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Abstract: Liver stiffness (LS) at sustained virological response (SVR) after direct-acting antivirals
(DAA)-based therapy is a predictor of liver events in hepatitis C virus (HCV)-infected patients. The
study aim was to identify genetic factors associated with LS changes from the moment of starting
anti-HCV therapy to SVR. This prospective study included HCV-infected patients from the GEHEP-
011 cohort who achieved SVR with DAA-based therapy, with LS pre-treatment ≥9.5 kPa and LS
measurement available at SVR. Plink and Magma software were used to carry out genome-wide
single-nucleotide polymorphism (SNP)-based and gene-based association analyses, respectively.
The ShinyGO application was used for exploring enrichment in Gene Ontology (GO) categories for
biological processes. Overall, 242 patients were included. Median (quartile 1, quartile 3) LS values at
pre-treatment and at SVR were 16.8 (12, 28) kPa and 12.0 (8.5, 19.3) kPa, respectively. Thirty-five SNPs
and three genes reached suggestive association with LS changes from the moment of starting anti-
HCV therapy to SVR. GO categories related to DNA packaging complex, DNA conformation change,
chromosome organization and chromatin organization were significantly enriched. Our study reports
possible genetic factors associated with LS changes during HCV-infection cure. In addition, our
results suggest that processes related to DNA conformation are also involved in these changes.
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1. Introduction

The achievement of sustained virological response (SVR) among hepatitis C virus
(HCV)-infected individuals is associated with a reduction in the incidence of liver compli-
cations, including hepatocellular carcinoma (HCC), as well as in all-cause mortality [1–4].
However, the risk of developing liver events does not disappear after SVR, especially
among pre-treatment cirrhotic patients [3,5,6]. For that reason, patients with cirrhosis must
undergo life-long surveillance for liver complications [7], and some authors extend this
recommendation to individuals with pre-treatment advanced fibrosis [8].

Liver stiffness (LS), measured by vibration-controlled transient elastography (VCTE),
is a surrogate marker of liver disease and strongly correlates with the emergence of liver-
related events among both HCV-mono-infected and HIV/HCV-coinfected subjects [9–11].
Interestingly, SVR achievement also leads to a reduction of LS in this subset. Besides, this
improvement is more pronounced in patients with higher pre-treatment LS values [12,13].
Recently, it has been reported that the LS value at SVR is also a strong predictor of liver dis-
ease outcome in HCV-infected patients with pre-treatment advanced fibrosis, irrespective
of HIV-coinfection [14,15].

LS reduction from the moment of therapy starting to SVR, as other complex conditions,
could be partially determined by genetic factors. However, to our knowledge, no genetic
association study has been conducted on this trait yet. The identification of these host
factors could be helpful to understand the molecular basis of this complex trait. Moreover,
it could be useful to identify individuals with lower risk of hepatic events’ emergence
after SVR, for whom surveillance programs for liver complications would no longer be
cost-effective. In addition, these factors could be potential therapeutic targets among
patients with a higher risk of clinical events after SVR. Due to this, the objective of this
study was to identify genetic factors, by means of the genome-wide association study
(GWAS) and gene-based association approach, related to LS changes from the moment
of starting anti-HCV therapy to SVR among HCV-infected patients with pre-treatment
advanced liver fibrosis.

2. Materials and Methods
2.1. Design and Study Population

In this multicenter prospective cohort study, HCV-infected patients from the GEHEP-
011 cohort were included (clinicaltrials.gov ID: NCT04460157). In this cohort, HCV-infected
individuals, HIV-coinfected or not, who had received direct-acting antivirals (DAA)-based
therapy after October 2011 at units of infectious diseases of 18 hospitals throughout Spain,
are enrolled. Enrolment criteria in the cohort were: (1) have achieved SVR with DAA-based
therapy, (2) have LS pre-treatment ≥ 9.5 kPa and (3) have a LS measurement at the SVR
time point.

Patients were included in this study if: (1) they had an available frozen blood sample
before December 2017, (2) they were Caucasian and (3) they were non-familiarly related.

2.2. Endpoint and Other Definitions

The primary endpoint was the percentage of LS change from the date of starting the
DAA-based regimen to the SVR time point.

