
viruses

Article

Analysis of Synonymous Codon Usage Bias in Potato
Virus M and Its Adaption to Hosts

Zhen He * , Haifeng Gan and Xinyan Liang

School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48,
Yangzhou 225009, China
* Correspondence: hezhen@yzu.edu.cn

Received: 10 July 2019; Accepted: 13 August 2019; Published: 14 August 2019
����������
�������

Abstract: Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae
and causes large economic losses of nightshade crops. Several previous studies have elucidated
the population structure, evolutionary timescale and adaptive evolution of PVM. However,
the synonymous codon usage pattern of PVM remains unclear. In this study, we performed
comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide
sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding
protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and
AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP
coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated
a relatively stable and conserved genomic composition. Natural selection and mutation pressure
shaped the codon usage patterns of PVM, with natural selection being the most important factor.
The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed
that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity
Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our
study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to
better understand the evolutionary changes of a carlavirus.
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1. Introduction

Potato virus M (PVM) is a RNA virus in the Carlavirus genus, Betaflexviridae family. PVM was
first isolated from potato (Solanum tuberosum) in the United States in 1923 [1], and then isolated from
pepino (Solanum muricatum), tomato and tobacco [2,3]. PVM is transmitted in a non-persistent manner
by aphid and causes large economic losses of nightshade crops worldwide [2–7]. PVM contains a
single stranded positive-sense RNA molecule that is approximately 8.5 kb in length and is enveloped
by flexuous filamentous virions [8]. PVM possesses a cap structure at the 5′ end, a poly(A) tail
at the 3′ end, and encodes six open reading frames (ORFs) [2,8,9]. ORF1 encodes a multi-domain
protein that includes methyltransferase, helicase, and polymerase domains and is involved in RNA
replication [10,11]. Three putative proteins within the so-called triple gene blocks (TGBs) are encoded
by overlapping ORF2-4, and are involved in membrane binding, suppression of RNA silencing and
cell-to-cell movement [12–14]. Coat protein (CP) and cysteine-rich nucleic acid binding protein (NABP)
are encoded by ORF5 and ORF6, respectively [8,15].

Generally, the degeneracy of the genetic code allows for 61 triplet codons that encode all 20 amino
acids such that many of them are synonymous [16,17]. Thus, codons encoding the same amino
acid are termed synonymous codons. Interestingly, synonymous codons are not randomly used
in a given cellular species, and the preference for specific codons over other synonymous codons
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by various organisms or even in different gene groups of the same genome creates a bias in codon
usage. This phenomenon is known as codon usage bias (CUB) [18–21]. Several factors, such as
mutation pressure, natural selection, gene length, compositional constraints, replication, selective
transcription, secondary protein structure, hydrophobicity, and gene function have been shown to
influence codon usage patterns [16,19–27]. In addition, synonymous codon usage were also biased for
the capacity to form off frame stop codons [28–30], and codon-anticodon mismatches to compensate
for tRNA misacylation [31–34]. CUB has been observed in a wide range of organisms, including
viruses [18,35–40]. Compared with prokaryotic and eukaryotic genomes, the small genome size,
interplay of codon usage between viruses and their hosts, and processes such as replication, protein
synthesis, and transmission that depend on the host are expected to affect overall viral fitness and the
avoidance of host cell responses during viral evolution.

He et al. (2019) described the evolutionary rate, timescale, host and geographical adaption of
PVM on a global scale according to the coat protein and cysteine-rich NABP genes [41]. In mid-July
2019, fifteen complete genomic sequences of PVM isolates from Bangladesh, China, Czech Republic,
Germany, Russia, Iran, Poland and Slovakia have been reported [2,8,9]. However, these studies
reported uncertainty regarding the synonymous codon usage pattern of PVM.

In this study, we performed comprehensive analyses of codon usage and composition of PVM
based on 152 nucleotide sequences of the CP gene and 125 sequences of the a cysteine-rich NABP gene
to assess the evolutionary adaptation of PVM to its hosts and explored factors that may have played
important roles in shaping codon usage patterns. To the best of our knowledge, our analyses provide
the first insights into the codon usage patterns of a carlavirus.

2. Materials and Methods

2.1. Viral Isolates

We retrieved from GenBank 152 CP and 125 NABP CDs. The details of these PVM isolates, such as
host origins, geographical locations, and collection time are provided in Table S1.

