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With development of sequencing technology, dense single nucleotide polymorphisms (SNPs) have been available, enabling
uncovering genetic architecture of complex traits by genome-wide association study (GWAS). However, the current GWAS strategy
usually ignores epistatic and gene-environment interactions due to absence of appropriate methodology and heavy computational
burden. This study proposed a new GWAS strategy by combining the graphics processing unit- (GPU-) based generalized
multifactor dimensionality reduction (GMDR) algorithm with mixed linear model approach. The reliability and efficiency of the
analytical methods were verified through Monte Carlo simulations, suggesting that a population size of nearly 150 recombinant
inbred lines (RILs) had a reasonable resolution for the scenarios considered. Further, a GWAS was conducted with the above two-
step strategy to investigate the additive, epistatic, and gene-environment associations between 701,867 SNPs and three important
quality traits, gelatinization temperature, amylose content, and gel consistency, in a RIL population with 138 individuals derived
from super-hybrid rice Xieyou9308 in two environments. Four significant SNPs were identified with additive, epistatic, and gene-
environment interaction effects. Our study showed that the mixed linear model approach combining with the GPU-based GMDR
algorithm is a feasible strategy for implementing GWAS to uncover genetic architecture of crop complex traits.

1. Introduction

Rice (Oryza sativa L.), a crop species of economic impor-
tance, provides the staple food for more than half of the
population in the world. In China, the super-hybrid rice
plays a pivotal role in the country’s food security. There
are almost eighty super-rice varieties, such as Xieyou9308,
that have been successfully bred and commercially released
to rice farmers since the super-rice breeding program was
initiated by the Chinese government in 1996 [1]. Substantial
geneticist’s and breeder’s effort is being expended in attempt
to further investigate the mechanisms underlying high yield

potential, wide adaptability, better grain quality, better disease
resistance, and strong resistance to lodging in super-hybrid
rice. The majority of these traits are quantitatively inherited.
In addition to the increase of grain yield and the improvement
of living conditions, more attention has been being paid
toward improving grain quality, related to preference of
cooking and eating quality of rice varieties.

As an important grain quality trait for rice, the level of
amylose content (AC) is positively correlated with resistant
starch (RS) content of granular starches [2–10], which is
defined as the portion of dietary starch that is not digested
in the small intestine of a healthy human [11]. Gelatinization
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temperature (GT), the critical temperature at which about
90% of the starch granules have swelled irreversibly in hot
water and start to lose crystallinity and birefringence, is
another important criterion for rice quality related to cooking
quality [12]. Gel consistency (GC), a measure of cold paste-
viscosity of cookedmilled rice flour, is a good index of cooked
rice texture, especially for rice with high AC. Breeders are
trying to develop high-yielding varieties with soft GC [12]
because rices with soft GC cook tender and remain soft even
upon cooling [13].Therefore, understanding the genetic basis
of these key traits associated with grain quality is essential to
predictive rice improvement.

As high-throughput technologies producing dense single
nucleotide polymorphisms (SNPs) across the whole genome,
the genome-wide association study (GWAS) provides us with
insightful information into genetic architecture of complex
traits and is a common approach to uncover genetic com-
ponents of agronomic traits. Association mapping is a high-
resolution method to map quantitative trait SNPs (QTSs)
based on linkage disequilibrium (LD). Association analytical
methods can evaluate whether certain alleles within a pop-
ulation are correlated with the phenotypes of interest more
frequently than the expected ones under the null hypothesis.
Thus, the limitations in the traditional linkage mapping
due to the statistical ambiguity with insufficient molecular
markers can be alleviated. It has been widely applied in plant
resource populations such as rice, maize, barley, and wheat
recently [14–19].

However, the current GWAS analysis fails to detect
epistatic and gene-environment interactions in most studies
such as maize. But phenotypes of all living organisms repre-
sent the consequence of several genetic components includ-
ing epistatic effects and their interactions with environment;
therefore, to estimate genetic merit relevant to the epistases
and their interactions with environment certainly plays a
crucial role in planning an effective breeding regime [20, 21].
Searching for only main effects may miss the key genetic
variants with specific environment response in the context of
complex traits and it is not likely to provide reliable estimates
of genetic component effects [22].

