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ABSTRACT

The synthesis and characterization of isotopomer
tandem nucleic acid mass tag-peptide nucleic acid
(TNT-PNA) conjugates is described along with their
use as electrospray ionisation-cleavable (ESI-
Cleavable) hybridization probes for the detection
and quantification of target DNA sequences by
electrospray ionisation tandem mass spectrometry
(ESI-MS/MS). ESl-cleavable peptide TNT isotopo-
mers were introduced into PNA oligonucleotide
sequences in a total synthesis approach. These
conjugates were evaluated as hybridization probes
for the detection and quantification of immobilized
synthetic target DNAs using ESI-MS/MS. In these
experiments, the PNA portion of the conjugate acts
as a hybridization probe, whereas the peptide TNT
is released in a collision-based process during the
ionization of the probe conjugate in the electrospray
ion source. The cleaved TNT acts as a uniquely
resolvable marker to identify and quantify a unique
target DNA sequence. The method should be
applicable to a wide variety of assays requiring
highly multiplexed, quantitative DNA/RNA analysis,
including gene expression monitoring, genetic pro-
filing and the detection of pathogens.

INTRODUCTION

Mass spectrometry has much to offer the field of genomic
analysis, particularly in terms of multiplexed analysis and
accurate quantification. To date, many mass spectro-
metry-based approaches for genomic analysis have been
based on direct detection of nucleic acids particularly

using matrix assisted laser desorption ionisation time-of-
flight (MALDI TOF) MS analysis. MALDI TOF is well
suited to this approach due to the high mass range
achievable by TOF analysis, however, MALDI TOF
instrumentation is relatively expensive and sample pre-
paration can be quite laborious. In addition, direct
analysis of nucleic acids by mass spectrometry suffers
from problems such as depurination leading to fragmen-
tation (1) or cation adduct formation (2,3). These issues
notwithstanding, MALDI TOF analysis of nucleic acids
has been applied to DNA sequencing (4,5), RNA
sequencing (6,7), analysis of DNA tandem repeats (8).
In particular, PNA probes, with and without non-
cleavable mass modifiers, have been used for character-
ization of genomic DNA libraries (9), detection of DNA
methylation (10) and detection of single nucleotide
polymorphisms (SNPs) (11,12) by MALDI TOF mass
spectrometry.

Electrospray ionisation (ESI) mass spectrometry has
also been used for direct detection of nucleic acids
(13-15). ESI-MS has some advantages over MALDI
TOF MS particularly the availability of lower cost
instrumentation. Moreover, sample handling can be
simpler since most molecular biology assays are carried
out in solution and such liquid samples are injected
directly into the instrument. Furthermore, very high
molecular weight species can be analysed due to the
propensity for large molecules, such as PCR products,
to form multiply charged ions that have relatively low
overall mass-to-charge ratios under electrospray ionisa-
tion conditions. However, direct analysis of nucleic acids
by ESI-MS still suffers from the same problems as
MALDI TOF MS such as cation adduct formation (14).
In addition, the multiply charged ion spectra that are
generated for large nucleic acid fragments can be very
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complicated reducing sensitivity and making multiplexing
difficult (16).

As an alternative to direct analysis of nucleic acids,
mass spectrometry can also be used to detect nucleic
acids indirectly through the use of cleavable mass tags,
which avoids many of the limitations of direct analysis of
nucleic acids while also offering numerous advantages
such as ease of multiplexing, more robust detection of
tag species and higher sensitivity and less demanding
workup and sample preparation for analysis. Mass
spectrometric analysis of mass tags, by ESI or MALDI
also offers the possibility of accurate quantification
through the use of isotopic tags. This capability of mass
spectrometry has not really been exploited in genomic
analysis but has been quite widely used in proteomic
analysis (17-19) and is a key advantage of the mass
spectrometric approach.

Again MALDI TOF analysis of nucleic acids with
cleavable mass tags has been demonstrated by various
groups (20-24) but it would be advantageous to be able to
take advantage of lower cost ESI-MS/MS instruments and
to avoid the laborious sample workup requirements of
most MALDI approaches. A matrix-free laser desorption
approach, which has reduced workup requirements has
been demonstrated (21,25) but this still requires that the
sample be spotted onto a MALDI target or hybridized to
an array. To our knowledge, only one mass tagging
approach employing ESI-MS analysis has been demon-
strated (26). In this approach, mass tags are photo-
cleavably linked to oligonucleotides and tag detection
requires a photo-cleavage step and a tag isolation step
outside of the mass spectrometer prior to tag detection, i.e.
the workup is not much simpler than that required
for MALDI TOF analysis.