2.2. Recombination and Phylogenetic Analysis

All of the PVM sequences described above were aligned using CLUSTAL X2 [42], and putative
recombination sites in the aligned sequences were identified using the RDP [43], GENECONV [44],
BOOTSCAN [45], MAXCHI [46], CHIMAERA [47], 3SEQ [48] and SISCAN [49] programs in the RDP4
software package [50]. RDP, GENECONV, MAXCHI, CHIMAERA, SISCAN and 3SEQ can detect when
sequences are either more closely related or more distantly related in certain alignment partitions
than would be expected in the absence of recombination regardless of whether they have sufficient
phylogenetic support. Whereas, BOOTSCAN employs phylogeny-based comparisons of alignment
partitions. The putative recombination events supported by at least three different methods (p-value of
< 1.0 × 10−6) were validated and selected using default settings. The phylogenetic analysis of the PVM
sequences was assessed using the neighbor-joining (NJ) method in MEGA v7 [51]. Branch support
was evaluated by Kimura’s two-parameter option [52], which was used to calculate 1000 bootstrap
replications for NJ analysis. The inferred trees were displayed with TreeView [53].

2.3. Nucleotide Composition Analysis

The component parameters of the PVM CP and NABP genes were calculated after removing five
non-bias codons, such as AUG, UGG, since they are the only codons encoding Met and Trp, respectively,
and termination codons (UAA, UGA, UAG). The overall nucleotide composition (A, C, T and G%) and
the total AU and GC content were calculated using BioEdit. The nucleotide compositions at the third
codon position of the CP and NABP genes (A3, C3, T3 and G3%) were computed using the CodonW
1.4.2 package. The GC content at the 1st, 2nd and 3rd codon positions (GC1s, GC2s, GC3s) were
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determined in Emboss explorer (http://www.bioinformatics.nl/emboss-explorer/), where the GC12s is
the mean of GC1s and GC2s.

2.4. Relative Synonymous Codon Usage (RSCU) Analysis

As described by Sharp and Li (1986), the RSCU value of a codon is the ratio between the observed
and expected usage frequency with the assumption that all codons for a particular amino acid are used
equally [54]. An RSCU value equals 1 indicates that there is no bias for that codon, whereas codons
with RSCU values of >1.6 and <0.6 are considered to be “overrepresented” and “underrepresented”,
respectively. The RSCU values were calculated using the following equation:

RSCUij =
gij∑ni

j gij

× ni

where RSCUij is the relative synonymous codon usage value of the i-th codon for the j-th amino
acid, and gij is the observed number of the i-th codon for the j-th amino acid that has an “ni” type of
synonymous codon. The mean RSCU values of the PVM CP and NABP genes were calculated using
MEGA 7 to determine the codon usage patterns without the effect of the amino acid composition and
sequence length.

2.5. Principal Component Analysis (PCA)

PCA is a multivariate statistical method that was used to identify the correlations between
variables and samples. Each strain was represented as a 59-dimensional vector to reduce the effect of
the amino acid composition on codon usage and the RSCU value of each sense codon corresponds to
each dimension. Whereas, codons UGG and AUG and the three termination codons were excluded
from the analysis. PCA was analyzed using Origin 8.0.

2.6. Effective Number of Codons (ENC) Analysis

The ENC was used to calculate the absolute codon usage bias of the PVM CP and NABP coding
sequences, regardless of the number of amino acids and gene length. The ENC values range from 20
(only one synonymous codon is used, an extreme codon usage bias) to 61 (the synonymous codons are
used equally, no bias). The ENC values were calculated as follows:

ENC = 2 +
9

F2
+

1

F3
+

5

F4
+

3

F6

where Fk (k = 2, 3, 4, 6) represents the mean values for Fk and k represents k-fold degenerate amino
acids. Fk is estimated with the following formulae:

Fk =
nS − 1
n − 1

where n is the total occurrences number of the codon for that amino acid, while

S =
k∑

i=1

(ni
n

)2

where ni is the total number of the i-th codon for the corresponding amino acid.
The ENC was calculated using CodonW v1.4.2. In general, the smaller the ENC value, the stronger

the codon preference is. It is also accepted that ENC values ≤35 are indicative of genes with significant
codon bias.

http://www.bioinformatics.nl/emboss-explorer/
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2.7. ENC-Plot Analysis

ENC-plot analyses (ENC values against GC3s values), which consist of plotting GC3s values in
the abscissa and the ENC values in the ordinate, are used to investigate the role of mutational pressure
in codon usage bias. If the only factor driving the codon usage bias is mutation pressure, these points
will be on the standard curve. Otherwise, other factors such as natural selection may play a crucial
role. The ENC is estimated with the following formulae:

ENC expected = 2 + s + (
29

s2 + (1− s)2
)

where s indicates for the value of GC3s.

2.8. Parity Rule 2 (PR2) Analysis

Parity rule 2 (PR2) plot analysis was performed to investigate the effects of mutation and natural
selection on the codon usage of individual genes by exploring the relationship of the four-codon amino
acid families, with A3/(A3+U3) plotted against G3/(G3+C3). The center of the plot is where A=U and
G=C (PR2), indicating a balance between mutation pressure and natural selection.