On the other hand, due to the prohibitively intensive
computation required for a GWAS, the available methods are
unpractical and difficult to extend for detection of gene-gene,
gene-environment, and gene-gene-environment interactions
in an experimental data with multiple environments with
enormous SNPs. Currently, a workable solution is provided
with the availability of generalized multifactor dimension-
ality reduction (GMDR) algorithm on a computing system
with graphics processing units (GPUs), a type of hardware
implementation of parallel computation that can be adapted
for many scientific tasks [23].The present study first used the
GMDR-GPU software to screen potential candidate variants
and then used the mixed liner model to dissect the epistatic
and gene-environmental interactions of GT, AC, and GC
in a super-hybrid rice Xieyou9308 derived RIL population,
which was preferentially selected as the cardinal population
for the development of BCF1 populations or immortalized
F2 populations for the identification of QTLs associated with
important agronomic traits [24–26]. Before analyzing the real

data, Monte Carlo simulations were carried out to test the
reliability and efficiency of the model and methods.

2. Materials and Methods

2.1. Field Experiment and DNA Resequencing for Genotyping.
A RIL mapping population consisting of 138 lines, derived
from super-hybrid rice Xieyou9308, was planted in Lin-
shui City, Hainan Province, and Hangzhou City, Zhejiang
Province, in 2009, respectively. Three quality traits, GT, AC,
and GC, were investigated.

DNA resequencing was conducted in Beijing Genomics
Institute (BGI) for two parents with 10X coverage and 138
lines with 2X coverage. The latest version of Nipponbare
sequence [27] was used as the reference genome. Sequence
alignment was conducted between the sequencing sequence
and the reference genome with the software of Burrows-
Wheeler Aligner (BWA) [28]. SNPs were searched between
the individuals and the reference genome using the software
of Sequence Alignment/Map Tools (SAMtools) [29] with the
criteria of base quality over 30, mapping quality over 20, and
the maximum sequence depth less than 1000. All the results
were integrated by Perl program. A total of 701,867 SNPs
were generated from DNA resequencing for the subsequent
association study.

2.2. Genetic Models and Statistical Methods. Association
mapping was performed using the mixed linear model
approach. Suppose that the genetic variation of one quan-
titative trait is controlled by 𝑠 genes. An experiment under
multiple environments is conducted for gene mapping. The
phenotypic value of the 𝑘th individual in the ℎth environment
(𝑦ℎ𝑘) can be expressed by the following mixed linear model:

𝑦ℎ𝑘 = 𝜇 +

𝑠

∑
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(1)

where 𝜇 is the population mean; 𝑎𝑖 is the additive effect
of the 𝑖th SNP with coefficient 𝑥𝑖𝑘, fixed effect; 𝑎𝑎𝑖𝑗 is the
additive × additive interaction effect between the 𝑖th SNP
and the 𝑗th SNP with coefficient 𝑥𝑖𝑘𝑥𝑗𝑘, fixed effect; 𝑒ℎ is the
random effect of the ℎth environment; 𝑎𝑒ℎ𝑖 is the additive
× environment interaction effect of the 𝑖th SNP and the ℎth
environment effect with coefficient 𝑥𝑖𝑘, random effect; 𝑎𝑎𝑒ℎ𝑖𝑗
is the interaction effect of 𝑎𝑎𝑖𝑗 with the ℎth environment with
coefficient 𝑥𝑖𝑘𝑥𝑗𝑘; and 𝜀ℎ𝑘 is the random residual effect of
the 𝑘th individual in the ℎth environment. The coefficient
𝑥𝑖𝑘 can be determined according to the genotype of the SNP,
taking values of 1 and −1 for the homozygotes of high and low
frequency alleles, respectively, and of 0 for the heterozygote.

A two-step mapping strategy for GWAS was employed to
dissect genetic architecture of AC, GC, and GT. First, we used
GMDR method [30] to screen SNPs potentially associated
with phenotype using 1-locus model, 2-locus model, and
3-locus model, respectively; a set of reduced number of
candidate SNPs was obtained for the AC, GC, and GT.
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Table 1: Estimates of SNP additive effects and interaction effects with the environments under three different population structures (70%).

Chr SNP ID Pop a ae1 ae2 Power
Par. Est. Par. Est. Par. Est.