LS was assessed by VCTE using a FibroScan® (Echosens, Paris, France), according to a
standardized procedure [16], within the 30 days before HCV therapy initiation (baseline)
and at the SVR time point. These examinations were undertaken by an experienced
operator at each participating center.

SVR was defined as undetectable HCV RNA 12 weeks after the end of anti-HCV therapy.
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2.3. Genome-Wide Genotyping and Quality Controls

DNA isolation, genotyping methods, genotyping and samples’ quality controls, prin-
cipal component (PC) analyses and SNPs imputation were performed as previously de-
scribed elsewhere [17]. Briefly, the Axiom 815K Biobank array (Thermo Fisher, Waltham,
Massachusetts, USA) and GeneTitan Multi-Channel instrument (Thermo Fisher) were
used for sample genotyping. Samples with a call rate lower that 97% were excluded.
SNPs with a call rate <95% or with a minor allele frequency (MAF) below 0.01 were re-
moved. In addition, those individuals with heterozygosity rates greater than 0.35, or those
who were related to other individuals in the sample (Identity by state (IBS) > 0.1875),
were excluded. All these analyses were carried out using Plink software (version 1.9)
(https://www.cog-genomics.org/plink (accessed on 1 January 2021)). PC analysis was
run together with other genotype data of other populations obtained from phase 3 of
the 1000 Genomes Project (http://www.internationalgenome.org/ (accessed on 1 January
2021)). Only individuals of Caucasian origin (using a threshold of 6 standard deviations
from mean Caucasian PC values) were kept for further analyses.

2.4. Genome-Wide Association Analysis

Plink software was used to perform the GWAS, under the additive model, adjusted by
the four main principal components, age (continuous), sex, liver stiffness at baseline, HIV
infection and treatment regimen containing interferon. Significant p-value was established
at 5 × 10−8 [18], whereas a p-value < 10−5 was considered as suggestive of statistical
significance. The qqman R package (version 0.1.8) (https://CRAN.R-project.org/package=
qqman (accessed on 1 January 2021)) was used for graphical representation of the GWAS
single-locus analysis results (Manhattan plot). Genetic variants were annotated using the
Variant Effect Predictor tool (version 104) [19]. The genomic inflation factor (ň) was also
determined by Plink.

2.5. Gene-Based Association Study and Enrichment Analyses

The Magma software (version 1.08) was used for calculating gene-wise statistics. This
software detects multi-marker effects taking into account the physical distance and linkage
disequilibrium between SNPs [20]. These analyses used a 50 kb upstream and downstream
window around each gene to capture potential regulatory variants of these genes. The
p_SNPwise_mean value calculated by the software was used for gene-based association
analyses. This p-value was corrected by the number of genes analyzed by the software.
Finally, 2 × 10−6 was the p-value threshold established for this study, whereas a p < 10−4

was considered as suggestive of statistical significance.
The ShinyGO application (version 0.61) [21] (http://bioinformatics.sdstate.edu/go/

(accessed on 1 January 2021)) was used for exploring enrichment in Gene Ontology (GO)
categories [22,23] for biological processes using the 150 top genes obtained from the gene-
based association analyses. Multiple testing correction was applied using the Benjamini–
Hochberg method implemented in the application. We considered significant those pro-
cesses with false discovery rate (FDR) p-value < 0.05. Only categories with a minimum of
ten overlapping genes were selected.

2.6. Additional Statistical Analyses

Continuous variables were expressed as median (quartile 1, quartile 3) and categorical
variables as frequencies (percentage). Comparisons of categorical variables were carried out
using the Pearson chi-square test or the Fisher test. Quantitative variables were compared
by means of Student’s t-test (data normally distributed) or Mann–Whitney U test (data not
normally distributed). The Wilcoxon test was used to compare LS values at the baseline
time point and at SVR. All these calculations were carried out using the SPSS software 25.0
(IBM Corporation, Somers, NY, USA).

https://www.cog-genomics.org
http://www.internationalgenome.org/
https://CRAN.R-project.org/package=qqman
https://CRAN.R-project.org/package=qqman
http://bioinformatics.sdstate.edu/go/
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3. Results
3.1. Study Population

Among the 1035 individuals that constitute the GEHEP-011 cohort, a total of 261
(25.2%) subjects had samples available for this study. Among them, 10 (3.8%) individu-
als did not reach the DNA quality criteria to be massively genotyped, 4 (1.5%) showed
relatedness with other included individuals and 5 (1.9%) did not have a Caucasian origin.
Consequently, 242 (92.7%) subjects constituted the study population (GWAS population).