2.9. Neutrality Analysis

The influence of mutation bias and natural selection on codon usage were investigated by neutral
plot (GC12 values against GC3 values). The mutation pressure is represented by the slope of the
regression line plotted between the GC12 and GC3 contents, where regression lines that fall near the
diagonal (slope = 1.0) indicates no or weak external selection pressure. In contrast, if regression curves
deviate from the diagonal, it indicates a significant influence of natural selection on codon usage bias.

2.10. Codon Adaptation Index (CAI) Analysis

The codon adaptation index (CAI) was calculated using the CAIcal SERVER (http://genomes.urv.
cat/CAIcal/RCDI/). CAI is a quantitative measure that predicts the highest relative adaptation of the
viruses to their potential host. CAI values range from 0 to 1, and sequences with higher CAIs are
indicative of a stronger adaptability to the host.

2.11. Relative Codon Deoptimization Index (RCDI) Analysis

The relative codon deoptimization index (RCDI) values for the PVM CP and NABP coding
sequences were calculated using the RCDI/eRCDI server (http://genomes.urv.cat/CAIcal/RCDI/) to
determine the codon deoptimization trends. An RCDI value of 1 indicates that the virus follows the
host codon usage pattern and displays a host-adapted codon usage pattern. In contrast, RCDI values
higher than 1 indicates lower adaptability.

2.12. Similarity Index (SiD) Analysis

To measure the effect of the codon usage bias of the hosts on the PVM CP and NABP genes,
the SiD was calculated as follows:

R(A, B) =

∑59
i=1 ai bi√∑59

i=1 bi 2 ∑59
i=1 ai 2

D(A, B) =
1−R(A, B)

2
where ai indicates the RSCU value of 59 synonymous codons of the PVM coding sequences, bi indicates
the RSCU value of the identical codons of the potential host, and D(A, B) (SiD) indicates the potential

http://genomes.urv.cat/CAIcal/RCDI/
http://genomes.urv.cat/CAIcal/RCDI/
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impact of the entire codon usage of the host on the different clades of the PVM CP and NABP genes.
The SiD values range from 0 to 1.0, with higher values indicating that the host has a dominant effect on
the usage of codons.

2.13. Gravy and Aroma Statistics

The Gravy value is calculated by CodonW (v1.4.2) and indicates the effect of protein hydrophobicity
on codon usage bias, ranging in value from −2 to 2. In contrast, the Aroma value measures the effect of
aromatic hydrocarbon proteins on codon usage bias.

2.14. Statistical Analysis

The correlation analysis was performed to identify the relationships between the GC, GC3s, ENC,
the first two principal component axes, Aroma and Gravy, which were calculated using Spearman’s
rank correlation analysis, with an highly significant relationship (**) of p < 0.01 and a significant
relationship (*) of 0.01 < p < 0.05. All statistical analyses were performed using Origin 8.0.

3. Results

3.1. Recombination and Phylogenetic Analysis

The occurrence of recombination events can influence phylogenetic and codon usage analyses
at either the gene or genome levels [55,56]. Only a previous reported recombinant isolate 501
(KC129095) [41] was observed in the CP gene regions, while no obvious recombination events were
detected in NABP gene. After discarding the recombinant sequences, we conducted the phylogenetic
analyses using the NJ method based on above data sets. Consistent with the findings of He et al.
(2019) [41], three lineages were formed based on the CP (Figure S1) and NABP (Figure S2) coding
sequences. Compared with the results of He et al., in both the CP and NABP trees, two novel potato
isolates from Bangladesh and one novel potato isolate from Yunnan province of China were clustered
into GP2, while two novel tomato isolates from Slovakia were clustered into GP1.

3.2. Nucleotide Composition Analysis

The nucleotide compositions of the PVM CP and NABP coding sequences were determined to
explore the potential influence of compositional constraints on codon usage. We observed that the
nucleotides G and A were the most abundant in the CP coding sequences, with mean compositions
of 29.86 ± 0.53% and 26.63 ± 0.54% (Table S2), respectively, compared with C (23.56 ± 0.25%) and U
(19.94 ± 0.64%). In contrast, the nucleotide composition at the third position of synonymous codons
(A3S, C3S, G3S and U3S) in the CP coding sequences were significantly different from the nucleotide
composition. The most frequent nucleotide was G3S (40.25% ± 0.020), followed by U3S (29.65% ± 0.018),
A3S (27.44% ± 0.019) and C3S (26.61% ± 0.010). In contrast, the nucleotides U and G were most
abundant in the NABP coding sequences, with mean compositions of 30.27 ± 0.74% and 27.75 ± 2.47%
(Table S3), respectively, followed by A (23.83 ± 1.09%) and C (18.52 ± 1.67%). In addition, the mean U3S