1 28
100

−3.24
−3.32

2.65
2.67

−2.65
−2.46 99.00

150 −3.39 2.81 −2.51 100.00
200 −3.42 2.81 −2.45 100.00

2 100
100

−2.65
−2.79

4.05
4.16

−4.05
−3.79 100.00

150 −2.90 4.26 −3.75 100.00
200 −2.94 4.34 −3.73 100.00

3 93
100

−1.77
−1.86

3.24
3.34

−3.24
−3.17 87.00

150 −1.84 3.34 −3.14 98.50
200 −1.90 3.34 −3.09 100.00

Chr: the ordinal number for simulated chromosome; Pop: the population size; Power: the percentage of the detected SNP with significant effect at 0.05 levels;
Par.: the true value of parameter in simulations; Est.: the estimate of parameter; a: additive effect; ae1 and ae2: the interaction effect of additive with environment
1 and 2, respectively.

Table 2: Estimates of epistasis and interaction effects with the environments under three different population structures (70%).

Chr.i SNPID.i Chr.j SNPID.j Pop aa aae1 aae2 Power
Par. Est. Par. Est. Par. Est.

2 44 3 63
100

3.86
3.42

4.47
4.87

−4.47
−3.99 100.00

150 3.24 5.05 −3.90 100.00
200 3.21 5.12 −3.79 99.50

aa: additive-additive epistasis effect; aae1 and aae2: the environment-specific additive-additive epistasis effect; Pop, Power, Par., and Est. have same definitions
as those in Table 1.

Based on these potential SNPs, the model (1) was applied
for significance test of the genetic effects due to individual
SNP and paired SNPs in terms of𝐹-statistic and the threshold
specified by the permutation method at the experiment-wise
error rate of 0.05. Then, all the significant SNPs were used
to build a full model and the MCMC method was employed
to generate the distribution of each effect in the full model.
On the basis of the distribution, each effect was estimated
by the mean and its significance is tested by 𝑡-statistic [31].
The data analysis by the two-step strategy was implemented
with a newly developed GWAS software called QTXNetwork
(http://ibi.zju.edu.cn/software/QTXNetwork/).

3. Results

3.1. Monte Carlo Simulations. To investigate the efficiency
and accuracy of the proposed methods, we performed a
series of Monte Carlo simulations to verify the unbiasedness
and robustness as well as statistical power. Because our
real experiment data is based on a rice RIL population,
we conducted the simulations based on this kind of pop-
ulation to examine our methods. Two environments were
considered. 525 SNPs were scattered across 3 chromosomes,
with 175 markers evenly distributed on each chromosome.
Three individual QTSs controlling the quantitative trait were
assigned on 3 chromosomes and two-paired epistatic QTSs
were also set with gene-gene-environment interaction effects.
Our simulations would also investigate the influences of
heritability and population size on estimation of QTS param-
eters. Different heritabilities and population sizes were used

in simulations. Each simulation generated the experimental
samples according to the parameter setting for analysis and
the results from 200 simulations are summarized in Tables 1–
4.

Under a heritability of 70%, we conducted simulations to
investigate the effectiveness and robustness of our proposed
method in estimating QTS parameters, according to the
results in Tables 1 and 2, it was clear that all the QTSs could be
detected, and all kinds of effects could be estimated effectively
under the three population sizes.Most estimates were close to
true values of parameter, and the estimation accuracy of QTS
effects was acceptable, especially for the QTS main effects.
The estimates of additive-additive interaction effects with
environments were less accurate, which might be due to the
interference additive-additive effects. The statistical power
increased as the population size became bigger and most of
the power under the population size over 150 individuals was
100% except SNP.93 on the third chromosome.

In order to understand the robustness of our method,
we conducted simulations under two heritabilities of 70%
and 50%, respectively, under the population size of 150
individuals. The simulation results (Tables 3 and 4) clearly
showed a very accurate detection of QTSs and estimation of
QTS effects. All the estimates of QTS positions and effects
were quite robust for different heritabilities, but the epistatic
interaction effects with environments between SNP.44 on
the second chromosome and SNP.63 on the third chromo-
some deviated a little from the true value. Additionally, the
power did not changed very much when the heritability was
increased from 50% to 70%.
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Table 3: Estimates of SNP additive effects and interaction effects with the environments under two different heritabilities.

Chr SNPID
a ae1 ae2 Power

Par. Est. Par. Est. Par. Est.
I II I II I II I II

1 28 −0.79 −0.81 −0.83 0.63 0.65 0.67 −0.63 −0.60 −0.58 100.00 100.00
2 100 −0.67 −0.67 −0.68 0.39 0.38 0.39 −0.39 −0.37 −0.37 100.00 100.00
3 93 −0.40 −0.41 −0.41 0.32 0.32 0.32 −0.32 −0.31 −0.31 69.00 70.00
I and II stand for two different heritabilities of 50% and 70%, respectively, which are the proportions of total phenotypic variation ascribed to SNP additive
effects and additive-environment interaction effects; Power, Par., Est., a, ae1, and ae2 have the same definitions as those in Table 1.