Here, we describe the synthesis of novel ESI-cleavable
Tandem Nucleic acid mass Tag—peptide nucleic acid
conjugates and their analysis by ESI-MS/MS. We
demonstrate a novel mass tag cleavage method in which
source voltages in the electrospray ionisation source are
used to cleave an ESI-cleavable linker, by a collision-based
process, releasing the mass tag from the oligonucleotide
during ionization. This method allows for direct analysis
of assay solutions without requiring complex workups to
cleave and isolate tags. In principle, this cleavage method
would also allow in-line separation, by capillary electro-
phoresis for example, of labelled nucleic acids with direct
spraying of the separated material into the ion source
where tag cleavage would take place automatically.

In addition, we demonstrate a novel MS/MS-based
tandem nucleic acid mass tag (TNT) design and detection
process that allows highly specific detection of TNTs in a
complex background. The Tandem Nucleic acid mass Tag
design also allows easy synthesis of large sets of isotopic
tags supporting the development of multiplexed and
quantitative assays. We demonstrate the quantitative
nature of the TNT approach. Furthermore, we evaluate
ESI-cleavable TNT-PNA conjugates as hybridization
probes for the detection of target DNA sequences via
the use of ESI-MS/MS.

The TNTs described here are constructed using FMOC
peptide synthesis chemistry. Synthesis of peptide nucleic
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acid—TNT peptide conjugates is relatively straightforward
as PNA synthesis can be achieved using the same FMOC
protection groups that are used in peptide synthesis (27).
This means that peptide TNT-PNA conjugates can be
synthesized on the same resin in a continuous process.
PNA is a useful analogue of DNA and is advantageous for
this application due to its high specificity and its neutral
backbone, which means that it does not require high
concentrations of salt to hybridize making it highly
compatible with mass-spectrometry-based detection
methods (28-30).

The outline of the general approach for the detection of
DNA sequences via ESI-cleavable TNT-PNA conjugates
is presented in Figure 1. The ESI-cleavable TNT-PNA
conjugates consist of a PNA probe portion, which
interacts with the immobilized target sequence (DNA or
RNA) and a peptide tandem nucleic acid mass tag
portion, which is ultimately detected. Note that the TNT
shown is merely a representation of the tag and not a real
structure (Figure 2). An ESI-cleavable linker connects the
PNA probe portion of the conjugate to the tandem nucleic
acid mass tag peptide. The complete TNT ‘Parent Tag’
comprises the red ‘Tag Fragment’ portion and the blue
‘Mass Normalizer’ portion shown in Figure 1. The TNT
marker is designed to have a unique combination of
parent tag mass and tag fragment mass, released
during collision induced dissociation (CID), and it is this
pair of masses that serves as the sequence identifier. In a
typical scenario (Figure 1), a set of PNA hybridization
probes labelled with different TNTs is first hybridized to
the captured target nucleic acids of interest (step (1)).
After stringent washes to remove the non-hybridized
probes (step (2)), the probes are denatured from the target
(step (3)) and injected into an ESI-MS/MS instrument for
detection (step (4)). In the mass spectrometer, the TNTs
cleave from the PNAs during electrospray ionization
(step (5)). The TNT parent tag ions are then selected
from the background, fragmented by CID and finally,
daughter, tag fragment ions from the fragmentation are
detected (step (6)), confirming that the signals are indeed
due to the presence of tagged probes, thereby detecting the
presence of the target sequences.

The use of this MS/MS-based approach offers high
specificity allowing TNT labels to be detected in a
background of fragmentation noise. In addition, the MS/
MS detection means that tags can share the same mass as
long their tag fragment ions are distinguishable from each
other. This means that many TNTs can be detected in a
compressed mass range. This feature combined with the
relatively low overall mass required for TNTs, means that
TNT technology will be able to exploit lower cost compact
and portable ESI-MS/MS instrumentation that is currently
under development (31-36).