The main characteristics of these individuals are depicted in Table 1.

Table 1. Main characteristics of both the study populations and the entire GEHEP-011 cohort.

Variables GWAS Population
(n = 242)

Gehep-011 Entire
Cohort (n = 1035) p

Age, years † 50 (46–53) 51 (47–55) 0.019
Males, n (%) 202 (83.5) 844 (81.5) 0.484

HIV infection, n (%) 174 (71.9) 667 (64.4) 0.028
PWID, n (%) 181 (74.8) 697 (67.3) 0.025

HCV genotype 3, n (%) 41 (16.9) 178 (17.2) 0.919
HCV viral load † ‡ 163 (68–398) 177 (59–415) 0.854

IFN-free treatment, n (%) 208 (86) 973 (94) <0.001
Baseline liver stiffness (KPa) † 116.8 (11.8–27.7) 16.8 (11.8–26.7) 0.487

PWID, People who injected drugs; HCV, Hepatitis C virus; IFN, interferon; kPa, Kilo Pascals. † Median (quartile
1–quartile 3). ‡ Expressed as 100,000 UI/mL.

Direct-acting antiviral regimens used in the GWAS population for achieving sustained
viral response are depicted in Supplementary Table S1.

3.2. Changes in Liver Stiffness from Baseline to SVR

The median (quartile 1, quartile 3) value of LS at the baseline time point was 17 (12,
28) kPa, whereas the value at SVR was 12 (8.5, 19.3) kPa (p < 0.001). Overall, the median
of the percentage of LS reduction from baseline to SVR was 28.8% (11.1%, 46.8%). More
specifically, 27 (11.1%) individuals showed a LS increment of 17.8% (8.5%, 22.3%) at SVR,
whereas 212 (87.6%) individuals experienced a LS reduction of 33.7% (16.2%, 48.4%). Three
(1.2%) patients did not show a LS change from baseline to SVR.

3.3. Genome-Wide Association Study

Initially, 592,389 SNPs passed the genotyping quality controls. After imputation, a
total of 6,939,676 variants were available for subsequent analysis. The GWAS population
did not reveal an admixture in the principal component analysis (Supplementary Figure S1).
In addition, no overall inflation of the test statistic was observed (ň= 1.00) (Supplementary
Figure S2), supporting that systematic confounding factors were unlikely.

There was not any SNP associated with the percentage of LS change from baseline
to SVR at the p-value threshold established for GWAS (Figure 1). Nevertheless, 35 SNPs
reached suggestive association with this endpoint (Table 2).

3.4. Gene-Based Association and Enrichment Analyses

The Magma software was used to carry out a gene-based association analysis. A total
of 18,127 genes were ranked. None of them reached the multiple testing corrected p-value.
Nevertheless, 3 genes reached suggestive statistical significance: LYPLAL1, PTGR1 and
SLC8A3 (Supplementary Table S2).
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Figure 1. Manhattan plot of the GWAS on the percentage of LS changes at SVR. Horizontal lines
correspond to of 1 × 10−5 and 5 × 10−8 p-values, respectively.

Table 2. Best single-locus genetic association analysis results (p < 10−5) obtained by plink.