Table 4: Estimates of epistasis and interaction effects with the environments under two different heritabilities.

Chr.i SNPID.i Chr.j SNPID.j
aa aae1 aae2 Power

Par. Est. Par. Est. Par. Est.
I II I II I II I II

2 44 3 63 0.39 0.38 0.38 0.17 0.18 0.17 −0.17 −0.18 −0.16 100.00 99.50
Power, Par., and Est. have the same definitions as those in Table 1; aa, aae1, and aae2 have the same definitions as those in Table 2.

In conclusion, according to the increase of population
size, the power values of QTS with median effects became
higher and the estimated effects were closer to the true
parameter values. Therefore, a population consisting of
around 150 or more RILs is a reasonable size to maintain
the estimation efficiency and power for a trait controlled by
modest QTS effects.

3.2. The Genetic Architecture of Rice Quality Traits. Based
on the above simulation consequences, an association study
was conducted to analyze the genetic architecture for three
quality traits of super-hybrid rice Xieyou9308 RIL population
with 138 lines in two environments and the results were listed
in Table 5. Totally, four QTSs were detected on all the rice
chromosomes for the three quality traits, 2 QTSs for AC, 2
QTSs for GC, and 2 QTSs for GT, respectively. One QTS
seemed to be pleiotropic for all the three traits. The total
heritability estimated by the full model for the three traits was
all over 50%, of which the highest was 68.67% for AC and the
lowest was 52.01% for GT.

For AC, two QTSs were detected and involved only in
additive effects with very high significance and both of effects
were negative.Within them, the heritability of rs1644460 was
as high as 51.78% whose proportion was up to 75.4% of total
heritability.

There were also two QTSs discovered for GC. Positive
additive effect of rs1644460 and negative additive effect of
rs919289 were detected, similar to AC; the former, with an
extremely high significance, accounted for more than 89% of
the genetic variance of GC. The special QTS, rs1644460, was
significant in both environments but showed varying effects
in different environments, indicating an unstable expression
of this QTS across different environments.

For GT, two significant QTSs were identified, which were
involved not only in additive effects and additive × environ-
ment interaction effects but also in epistasis and interaction of
epistasis with environments.TheQTS, rs1289107, with highest
additive effect reached the highest heritability (24%) of all the

effects. Similar to GC, there were two QTSs, rs1289107 and
rs1644460, which were expressed in distinct patterns under
different environments and they reached high heritability in
interaction effects of additive with environments, indicating
that the expression of these two QTSs depended substantially
on environments. It should be noted that one-paired epistatic
QTSs were detected for GT with different pattern epistasis ×
environment interaction effects.

Throughout the three traits, rs1644460 was detected for
all the three quality traits with high significance and heri-
tability, suggesting a pleiotropic role of the QTS for the three
traits. Generally, there were diverse patterns in genetic effects
of QTSs among three quality traits. The QTSs controlling
all the three traits expressed mainly in genetic main effects
and subtle environment-specific additive or additive-additive
epistasis effects were detected. Furthermore, only two highly
significant QTSs (rs1644460 and rs1289107) were expressed
both in genetic main effects and genetic-environment inter-
action effects. On the contrary, two QTSs (rs1610021 and
rs919289) were expressed mainly in additive effects and
modestly in genetic-environment interaction effects for AC
and GC. Conclusively, environment is a very crucial factor
to affect gene expression for rice quality traits. Most QTSs
interact with environment and the environment can enhance
or weaken the expression of most QTSs for the three quality
traits.

4. Discussion

Epistasis and its interaction with environment have been
recognized as important components of cultivar performance
and have received more attention in rice breeding programs.
Nevertheless, these effects have not yet effectively been
analyzed by the current GWASs for the reason of absence
of appropriate statistical methodology and heavy burden of
computation [32–34]. If a reduced model ignoring epistasis
and gene-environment interaction is employed, the resulting
GWASwould give biased estimation of effects, poor detection
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Table 5: Detected SNPs with significant genetic effects.

