to 36 10 × 10 px2 ROIs with float temperature 
values per image, the total performance was depreciated. 
However, real-time execution on low-cost GPU modules was 
achieved.

5.2  Image registration performance

As mentioned in Section 4.3, the validation of the image reg-
istration to transform the RGB keypoints to thermographic 
frames was conducted for every fold of the patient-wise 
LOOCV. The results of the patient-wise process are pre-
sented in Table 4. The labeled IRT points were used as GT 
and compared to the transformed points. The mean absolute 
error (MAE) and the SD for every fold and the correspond-
ing total error metrics for the x and y components in pixels 
can be obtained.

While high accuracies with MAEs and SDs, less than 
10 px, were achieved for several folds in x direction (e.g., 
folds 1, 8, 16), the total metrics for MAEX and MAEY 
revealed errors of 16.4 px respectively 22.4 px. Further-
more, the total SDs were determined as 9.4 px for x and 
15.6 px for y. Since a distance between the camera setup 
and the subjects of approx. 1 m results in a spatial resolu-
tion of 0.5 mm per px, the mean errors are in the range of 
10 mm. In general, the analysis of the total evaluation results 
showed higher errors for y components in comparison to the 
x values, which were associated with the orientation of the 
IRT camera and the position of the patient in the incubator 
(see Section 6.1).

For a better classification of the obtained registration 
errors, Fig. 7 illustrates a crop from a thermogram with a 
visible neonatal foot. In the infrared frame, the GT point 
for the left ankle was labeled, and a 20 × 20 px2 ROI was 
highlighted to show a potential error of 20 px, which was 
in the range of the mean MAE for both directions. Since 
the registration process revealed maximum errors of up 
to 37.4 px in x and 58.1 px in y direction for some folds, 

Table 2  Results of a leave-one-out cross validation

Fold (patient) AP AP
75 AR

1 86.6 98.0 90.5
2 76.2 98.0 80.7
3 88.3 99.0 90.4
4 75.5 97.9 77.0
5 69.1 84.7 72.9
6 88.5 100.0 91.3
7 93.5 98.0 94.4
8 57.4 61.7 57.8
9 98.7 100.0 99.0
10 76.2 84.4 79.3
11 36.0 18.9 38.6
12 96.5 100.0 97.9
13 99.4 100.0 99.6
14 93.0 100.0 94.7
15 87.9 99.0 91.8
16 71.7 71.2 74.3
17 98.9 100.0 99.2
18 79.5 95.8 84.7
Mean 81.8 89.3 84.1
SD 16.4 20.7 16.0
CMU-Pose [28] 69.3 67.5 −
OpenPose [29] 70.7 71.3 −
PRTR [47] 73.3 79.9 80.2

Table 3  Mean performance on different GPU platforms

Platform Inference (fps) Total (fps)

Jetson Xavier NX 98 31
Jetson AGX Xavier 165 47
Quadro RTX 5000 560 98
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the outcomes showed that for outliers a region outside the 
highlighted ROI in Fig. 7 could be extracted. However, the 
mean results showed that the transformed points were still 
found on the surface of the extremities in the IRT frames. 
Therefore, the registration can be used for temperature 
extraction. Since for every extracted 20 × 20 px2 ROI the 
maximum value was extracted for temperature measure-
ment on the body surface (see Section 4.3), deviations in 
the range of 20 px in both x and y directions should still 
enable a monitoring of local temperatures due to a suf-
ficient pixel coverage.

5.3  Temperature measurements

The transformed RGB keypoints were used for extraction of 
maximum temperatures in the ROIs to determine the cpTD 
from the thermographic images. The cpTD was determined 
for every frame of a fold and compared with the GT using 
the predicted and labeled keypoints in the thermogram. Sub-
sequently, the mean value and the SD were computed for all 
frames of each subject. In Table 5, the averaged MAEs and 
the corresponding SDs for every fold and additionally the 
total metrics for all images are presented. The analysis of 
the Bland-Altman plot in Fig. 8 revealed outliers and further 
showed a large proportion of negative deviations from the 
GT cpTD. While in a Bland-Altman plot the y-axis shows 
the deviation between GT and the actual extracted value, the 
x-axis represents the mean value of both values.