(48.91% ± 0.020) and G3S (30.33% ± 0.015) values were also higher compared with A3S (26.13% ± 0.018)
and C3S (15.93% ± 0.017) in the NABP gene sequences (Table S3). The GC composition was higher than
that of AU in the CP coding sequences, with 53.43 ± 0.58% observed compared with 46.57 ± 0.58%
(Table S2), respectively, indicating that there is a GC-biased composition of PVM CP coding sequences.
Additionally, the average GC contents at the first, second, and third positions (for GC12s and GC3s) of
the CP coding sequences were 52.69 ± 0.45% and 54.89 ± 1.24%, respectively. However, the AU contents
(54.04 ± 1.84%) were significantly higher than that of GC (45.86 ± 1.32%) in the NABP coding sequences
(Table S3), indicating that the PVM NABP coding sequences were AU-rich. Furthermore, the mean
GC12s and GC3s of the NABP coding sequences were 50.07 ± 1.09% and 37.44 ± 2.31%, respectively.
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3.3. U- and G-Ending Codons Are Preferred in PVM CP and NABP Coding Sequences

To estimate the codon usage pattern of the PVM CP and NABP coding sequences, RSCU analysis
was performed (Table 1). In the CP gene, 12 out of 18 preferred codons were G/U-ending and exhibited
an equal distribution of G and U (G-ending: 6; U-ending: 6), while the remaining six were C/A-ending
(C-ending: 4; A-ending: 2) (Table 1). This result shows that G- and U-ending codons are preferred
in the PVM CP coding sequences. Within these preferred codons, irrespective of the PVM host, four
had an RSCU value > 1.6, with the highest being GUG (2.41), indicative of extreme over-presentation,
whereas the remaining preferred codons had RSCU values >0.6 and <1.6. No optional synonymous
codons were underrepresented (RSCU < 0.6) from the PVM CP gene. In addition, we also calculated
the host-specific RSCU values of the CP coding sequences and observed that G/U-ending codons were
more common than C/A-ending codons.

Table 1. The relative synonymous codon usage (RSCU) value of 59 codons encoding 18 amino acids
according to hosts of potato virus M coat protein (PVM CP) and cysteine-rich nucleic acid binding
protein (NABP) genes.

Codon aa CP NABP

Potato Tomato Pepino All Potato Tomato Pepino All

UUU F 0.89 0.63 0.65 0.73 1.98 1.8 1.96 1.96
UUC F 1.11 * 1.38 1.35 1.27 0.02 0.2 0.04 0.04
UUA L 0.36 0.26 0.02 0.15 1.7 1.6 1.96 1.84
UUG L 1.18 0.93 0.96 1.04 0.81 0.8 1.84 1.4
CUU L 0.48 0.26 0.29 0.36 1.63 2.4 2.05 1.93
CUC L 0.89 1.03 1 0.96 0.52 0.2 0 0.2
CUA L 1 1.12 1.38 1.23 0.63 0.4 0.02 0.27
CUG L 2.1 2.41 2.36 2.27 0.7 0.6 0.12 0.37
AUU I 0.64 0.52 0.13 0.33 1.14 1.07 1.1 1.1
AUC I 1.17 1.47 1.74 1.53 1.05 0.67 0.65 0.72
AUA I 1.18 1.01 1.13 1.14 0.81 1.26 1.25 1.18
GUU V 0.54 0.42 0.48 0.5 0.09 0 0 0.02
GUC V 0.63 0.54 0.5 0.55 0.52 0.4 0.4 0.42
GUA V 0.5 0.81 0.55 0.54 1.03 0.8 0.82 0.87
GUG V 2.33 2.24 2.47 2.41 2.36 2.8 2.77 2.69
UCU S 0.83 0.81 0.72 0.76 1.83 2.04 2.38 2.23
UCC S 0.76 0.72 0.71 0.73 0.9 0.64 0.27 0.44
UCA S 0.88 0.94 1.07 0.99 1.4 1.61 1.58 1.54
UCG S 1.53 1.48 1.37 1.44 0.23 0 0.01 0.06
AGU S 0.31 0.4 0.62 0.49 1.6 1.71 1.77 1.72
AGC S 1.7 1.66 1.51 1.59 0.03 0 0 0.01
CCU P 0.7 0.55 0.69 0.69 2.02 1.7 1.68 1.75
CCC P 0.56 0.58 0.43 0.49 0.62 0.8 0.78 0.75
CCA P 1.24 1.39 1.59 1.45 1.18 1.5 1.51 1.44
CCG P 1.51 1.47 1.28 1.38 0.19 0 0.03 0.06
ACU T 1.85 1.99 1.95 1.92 2.68 2.76 3.05 2.95
ACC T 0.42 0.24 0.37 0.37 0.93 1.16 0.95 0.97
ACA T 1.01 0.97 0.8 0.88 0.19 0 0 0.04
ACG T 0.72 0.8 0.89 0.83 0.19 0.07 0 0.04
GCU A 1.51 1.57 1.34 1.42 2.05 2.38 2.3 2.26
GCC A 0.86 0.78 0.94 0.9 0.05 0.05 0.14 0.12
GCA A 1.03 1.03 1.17 1.11 0.48 0.66 0.41 0.44
GCG A 0.6 0.62 0.54 0.57 1.43 0.91 1.15 1.19
UAU Y 0.99 1.08 1.01 1.01 1.13 0.86 0.84 0.91
UAC Y 1.01 0.92 0.99 0.99 0.87 1.14 1.16 1.09
CAU H 0.77 0.4 0.46 0.56 0.88 0.53 0.72 0.74
CAC H 1.23 1.6 1.54 1.44 1.12 1.47 1.28 1.26
CAA Q 0.74 0.58 0.44 0.56 1.37 2 2 1.89
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Table 1. Cont.