CHR SNP BP A1 MAF BETA (95%CI) p Gene

18 rs12606769 9012996 C 0.207 −13.27 (−18.16–−8.386) 2.48 × 10−7 NDUFV2 †

18 rs9959475 9009311 A 0.234 −12.14 (−16.89–−7.387) 1.10 × 10−6 NDUFV2 †

18 rs1553736 9012842 C 0.215 −12.21 (−17.09–−7.333) 1.80 × 10−6 NDUFV2 †

18 rs56232039 9013366 A 0.212 −12.23 (−17.14–−7.315) 2.05 × 10−6 NDUFV2 †

6 rs2649545 119771886 A 0.447 −10.98 (−15.45–−6.508) 2.77 × 10−6 MAN1A1 †

18 rs67749125 11936826 T 0.048 −25.16 (−35.44–−14.89) 2.91 × 10−6 MPPE1 †

18 rs8095587 11936664 A 0.048 −25.16 (−35.44–−14.89) 2.91 × 10−6 MPPE1 †

18 rs12326768 11925795 G 0.052 −24.06 (−33.96–−14.17) 3.37 × 10−6 MPPE1 †

18 rs72942777 9004175 T 0.268 −10.78 (−15.22–−6.344) 3.45 × 10−6 NDUFV2 †

1 rs188739258 208743339 T 0.013 −42.14 (−59.53–−24.75) 3.60 × 10−6

5 rs62330020 311880 T 0.047 −22.65 (−32.03–−13.26) 3.94 × 10−6 AHRR

2 rs6437198 159613196 C 0.277 −11.38 (−16.13–−6.625) 4.70 × 10−6 APL1 †

18 rs12955366 11922625 C 0.056 −23.79 (−33.75–−13.83) 4.90 × 10−6 MPPE1 †

18 rs9951113 11927429 C 0.050 −24.12 (−34.22–−14.01) 4.95 × 10−6 MPPE1 †

6 rs9402699 99800122 A 0.277 −11.49 (−16.31–−6.662) 5.19 × 10−6 FAXC †

4 rs8180156 115907555 C 0.110 16.62 (9.637–23.6) 5.22 × 10−6 NDST4

18 rs9962961 11936268 C 0.050 −24.11 (−34.24–−13.98) 5.25 × 10−6 MPPE1 †

18 rs112570549 11920486 T 0.051 −23.43 (−33.33–−13.53) 5.95 × 10−6 MPPE1 †

4 rs17623036 115902626 C 0.108 16.61 (9.57–23.66) 6.32 × 10−6 NDST4 †

16 rs74918996 53055101 C 0.022 −33.49 (−47.71–−19.27) 6.55 × 10−6 CHD9 †

6 rs6924993 99798835 G 0.281 −11.37 (−16.21–−6.538) 6.69 × 10−6 COQ3 †
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Table 2. Cont.

CHR SNP BP A1 MAF BETA (95%CI) p Gene

20 rs6122460 62100105 A 0.096 −15.91 (−22.68–−9.141) 6.83 × 10−6 EEF1A2 †

18 rs11081454 9005806 A 0.257 −10.86 (−15.49–−6.238) 6.96 × 10−6 NDUFV2 †

20 rs310602 62109170 A 0.101 −15.78 (−22.51–−9.059) 7.07 × 10−6 EEF1A2 †

7 rs71537604 73067749 T 0.071 −18.85 (−26.9–−10.81) 7.30 × 10−6 VPS37D †

18 rs56786794 11922278 A 0.057 −22.95 (−32.76–−13.14) 7.53 × 10−6 MPPE1 †

13 rs61971490 73064151 T 0.045 −24.11 (−34.45–−13.77) 8.10 × 10−6

18 rs12960421 11923803 G 0.058 −22.89 (−32.72–−13.06) 8.23 × 10−6 MPPE1 †

20 rs4815993 7263756 A 0.348 10.09 (5.749–14.43) 8.62 × 10−6

4 rs114558514 115943168 T 0.108 16.51 (9.389–23.63) 8.99 × 10−6 NDST4 †

4 rs74700222 115938513 G 0.108 16.51 (9.389–23.63) 8.99 × 10−6 NDST4

4 rs76144590 115936946 G 0.108 16.51 (9.389–23.63) 8.99 × 10−6 NDST4

4 rs77275720 115946034 C 0.108 16.54 (9.395–23.68) 9.26 × 10−6 NDST4

6 rs13201542 99934459 A 0.076 −17.47 (−25.04–−9.894) 9.96 × 10−6 USP45

6 rs28385588 99915661 G 0.076 −17.47 (−25.04–−9.894) 9.96 × 10−6 USP45

CHR, chromosome; SNP, single-nucleotide polymorphism; BP, base pair position according to UCSC genome browser (NCBI37/hg19) and
dbSNP build 150; A1, minor allele; MAF, minor allele frequency; CI, confidence interval. † Closer gene within 100 kilobases.