The results showed a total MAE of 0.55 ◦ C for the cpTD 
with a SD of 0.67 ◦ C. While for fold 15 a minimum MAE of 
0.21 ◦ C was obtained, the maximum error was determined 
to be 0.98 ◦ C. The Bland-Altman plot in Fig. 8 displays 
slightly negative mean differences (MD). Thus, the pro-
posed algorithm underestimated the GT cpTD. This effect 
can be explained by inaccurate keypoint predictions, so the 
defined ROIs contained lower maximum values for tempera-
ture extraction.

Furthermore, negative mean values were noticeable, 
which correspond to a negative (and therefore unphysi-
ological) cpTD. Due to different measurement conditions 
regarding the clothing of the neonates, the cpTD could 

Table 4  Results of the point 
transformation in pixels and 
millimeters

MAE
X
(px) MAE

Y
(px) MAE

X
(mm) MAE

Y
(mm)

Fold Mean SD Mean SD Mean SD Mean SD

1 4.7 1.6 20.5 2.6 2.4 0.8 10.3 1.3
2 11.2 2.4 43.3 4.7 5.6 1.2 21.7 2.4
3 14.8 7.3 9.7 5.6 7.4 3.7 4.9 2.8
4 12.3 2.6 11.6 2.9 6.2 1.3 5.8 1.5
5 20.9 7.1 46.2 6.7 10.5 3.6 23.1 3.4
6 14.4 3.2 11.4 4.1 7.2 1.6 5.7 2.1
7 37.4 5.1 58.1 9.8 18.7 2.6 29.1 4.9
8 9.6 1.0 15.6 0.9 4.8 0.5 7.8 0.5
9 16.7 3.8 12.5 6.1 8.4 1.9 6.3 3.1
10 15.5 9.9 15.3 8.1 7.8 5.0 7.7 4.1
11 16.7 12.9 15.5 9.3 8.4 6.5 7.8 4.7
12 20.3 2.1 11.8 2.2 10.2 1.1 5.9 1.1
13 28.9 3.1 28.5 3.1 14.5 1.6 14.3 1.6
14 16.0 10.3 18.1 5.8 8.0 5.2 9.1 2.9
15 12.3 1.0 7.3 0.6 6.2 0.5 3.7 0.3
16 8.5 0.6 8.2 0.7 4.3 0.3 4.1 0.4
17 13.7 7.7 31.8 10.2 6.9 3.9 15.9 5.1
18 16.4 9.4 22.4 15.6 8.2 4.7 11.2 7.8
Total 16.4 9.4 22.4 15.6 8.2 4.7 11.2 7.8

26

28

30

32

34

36

38

500 525

IRT Image for Transformation Evaluation

°C[ [550 575 600 625 650 675
px[ [

920

900

880

860

840

820

800

780

px[ [

x

y

20px

20px

GT 
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result in a negative value, if central or peripheral body 
parts were covered. In the conducted study, the clothing 
of the subjects was not predefined in any way. Still, for 
all subjects, central and peripheral measurement locations 
could be extracted due to exposed hands or feet. The issue 
of only a few found keypoints e.g., due to medical care 
during the measurements, further distorted the extraction 
(see Section 6.2). However, all predicted keypoints were 
used for temperature analysis to demonstrate the feasibility 
of local temperature monitoring.

6  Discussion

6.1  Keypoint detection and image registration

The results of the LOOCV for the DL-based keypoint 
detection in general showed a higher value for AP75 in 
comparison to the AP. The fixed threshold of 0.75 resulted 
in a more frequent occurrence of very high or low (see fold 
11) values of AP75 . This is due to the fact that a higher/
lower AP75 is obtained more often, since only the majority 
of keypoints must have an OKS above/below 0.75 regard-
less of the exact value. In contrast, the AP smoothed these 
effects by considering 10 different OKS thresholds. Since 
the validation was performed for every fold, patient-spe-
cific variations become visible directly in the evaluation 
results. The folds 8 and 11 showed only weak results for 
the keypoint detection. These detection results can be 
explained by a higher frequency of medical interventions, 
which resulted in occlusions and detection of false posi-
tives. For illustration, optimal measurement conditions and 
two different levels of distortions are presented in Fig. 9. 
For lateral positions and medical interventions, the number 
of faulty predictions was increased.