Codon aa CP NABP

Potato Tomato Pepino All Potato Tomato Pepino All

CAG Q 1.26 1.42 1.56 1.44 0.63 0 0 0.11
AAU N 1.18 1.34 1.29 1.25 1.64 1.33 1.34 1.4
AAC N 0.82 0.66 0.71 0.75 0.36 0.67 0.66 0.6
AAA K 0.76 0.75 0.62 0.68 0.31 0.53 0.53 0.49
AAG K 1.24 1.25 1.38 1.32 1.69 1.47 1.47 1.51
GAU D 1.24 1.32 1.45 1.37 1.97 1.78 2 1.98
GAC D 0.76 0.68 0.55 0.63 0.03 0.22 0 0.02
GAA E 0.7 0.68 0.66 0.68 0.73 0.8 0.78 0.77
GAG E 1.3 1.32 1.34 1.32 1.27 1.2 1.22 1.23
UGU C 0.72 0.83 0.71 0.72 1.58 1.62 1.66 1.64
UGC C 1.28 1.17 1.29 1.28 0.42 0.38 0.34 0.36
CGU R 0.65 0.31 0.26 0.4 1.16 1.37 1.37 1.32
CGC R 1.11 0.81 0.78 0.9 1.07 0.91 0.91 0.95
CGA R 0.93 1.47 1.5 1.3 0.59 0.74 0.52 0.56
CGG R 0.53 0.56 0.53 0.53 0.16 0 0 0.03
AGA R 0.82 0.69 0.69 0.74 1.3 1.26 1.34 1.32
AGG R 1.96 2.16 2.24 2.14 1.73 1.71 1.85 1.82
GGU G 1.28 1.01 1.15 1.19 2.09 2.57 2.85 2.66
GGC G 0.8 0.95 0.98 0.92 0.85 0.14 0.01 0.21
GGA G 0.9 1.01 1 0.96 0.75 0.71 0.57 0.62
GGG G 1.02 1.03 0.86 0.93 0.31 0.57 0.57 0.51

* The most frequently used codons are shown in bold.

In the NABP gene, among the 18 preferred codons, 14 were U/G-ending (U-ending: 10; G-ending: 4)
and four were A/C-ending (A-ending: 2; G-ending: 2) (Table 1). This result shows that U- and G-ending
codons are also preferred in the PVM NABP coding sequences. Within these preferred codons, 12 had
a RSCU value >1.6, while the remaining six preferred codons that had RSCU values >0.6 and <1.6.
Similar to the CP gene, no optional synonymous codons were underrepresented (RSCU < 0.6) for the
NABP gene. According to the hosts, we also calculated the RSCU values of the NABP coding sequences
and observed that G/U-ending codons were more common than C/A-ending codons. The three
exceptions were the UUA, AUU and UAU codons (coding for L, I and Y, respectively), which only
exhibited preferred use in potato isolates (Table 1). Both the CP and NABP RSCU analyses suggested
that the preferred codons have been mostly influenced by compositional constraints (G and U in this
case). In our RSCU analysis, several codons were differentially selected in different host plants in CP
and NABP genes. For example, three codons AUA, AUC, and AUU encode amino acid I, however
AUA was the most frequently used codons in potato rather than AUC in tomato and pepino in CP
gene, whereas AUU was the most frequently used codons in potato rather than AUA in tomato and
pepino in NABP gene.