We analyzed if the best 150 ranked genes obtained in the gene-based association study
(Supplementary Table S2) were significantly aggregated in specific categories of Gene
Ontology for biological processes. Processes related with DNA packaging complex, DNA
conformation change, chromosome organization and chromatin organization reached the
established FDR p-value threshold (Table 3; Supplementary Figure S3). Nevertheless, the
same genes (HIST2H2BE, HIST2H4B, SMC2, HIST2H3A, H2AFY, PRM2, PRM1, PRM3,
CDAN1, TNP2) were present in all these related biological processes.

Table 3. Enrichment analysis results obtained with the ShinyGO v0.61 application.

Process Description GO Term Number of Genes
in the Term FDR p-Value Overloaded Genes

DNA packaging GO:0006323 221 <0.001
NCAPH, HIST2H2BE, HIST2H4B, SMC2,

HIST2H3A, H2AFY, PRM2, PRM1,
PRM3, CDAN1, TNP2

DNA conformation
change GO:0071103 325 0.001

NCAPH, HIST2H2BE, HIST2H4B, SMC2,
HIST2H3A, H2AFY, PRM2, PRM1,

PRM3, CDAN1, TNP2, RAD23B

Chromosome
organization GO:0051276 1293 0.007

H2AFY, STAG1, NCAPH, MSL2,
HIST2H2AC, HIST2H2AB, HIST2H2BE,

HIST2H4B, HIST2H2AA4, RAD23B,
SMC2, RNF20, HIST2H3A, ATXN3,

RBL2, PRM2, SETD5, PPM1D, PRM1,
PRM3, CDAN1, TNP2

Chromatin
organization GO:0006325 849 0.039

H2AFY, MSL2, HIST2H2AC,
HIST2H2AB, HIST2H2BE, HIST2H4B,

HIST2H2AA4, RNF20, HIST2H3A,
ATXN3, RBL2, SETD5, PPM1D,

CDAN1, TNP2
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4. Discussion

In this work, we have reported possible genetic factors involved in the LS changes
from the moment of starting anti-HCV therapy to SVR. In addition, our data suggest that
processes related to DNA conformation are involved in these changes.

Although the statistically significant p-value threshold established for the GWAS
was not reached by any SNP, some suggestive associations deserve attention. On one
hand, and with respect to the top SNPs identified in our GWAS, the strongest signals were
linked to the NDUF2 gene. It has been recently reported that the expression of Nduf2,
a component of the complex I of the mitochondrial respiratory chain, was upregulated
in the hepatic stellate cells (HSCs) from a rat model of alcohol-induced fibrosis. In this
model, Nduf2 was involved in the regulation of fibrosis factors [24]. Other top SNPs
were linked to MAN1A1 and AHRR locus. MAN1A1 is a mannosidase with an important
role in the formation of mature glycoproteins, protein folding and in misfolded protein
degradation in eukaryotes [25]. Overexpression of MAN1A1 in a transgenic zebrafish
model promoted the development of steatosis, inflammation and hepatocellular carcinoma
formation, and also induced the overexpression of MM9 [26], a metalloprotease that seems
to be strongly involved in liver fibrosis resolution [27]. AHRR represses signal transduction
promoted by the Aryl-hydrocarbon receptor (AhR) [28]. AhR, highly expressed in the
liver, is a xenobiotic receptor that senses environmental toxicants and regulates xenobiotic
metabolism [29]. Recently, a controversial but important role of this protein in liver fibrosis
has been suggested. Specifically, knockout of AhR in HSCs causes spontaneous liver
fibrosis; in contrast, a non-toxic AhR agonist exhibited in vivo anti-fibrotic activity in
mice [30]. Therefore, a dysregulation on AHRR could interact with the role of AhR in a
possible anti-fibrotic activity. On the other hand, and regarding the gene-based association
study, we identified the LYPLAL1 gene as the top gene suggestively associated with the
percentage of LS variations from baseline to SVR. Interestingly, a variant linked to this
gene was related to histologic lobular inflammation/fibrosis in a GWAS performed on
non-alcoholic fatty liver disease [31]. Due to all of these facts, future validations of these
results in independent studies are warranted.