MATERIALS AND METHODS
Synthesis of TNT-PNA probes

FMOC-protected peptides were custom synthesized by
PepSyn Ltd (Liverpool, UK) using commercially available
FMOC-protected amino acids on a Beckman synthesizer.
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Figure 1. Schematic for the detection of target DNA/RNA sequences using ESI-cleavable TNT-PNA probes. (1) TNT-PNA probes are incubated
with captured targets; (2) unbound TNT-PNA probes are washed away; (3) correctly hybridized probes are then denatured off their target; (4) eluted
TNT-PNA probes are injected into an electrospray ion source; (5) TNTs are then cleaved from the PNA during electrospray ionization; (6) TNT
parent tag ions are selected from background and subjected to collision induced dissociation followed by detection of the tag fragment ions.

4-FMOC-piperazin-1-ylacetic acid was obtained from
Fluka (Sigma Aldrich, Dorset, UK). The amino acid
isotope '°C;, '"’N-FMOC-L-alanine was obtained from
Cambridge Isotope Laboratories, Inc (Andover, MA).
The sequences of the TNT peptides used for the
preparation of ESI-cleavable TNT-PNA probes are
shown in Table 1.

Peptide nucleic acid oligonucleotide syntheses were
carried out using a 2-pumol cycle on an Expedite 8900
synthesizer (Applied Biosystems, Foster City, CA). For
the preparation of peptide-PNA conjugates, the FMOC-
protected peptide TNT sequence was synthesized and left
on the resin by PepSyn Ltd with the N-terminal FMOC
left intact. The resin was extracted from the peptide
synthesizer column and was then loaded into the Expedite
synthesizer column (2 pmol per column). PNA synthesis
was carried out as normal on the preloaded resin. The
yield of each purified conjugate was in the range 4.3-32
ODyg9, which corresponds to a 1.5-21% yield based on
the 2-umol synthesis scale. The sequences and yields of the
TNT-PNA probes are shown in Table 2.

Biotinylated, fully complementary target 50-mer oligo-
deoxyribonucleotides for the hybridization experiments
were synthesized by Yorkshire Bioscience (York, UK) on
a l-umol scale. Target sequences are shown in Table 3.

TNT-PNA stock solutions were made up at a concen-
tration of 20pmol/ul in water. Biotinylated target
sequences were made up in stock solutions of 50 pmol/ul
in water.

Pre-hybridization ratio experiments

Six aliquots of 20ul of stock solution of the first
TNT-PNA probe was mixed with 20, 10, 4, 2, 1 and

0.5ul of the second TNT-PNA, respectively. To these,
water was added to make up the solution to a total of
40 pl. The aliquots were then made up to 80pl with
methanol and formic acid to give a final solution of the
TNT-PNA probes in 50:50 water:methanol with 1%
formic acid. These samples were then analysed by direct
injection ESI-MS/MS.

Quantification by external calibration experiments

Five aliquots of 50ul of MyOne Streptavidin ClI
Dynabeads (10mg/ml suspension) were separated from
their storage buffer and washed with twice with 50:50
methanol:water to remove potential mass spec contami-
nants. The beads were then washed with 1 x Bind & Wash
(B&W) buffer. B&W bulffer for Dynabead incubation was
made up according to the manufacturer’s instructions:
20mM Tris, pH 8.0, 2mM EDTA, 2 M NacCl. Six aliquots
of 20l (I nmol) of stock solution of one biotinylated
target was incubated with the Dynabeads. These aliquots
were all made up to 40l with the addition of 20 pul of
2 x B&W buffer. The biotinylated targets were then
incubated at room temperature with the streptavidin
beads for 1 h according to the manufacturer’s instructions
to immobilize the targets on the beads. The target solution
was then removed from the beads and the beads were
washed twice with hybridization buffer (20mM Tris,
pH 7.5, 10mM MgCl,, 25mM NaCl). A sixth aliquot of
100 pl of MyOne Streptavidin C1 Dynabeads was made up
in the same way but this aliquot was incubated with 40 pl
(2nmol) of stock solution of the same biotinylated target
and 40 ul of 2 x B&W bulffer.

Each aliquot of the first five aliquots of bead-captured
target was then incubated with 50 pl of a TNT-PNA probe
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Figure 2. The structures of two examples of PNA-TNT oligonucleotide probes are shown in part (i) of Figure 2a and b. The TNT tags, outlined by
the red broken line, are modular comprising different functional components that correspond to individual synthetic components in the automated
synthesis of these reagents. Each TNT is composed of two parts. The first part is a tag fragment, drawn in red, that comprises a charge-carrying
group, the piperazine moiety outlined by the black broken box, and an alanine mass modifier group, outlined by the green broken box. The tag
fragment is linked to the second part of the tag, which is a mass normalization group, drawn in blue, that ensures that each tag in a pair of tags
shares the same overall mass and atomic composition. Note that the tags shown above are not strictly isobaric due to an issue with the synthesis
discussed in the text. The mass normalization group is essentially uncharged and comprises a second alanine mass modifier group to adjust the