3.4. Codon Usage Bias of the PVM CP and NABP Coding Sequences

The ENC values were calculated to infer the magnitude of the PVM CP and NABP codon usage
bias. In general, the smaller the ENC value, the stronger the codon preference is. It is also accepted
that ENC values ≤35 are indicative of genes with significant codon bias. Individually, the highest
ENC values were both observed for the CP and NABP coding sequences from potato hosts (Figure 1),
whereas the lowest values for the CP and NABP coding sequences were all obtained from pepino hosts
(Figure 1). In addition, the mean ENC values for the overall CP and NABP genes were 54.91 ± 2.28
(Table S2) and 49.66 ± 4.22 (Table S3), respectively, indicating a relatively stable and conserved genomic
composition with a low codon usage bias in all of the assayed PVM coding sequences. Compared with
CP coding sequences, the lower ENC values for the NABP gene suggested a slightly greater codon bias
than was observed for the CP gene.
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Figure 1. Effective Number of Codons (ENC) values of the CP (A) and NABP (B) genes of PVM from
different hosts. The pepino, potato and tomato hosts are represented in light orange, light green and
light purple, respectively.

3.5. Trends in Codon Usage Variations

PCA is a multivariate statistical method that was used to identify the correlations between
variables and samples. In this study, PCA was performed to assess the synonymous codon usage
variation in the CP and NABP coding sequences of PVM. The first four principal axes (axes 1–4) of
the CP and NABP coding sequences accounted for 65.96 and 65.23% of the synonymous codon usage
variation, respectively (Figure 2). The values of the first four axes for the CP coding sequences were
30.56, 18.03, 10.35 and 7.02% (Figure 2A), while those observed for NABP were 27.97, 16.23, 13.95 and
7.08% (Figure 2B). These values revealed that axis 1 was the major factor affecting codon usage for
the CP and NABP genes. Furthermore, we explored the distribution of the CP and NABP coding
sequences in different hosts based on the RSCU values on the first two axes (Figure 3). The PCA
for both the CP and NABP genes showed several overlapped sites among the three different hosts,
these suggesting similar codon usage trends (Figure 3). Notably, because the analysis included only
eight tomato isolates of PVM, these results require further confirmation.
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3.6. ENC-Plot Analysis

We performed an ENC-plot analysis for GC3s to study the factors influencing the codon usage
bias of PVM according to the CP and NABP coding sequences. If the points fall below the expected
curve, the codon usage is said to be affected by selection pressure rather than mutation pressure,
whereas mutational pressure is indicated when the data points fall onto the expected curve. In both
the CP and NABP coding sequence plots, the PVM isolates from different hosts and groups mostly
clustered together below the expected ENC curve (Figure 4), indicating that the natural selection
pressure was more important than mutation pressure in the PVM isolates. In relation to hosts, stronger
natural selection on synonymous codon usages were observed in pepino-hosted CP and NABP genes.
However, several PVM potato isolates fell onto the expected curve for both the CP and NABP coding
sequences (Figure 4), indicating that the influence of mutation pressure was not completely absent.
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Figure 4. ENC-plot analysis of the CP (A) and NABP (B) genes of PVM, with ENC plotted against
GC3s of different hosts. The orange line represents the standard curve when the codon usage bias is
determined by the GC3s composition only. The pepino, potato and tomato hosts are represented by
red, green and blue dots, respectively.
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3.7. Neutrality Plot

To determine the degree of mutational pressure and natural selection on the codon usage in PVM,
we performed neutrality analyses between GC12 and GC3 for all of the sequences and grouped the
results by the PVM hosts for the CP and NABP coding sequences (Figure 5). As nucleotide changes
at the third position of the codon do not contribute to changes in the amino acid, these changes are
indicative of a mutational pressure alone. In contrast, nucleotide changes that bring about changes
in the altered amino acid lead to selection pressure. Significant positive correlations were observed
between the GC12 and GC3 values (r2 = 0.0757, P = 7.76 × 10−4; r2 = 0.2328, P = 2.75 × 10−8) for the
PVM CP and NABP coding sequences, respectively (Figure 5A,C). The slopes of the linear regression
were 0.1009 and 0.1871 for all CP and NABP coding sequences (Figure 5A,C), demonstrating that
mutation pressure accounted for 10.09 and 18.71% of the selection pressure, whereas natural selection
accounted for 88.91 and 81.29%, respectively. With respect to the hosts, the slope of the linear regression
for the PVM CP coding sequences from potato was 0.1749 (Figure 5B) and had a significant p value
(p = 0.00156), whereas the correlations between GC12 and GC3 for pepino and tomato were not
significant (p > 0.05), with observed slopes of −0.0159 and 0.2037 (Figure 5B), respectively. For the
NABP coding sequences, significant correlations between GC12 and GC3 for pepino and tomato were
observed, with slopes of 0.0769 and 0.1899 (Figure 5D), respectively, whereas the correlation for potato
was not significant (p > 0.05), with a slope of 0.0298 (Figure 5D). Above all, natural selection was the
dominant pressure driving the codon usage bias for the CP and NABP coding sequences of PVM.
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blue dots, respectively.