Among HCV-infected individuals with a more advanced liver disease, liver stiffness
normalization, as a reflection of liver injury improvement after HCV-infection cure, might
not be achieved. This non-return point in the course of liver disease would be more frequent
among infected patients who carry genetic risk factors for fibrosis progression. Therefore,
it could be hypothesized that genetic factors involved in liver disease progression during
HCV active infection could also be associated with LS changes observed during the HCV
treatment. Two GWAS were carried out among Caucasian individuals in the setting of
HCV active infection [32,33], and several SNPs and their linked genes were related to this
trait. However, none of them appeared in the top list of SNPs or genes associated with the
endpoint analyzed herein, nor did they show associations at nominal p-value (<0.05) (data
not shown), suggesting that mechanisms involved in liver disease progression during HCV
active infection are different to those involved in liver disease regression at SVR.

Interestingly, some of those top genes associated with the endpoint were grouped in
linked GO categories related with the conformation of the DNA and chromatin. Recently,
it has been reported that HCV infection induces genome-wide epigenetic changes through
histone modifications that lead to changes in active and repressed chromatin and, con-
sequently, reprograming of host gene expression. Besides, these changes persisted after
HCV eradication with DAA-based treatment [34,35]. In addition, the persistence of this
HCV-induced expression signature was more common in patients with pre-treatment liver
fibrosis and was related to the risk of HCC after HCV-infection cure [34,35]. In light of these
findings, our enrichment analysis results suggest the existence of a genetic susceptibility
for such epigenetic modifications induced by the HCV infection.

In spite of LS at SVR being a strong predictor of liver disease outcome in HCV-
infected patients with pre-treatment advanced fibrosis [14,15], other factors have been
independently associated with liver events’ occurrence. For instance, HIV-infection and
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non-genotype 3-HCV-infection have been related to a lower risk of HCC [36], whereas
the anti-HCV therapy used as well as the presence of diabetes have been associated with
incremented risk of HCC [37]. Therefore, it will be necessary to explore if the genetic factors
described herein have a role in the occurrence of these events as well as to determine their
real effect, taking into account all those non-genetic factors.

This work has some limitations. Firstly, because the collection of samples was not
mandatory to enter patients in the GEHEP-011 cohort, a relatively low number of individ-
uals were included in our study. This fact, together with the possible polygenetic nature
of the LS changes from baseline to SVR, would explain why no SNP reached the p-value
threshold established for GWAS. However, the biological plausibility of some of the genes
linked to those SNPs reported as suggestively associated with the main endpoint and, the
concordance of the enrichment analysis results with the molecular mechanisms proposed
for the persistence of the risk for liver events’ development in HCV-cured individuals, are
strengths of this work. Second, unfortunately, we could not include a replication sample.
Therefore, replication of the findings in other cohorts is needed to confirm these findings.
Additionally, if our results are replicated, it would be necessary to identify whether the
effect size of the genetic signals reported herein are homogeneous in the population sub-
groups stratified according to HIV-infection or treatment received. It is important to note
that we have not taken into account the duration of treatment and, therefore, we do not
know if this issue could be affecting our results. However, all LS determinations at SVR
were performed 12 weeks after the end of anti-HCV therapy. Moreover, it is known that
the use of IFN could affect the regression of the LS after HCV-infection cure. Although a
low proportion of patients were treated with DAAs combined with pegylated interferon,
our results were corrected by this factor. Finally, the inclusion of HCV-infected individuals
was conditioned by the availability of blood samples. Therefore, a selection bias cannot
be excluded. In fact, our study population was younger than that of the entire cohort.
Moreover, our study population had a higher proportion of HIV-infected subjects, and a
higher proportion of subjects who received DAAs combined with pegylated interferon
than that observed in the entire cohort. Nevertheless, our results were corrected by all of
these factors.

In conclusion, we have performed the first GWAS on LS values’ changes from baseline
to SVR among HCV-infected patients, HIV-coinfected or not, with pre-treatment advanced
liver fibrosis. Our results suggest that these changes in LS values could be partially
conditioned by multiple gene variants. Although further studies will be necessary to
confirm our results, our work provides clues about the possible molecular pathways
involved in this condition.
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Nodes appear connected if they share 20% or more genes. Thicker edges represent more overlapped
genes. Darker nodes are more significantly enriched gene sets. Bigger nodes represent larger gene
sets. Table S1: Direct-acting antiviral regimens used in the study population for achieving sustained
viral response (n = 242). Table S2: Top 150 genes associated with the percentage of LS changes at the
SVR time point with respect to the LS value measured at the moment of therapy starting according to
MAGMA gene-wise statistics.
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