Next to the promising results for several folds, the 
analysis of the registration process, where the RGB points 
were transformed to the IRT images, showed a mean MAE 
of 22.4 px (11.2 mm) for the y direction, which can be 
explained by the IRT camera orientation and the vary-
ing absolute position of the patient in the incubator. Since 
the device was rotated to adapt the field of view for the 
measurements (wide sensor side oriented to the longitudi-
nal axis of the subject), the optical distortion was higher 
compared to the x direction (transversal axis) of the sen-
sor. However, the position of the patient in the incubator 
during the measurement has proven to be very important, 
too. For infants with less movement and a central position 
in the incubator close to the camera, the optical distortions 
in y direction (longitudinal axis) were less, which resulted 
in minor errors. Furthermore, the errors in both x and y 
directions were increased for patients who moved to the 
image borders. Especially the accuracy for the point detec-
tion of limbs, which were close to the image borders, was 
decreased due to the effect of increasing distortion effects 
towards the edges. However, the results revealed that the 
point transformation from RGB to IRT images was suffi-
ciently accurate to measure the temperatures on the body 
surface locally.

While in Fig. 9a optimal recording conditions can be 
observed, Fig. 9b shows limbs outside the frame and a 
lateral position of the subject, which led to less detected 
points due to a more difficult detection task. Furthermore, 
in Fig. 9c, occlusions caused by medical intervention are 

Table 5  Results of the 
temperature extraction

MAE cpTD ( ◦C)

Fold Mean SD

1 0.77 0.32
2 0.73 0.76
3 0.37 0.41
4 0.47 0.62
5 0.51 0.42
6 0.67 0.47
7 0.97 0.38
8 0.24 0.12
9 0.40 0.49
10 0.45 0.68
11 0.35 0.44
12 0.53 0.62
13 0.45 0.46
14 0.88 0.56
15 0.21 0.22
16 0.51 0.61
17 0.36 0.37
18 0.98 0.58
Total 0.55 0.67

MD: -0.16

MD+1.96SD: 1.16

MD-1.96SD: -1.49

Fig. 8  Bland-Altman plots for extraction of cpTD
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visible. Although the transfer learning step was conducted, 
in some frames, the limb keypoints of the medical staff 
were still found, which resulted in faulty detections. For 
these situations, keypoints could get lost, resulting in a 
lower number of evaluable locations. The weakest detec-
tion results for fold 11 result from a medical indication 
(legs in plaster cast), which complicated the detection of 
the lower limbs. Since the model from this fold was not 
trained for patients with such a medical condition, the pre-
diction was distorted.

Despite the described limitations, the evaluation of the 
transfer learning step showed very promising results for the 
application of pre-trained models on a neonatal dataset. In 
future work, the model accuracy could be further improved 
by using more labeled data of patients with specific medical 
conditions in the training step. Nevertheless, the prediction 
results and the real-time capability of the algorithm on low-
cost embedded GPUs showed a potential implementation of 
a continuous measurement system. To achieve a real-time 
system, no computationally expensive segmentation algo-
rithms were used, but the concept of a higher performant 
keypoint detector was applied for the extraction of body 
regions.

6.2  Temperature extraction

The temperature extraction showed promising results for a 
DL-based monitoring of the cpTD. Since a mean MAE of 
0.55◦ was achieved, the feasibility of an automated system 
for clinical surveillance of the cpTD to, e.g., monitor sepsis-
related temperature progressions was demonstrated. However, 
the algorithm still showed several limitations: in the event of 
a medical intervention, occlusions and wrong predicted key-
points complicated the detection of body landmarks, which 
was forwarded to the temperature extraction. Furthermore, 

the cpTD monitoring was distorted due to body regions out-
side the frame for some subjects. Since the DL detector even 
found occluded keypoints due to overlapping body parts, the 
extraction could be corrupted in an event of interleaved central 
and peripheral regions. Due to these limitations and the fact 
that clothing was not specified during the study in order not to 
interfere with daily clinical care, negative cpTD were observed.