3.8. Parity Analysis

We performed a PR2 bias plot analysis to determine whether the biased codon selection was
restricted to highly biased genes. There is no bias in the selection or mutation pressure when the plot lie
on the center, where both coordinates are 0.5 [19]. The results showed that U and G are more frequently
used than A and C in the PVM CP and NABP coding sequences (Figure 6A,B), demonstrating that
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the codon usage pattern of PVM is also shaped by mutation pressure and other factors, including
natural selection.
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genes of PVM are shown. The center of the plot (both the coordinates is 0.5), indicating a position
where there is no bias. The pepino, potato and tomato hosts are represented by red, green and blue
dots, respectively.

3.9. Natural Selection is a Major Player in Shaping PVM Codon Usage Patterns

To investigate the influence of natural selection on PVM codon usage patterns, we performed
linear regression analysis between the general average hydropathicity (GRAVY) and aromaticity (ARO)
values and the values for ENC, GC3S, GC, and the first two principle axes. Our correlation analysis
based on the CP coding sequences indicated that GRAVY is significantly positively correlated with
ENC but negatively correlated with axis 2. In addition, ARO showed a significant positive correlation
with ENC and axis 1 but was significantly negatively correlated with GC3s, GC, and axis 2 (Table 2).
For the NABP coding sequences, our correlation analysis indicated that GRAVY is significant negatively
correlated with ENC, GC3s, GC, and axis 1, whereas ARO showed a significant positive correlation
with GC3s axes 1 and 2 (Table 2). These results indicated that the general average hydropathicity
and aromaticity are linked to the codon usage variation in PVM, indicating the influence of natural
selection on the codon usage pattern.

Table 2. Correlation analysis among GRAVY, ARO, ENC, GC3S, GC, and the first two principle
component axes.

Gene
ENC GC3s GC Axis1 Axis2

r P r P r P r P r P

CP Gravy 0.17691 * 0.0309 −0.00431 ns 0.95835 −0.01278 ns 0.87702 0.14168 ns 0.0848 −0.29638 ** 2.42 × 10−4

Aromo 0.27855 ** 5.82 × 10−4 −0.26752 ** 9.73 × 10−4 −0.23363 ** 0.00414 0.39558 ** 5.94 × 10−7 −0.19631 * 0.01642

NABP Gravy −0.26677 ** 0.00298 −0.48469 ** 1.54 × 10−8 −0.4726 ** 3.88 × 10−8 −0.62506 ** 1.41 × 10−14 −0.16583 ns 0.06793
Aromo −0.15843 ns 0.08135 0.21532 * 0.01723 0.11425 ns 0.21018 0.44691 ** 2.47 × 10−7 0.30524 ** 6.29 × 10−4

ns non-significant (p > 0.05); * represents 0.01 < p < 0.05; ** represents p < 0.01.

3.10. Codon Usage Adaptation in PVM

To assess the codon usage optimization and adaptation of PVM to its hosts, an analysis of codon
adaptation index values was performed. Particular hosts are considered to be more suitable for isolates
with higher CAI values than lower values. The mean CAI values of the CP coding sequences were
0.652, 0.628, and 0.617 for the pepino, tomato, and potato hosts, respectively, while those of the NABP
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coding sequences were 0.721, 0.707 and 0.680 for the pepino, tomato, and potato hosts, respectively
(Figure 7A). These values indicated that PVM host adaptation was greatest for pepino and the lowest
for potato. Furthermore, we performed relative codon deoptimization index (RCDI) analysis to assess
the cumulative effects of codon biases on gene expression. The mean RCDI values were highest for
potato, followed by tomato and pepino (Figure 7B), indicating that codon usage deoptimization was
the highest for the potato. Additionally, SiD analysis was also performed to understand how the PVM
codon usage pattern is affected by the three hosts’ codon usage patterns (Figure 8). We observed that
the SiD value of pepino was higher than that of tomato and potato in both the CP and NABP coding
sequences, indicating that pepino had a greater impact on the virus than tomato and potato.
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Figure 8. The similarity index (SiD) analysis of the PVM CP (A) and NABP (B) genes in relation to the
natural hosts synonymous codon usages. The pepino, potato and tomato hosts are represented in light
orange, light green and light purple, respectively. The x axis represents the sequences identified in
different hosts.
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4. Discussion