Trait QTS Chr. Allele Effect Predict − log
10
(𝑃) ℎ

2 (%) Total

AC rs1610021 6 G/A a −2.20 26.94 16.89 68.67
rs1644460 6 C/T a −3.85 79.97 51.78

GC
rs1644460 6 C/T

a 15.02 61.32 52.15

58.58ae1 −3.48 2.52 2.80
ae2 3.47 2.11 2.80

rs919289 7 C/G a −3.96 4.97 3.63

GT

rs1289107 6 G/A
a −0.54 25.06 24.00

52.01

ae1 0.25 3.49 5.00
ae2 −0.25 2.99 5.00

rs1644460 6 C/T
a −0.35 10.73 9.81
ae1 −0.30 5.01 7.40
ae2 0.30 4.05 7.40

rs1289107 and rs1644460
6 G/A aa 0.21 4.33 3.60

aae1 −0.16 1.76 2.20
6 C/T aae2 0.17 1.61 2.20

AC: amylose content; GC: gel consistency; GT: gelatinization temperature; e1: environment 1; e2: environment 2; a: additive effect; ae1 and ae2: environment-
specific additive effect; aae1 and aae2: environment-specific additive-additive epistasis effect. − log

10
(𝑃) = − log

10
(𝑃-value). ℎ2 (%) = heritability (%) due to

the genetic component effect.

precision and power, and low heritability to explain variation
of complex traits [34–37]. This study used a QTS full model
including the additive effect, the additive-additive epistatic
effect, and their interaction effects with multienvironments
of each QTS, to analyze genetic architecture of gelatinization
temperature, amylose content, and gel consistency so that the
estimation accuracy of each effect will be greatly improved
benefiting from elimination of false positive QTS by per-
mutation method and more accurate estimation of residual
effect. In order to alleviate the computing cost, we first
used the GMDR algorithm on GPU to screen the potential
associatedmarkers and then conducted one-dimensional and
two-dimensional searching to detect putative QTSs with the
screened markers as cofactors to control background genetic
effects. Totally, we identified four QTSs with additive effects,
epistasis, and environment interaction effects for the three
quality traits.

Traditional plant breeding is based on phenotypic selec-
tion of superior genotypes among segregating progenies,
and its effectiveness is often affected by environment and
genotype-environment interaction. Therefore, it sometimes
leads to unreliable selection of some traits [38–40]. Although
marker-assisted selection (MAS) is an effective way to
improve the efficiency and precision of plant breeding, it
is still under the influence of the strength in association
between markers and genes of target traits. As the highly
significant SNPs identified by GWAS mapping mostly link
tightly to the genes controlling target traits, with assistance
of these detected QTSs in this study, selection of the quality
traits will be more efficient and accurate improvement of
target traits will be fast achieved. Further, based on the
information of genetic main effects of QTSs or interaction
effects of QTSs with environments, it becomes possible for us

to design an universal selection strategy effective for all the
environments or a specific selection strategy for individual
environments.

According to the association analysis, two QTSs
(rs1610021 and rs1289107) of the four QTSs, which are
involved in the genetic variation of three quality traits of rice,
are located in the region of the known genes (Os06g0130100
and Os06g0124300), and the other two, rs1644460 and
rs919289, lie in the upstream or the downstream of known
genes (Os06g0130800 and Os07g0116900). Some of these
genes have been well defined; for example, there is one QTS,
rs919289, near the gene of Os07g0116900 that is described
as NADH ubiquinone oxidoreductase, 20 kDa subunit
domain containing protein. NADH plays essential roles in
metabolism, which emerges as an adenine nucleotide that
can be released from cells spontaneously and by regulated
mechanisms [41, 42]. But the function of the others or the
relationship between the gene and the three quality traits
of rice still remains unexplored, such as Os06g0130100
whose annotation is similar to ERECTA-like kinase 1. It has
been previously reported that ERECTA-family receptor-like
kinases (RLKs) are redundant receptors that relate cell
proliferation to organ growth and patterning [43]. Further
investigation is needed to explain the association between
RLK ERECTA and the three quality traits of rice.

Although the three rice quality traits exhibit different
genetic architecture in the pattern of genetic effects, we
believe that all of these are crucial genetic resources for
improvement of the traits by selection of genetic effects. How-
ever, more validation is needed if theseQTSs will be extended
to other populations with different genetic background.
In addition, more detailed whole-genome scanning, more
powerful bioinformatics tools, and larger size of mapping
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populations are required since only causative polymorphisms
with large effects can be detected given the size of the usedRIL
population [44].
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