In future work, the algorithm could be enhanced by 
an analysis to derive the number of actual skin pixels in 
extracted ROIs. Due to differences in color between covered 
body parts and skin, a method based on the RGB pixels 
could be implemented for clothing detection. Furthermore, 
keypoints detected on limbs of medical staff during interven-
tions could be neglected by excluding limb keypoints that 
were assigned to a person with no central keypoints. Since 
the DL approach allows counting the detected persons, only 
keypoints that are connected to a minimum number of pre-
dicted central points could be used for analysis.

Since no reference data was measured for cpTD during 
the camera recording, the presented results could not be 
validated with gold-standard GT temperature. However, the 
focus of this work was set into the measurement of relative 
differences in skin temperature using an IRT device. Nev-
ertheless, in future work, the inclusion of a GT cpTD, e.g., 
from incubator skin sensors, could support the implementa-
tion of an automated alarm system for a camera-based early 
detection of a disease progression that is related to a cpTD 
in real time.

7  Conclusion

In this paper, we presented a DL-based approach for the 
real-time extraction of local surface temperatures from a 
multi-modal clinical dataset of neonates. An RGB dataset 

Fig. 9  Different levels of distor-
tions during measurements: a 
no distortion, b strong lateral 
position leads to less detected 
points, and c medical interven-
tion results in occlusions and 
corrupted detections

b) Lateral Position c) Med. Interventiona) Optimal Position
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of 18 subjects was used for a transfer-learning step of a 
pre-trained body keypoint detector. A LOOCV revealed 
promising results of 81.8% for the AP, which indicates 
a robust prediction of body landmarks. The patient-wise 
image registration was conducted using a computed trans-
formation matrix. The evaluation of the transformed points 
showed total MAEs of 16.4 px (8.2 mm) for x and 22.4 px 
(11.2 mm) for y direction. The temperature extraction was 
performed in the thermogram by evaluating ROIs, which 
were located using the transformed body points. During 
a performance evaluation on embedded GPUs, real-time 
capability of 31 fps was observed using the low-cost mod-
ule Jetson Xavier NX, which indicated a highly efficient 
algorithm.

Although the proposed technique showed promising 
results for the DL-based cpTD extraction, the analysis of 
the results revealed several challenges. Next to lower pre-
diction accuracies for patients with medical indications, 
the point transformation showed a patient-dependent dis-
tortion, which changed with the position of the subject in 
the image. Furthermore, since a patient-wise matrix calcu-
lation was required for the transformation, an application 
of the proposed algorithm in a clinical scenario would 
be dependent on an initial calibration process to conduct 
the registration step. However, these problems will be 
addressed in future work by using more data for transfer 
learning of the keypoint detector and a more advanced 
DL-based method for image registration, such as described 
in [48]. The prediction step will be further developed by 
adding a temporal keypoint tracker, so the complete loss 
of landmarks during motion into e.g. a lateral position will 
be reduced. Here, previously detected keypoints and the 
level and direction of the movement will be used. Addi-
tionally, more clinical data with adequate GT skin tem-
perature needs to be processed with the algorithm to prove 
the applicability of robust bedside monitoring in a NICU.

In conclusion, the overall results showed the feasibil-
ity for the use of low-cost embedded GPUs for real-time 
temperature monitoring of neonates. Simultaneously, the 
keypoint detection further enables a movement tracking to 
quantify the state of activity of the patient. Although only 
a comparable small dataset was used for transfer learn-
ing, promising outcomes were obtained, which encour-
ages other research groups with datasets of similar size 
to use DL-based techniques. The novel real-time cpTD 
extraction from multimodal recordings revealed the advan-
tages of camera fusion and promotes the development of 
smart devices for the camera-based early detection of 
clinical symptoms for different pathologies such as neo-
natal sepsis. Thus, this work represents a step towards the 
replacement of potentially harmful cable-based sensors 
in neonatology.
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