The codon usage pattern of viruses and hosts reflects the occurrence of evolutionary changes,
such as evasion from the host’s immune system, survival, adaption [38,39,57–59]. Codon usage plays a
significant role in the evolution of animal and human viruses, whereas our understanding of that in
the evolution of plant viruses is limited. Until now, the codon usage pattern of citrus tristeza virus
(CTV) [60], papaya ringspot virus (PRSV) [61], rice stripe virus (RSV) [62] and begomoviruses [63] had
been reported. Low codon usage bias and higher genomic stability were observed from CTV, PRSV and
RSV [60–62]. PVM, a carlavirus belonging to the family of Betaflexviridae, is an economically important
pathogen of potato and pepino worldwide [3–6]. In the present study, comprehensive analyses of
codon usage of PVM based on the CP and NABP coding sequences were performed. We observed that
(1) the PVM CP coding sequences were GC-rich, while the NABP coding sequences were AU-rich;
(2) U- and G-ending codons were preferred in the PVM CP and NABP coding sequences; (3) a relatively
stable and conserved genomic composition with a low codon usage bias was observed in the PVM CP
and NABP coding sequences; (4) natural selection and mutation pressure shaped the codon usage
patterns of the PVM CP and NABP gene, with natural selection being the most important factor;
(5) both CAI and RCDI analyses revealed that the greatest adaption of PVM was to pepino, followed
by tomato and potato; and (6) pepino had a greater impact on PVM than tomato and potato.

Jenkins and Holmes (2003) reported that the overall nucleotide composition can influence codon
usage bias [64]. Our nucleotide composition results showed that the PVM CP and NABP coding
sequences were GC and AU-rich, respectively. In general, a GC- or AU-rich composition tends to
correlate with the RSCU patterns for several organisms, including viruses [39,57,59]. For example,
AU-rich genomes tend to contain codons ending with A and U, whereas GC-rich genomes tend to
contain codons ending with G and C. This trend supports the influence of mutation pressure. However,
we observed that U- and G-ending codons are preferred in the PVM CP and NABP coding sequences
despite a higher percentage of GC versus AU, similar to the RSCU patterns observed for the Zika
virus [57]. Nucleotide composition and RSCU analyses showed that selection of the preferred codons
in PVM was primarily influenced by compositional constraints (G and U in this case), which accounts
for the presence of mutation pressure.

We observed that the ENC values of the PVM CP and NABP coding sequences were higher than 35
(Tables S2 and S3), indicative of a low degree of preference. Thus, we considered that the lower codon
usage pattern in PVM could aid in facilitating infectivity in multiple hosts. Additionally, the strains
isolated from pepino had a lower codon usage bias compared to tomato and potato. Moreover, this CAI
analysis further confirmed that PVM is more adapted to pepino than tomato or potato.

Normally, the balance of mutation pressure and natural selection plays a significant role in the
codon usage in eukaryotes and prokaryotes [35,39,65,66]. The results of the ENC-plot, neutrality plot
and PR2 analyses clearly showed that PVM is influenced by natural selection and mutation pressure
to variable degrees. Additionally, ENC-plot, neutrality plot and linear regression analysis between
GRAVY and ARO values and those of the ENC, GC3S, GC, and first two principle axes demonstrated
that natural selection is the major factor that has contributed to shaping codon usage of PVM.

The emergence, dynamics, and evolution of infectious diseases can be influenced by host-parasite
interactions [67–70]. PVM was isolated from pepino and tomato early in this decade but was firstly
isolated from potato in the early 1920s [1–3]. Our previous results showed that the diversification
of PVM in potato is more diverse than pepino and tomato [41], and PVM pepino isolates appear
to be experiencing a new expansion [3]. In the present study, the results of our CAI analysis also
showed that the PVM CP and NABP genes were strongly adapted to pepino. Moreover, RCDI analysis
also supported that highest codon usage deoptimization occurred for isolates for potato, followed by
tomato and pepino. These results were consistent with those of the CAI analysis, because a low RCDI
may indicate strong adaptation to a host [71]. Furthermore, the SiD value for isolates from pepino
was higher than those observed for tomato and potato, both in the CP and NABP coding sequences,
indicating that the selection pressure of pepino on PVM was greater than that of tomato and potato,
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in agreement with the neutrality and ENC-plot analysis results. Therefore, a strong link between PVM
and pepino was observed in this study, although potato has always been suggested to be the primary
PVM host [1].

In summary, in this study, the codon usage patterns of the PVM CP and NABP genes were studied
for the first time to better understand the evolutionary changes of a carlavirus. Results from this
study promote a better understanding of the evolutionary changes of PVM, which could assist in the
prevention and control of this virus.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/8/752/s1,
Figure S1: The neighbor-joining (NJ) trees calculated from the CP gene sequences of potato virus M obtained in this
study. The numbers at each node indicate the percentage of bootstrap samples in the NJ trees. Horizontal branch
length is drawn to scale, with the bar indicating 0.05 nt replacements per site. Figure S2: The neighbor-joining (NJ)
trees calculated from the NABP gene sequences of potato virus M obtained in this study. The numbers at each
node indicate the percentage of bootstrap samples in the NJ trees. Horizontal branch length is drawn to scale,
with the bar indicating 0.02 nt replacements per site. Table S1: The PVM isolates using in this study. Table S2:
The nucleotide compositions of the PVM CP coding sequences. Table S3: The nucleotide compositions of the PVM
NABP coding sequences.
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