overall mass of the tag and a proline group that is part of the electrospray

cleavable linker. The ESI-cleavable linker is outlined by another black

broken box and comprises an aspartic acid proline linkage. Part (ii) of Figure 2a and b show the expected structures of the products generated
by cleavage in the electrospray ion source. Similarly, the expected structures of the cleavage products generated by CID of the TNT parent
ions are shown in part (iii) of Figure 2a and b. The sequences of all of the TNT labels and the PNA probes evaluated in this article are shown in

Tables 1 and 2.

solution comprising 1nmol of the TNT-PNA probe
complementary to the target on the beads. Similarly, the
sixth aliquot was then incubated with 100 ul of a second
TNT-PNA probe solution comprising 2 nmol of the TNT-
PNA probe complementary to the target but with the
alternative TNT tag on the probe. Hybridization of all the
aliquots was carried out at room temperature for two

hours. After hybridization, the probe solution was
removed from the beads and the beads were washed
three times with ice-cold 70mM aqueous ammonium
citrate solution. After the wash step, the sixth aliquot was
resuspended in 100 pul of ammonium citrate. Aliquots of
the sixth aliquot were then pipetted into the first six
aliquots: 20, 10, 4, 2, and 1 pl, respectively. The mixtures
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Table 1. Sequences of TNT peptides
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Tag name Peptide sequence
TNTI Beta Alanine — Aspartic Acid — Proline — '*Cs, '>N-Alanine — Piperazin-1-ylacetic acid — Alanine
TNT2 Beta Alanine — Aspartic Acid — Proline — Alanine — Piperazin-1-ylacetic acid — '*C5, ""N—Alanine

Table 2. Sequences of TNT-PNA conjugates

Probe Name Oligonucleotide sequence Yield
MOMP-8-TNT1 NH,-ATTGATGG-TNT1-COOH 8%
MOMP-12-TNTI NH,-GCAGACTTTGTT-TNTI1-COOH 14.5%
MOMP-12-TNT2 NH,-GCAGACTTTGTT-TNT2-COOH 7.3%
MOMP-16-TNT1 NH,-CAGACTTTGTTCCAGT-TNT1-COOH 3.5%
ANTHRAX-8-TNT2 NH,-TGTCCACA-TNT2-COOH 9.1%
ANTHRAX-12-TNT2 NH,-CCACATATCGAA-TNT2-COOH 6.9%
ANTHRAX-12-TNTI NH,-CCACATATCGAA-TNT1-COOH 21%
ANTHRAX-16-TNT2 NH,-TGTTGTCCACATATCG-TNT2-COOH 1.5%

Table 3. Target sequences

Target name

Oligonucleotide sequence

MOMP-50
ANTHRAX-50

Biotin-CAGACGCTGGCGTAGCAACAGCTACTGGAACAAAGTCTGCGACCATCAAT-3'
Biotin-TCTAGTTTTAGACAGGAGATTCGATATGTGGACAACAAATATTATCAAAA-3

were then mixed thoroughly. The hybridized TNT-PNA
probes were then denatured from their captured target by
incubating the beads at 85°C for 20 min in 50:50 water:-
methanol with 1% formic acid. The elution solutions were
then analysed by direct injection ESI-MS/MS.

Quantification by internal calibration experiments

Six aliquots of 125ul of MyOne Streptavidin CI
Dynabeads (10 mg/ml suspension) were separated from
their storage buffer and washed with twice with 50:50
methanol:water to remove potential MS contaminants.
The beads were then washed with 1 x B&W buffer.
Six aliquots of 20ul (I nmol) of stock solution of one
biotinylated target was mixed with 20, 10, 4, 2, 1 and
0.5 ul, respectively of the other biotinylated target. To
these, water was added to make up the solution to a total
of 40 ul. The aliquots were then made up to a volume of
80ul by addition of 40pul of 2x B&W buffer. These
aliquots were then added to the aliquots of washed beads.
The biotinylated targets were then incubated at room
temperature with the streptavidin beads for 1h according
to the manufacturer’s instructions to immobilize the
targets on the beads. The target solution was then
removed from the beads and the beads were washed
twice with hybridization buffer.

Each aliquot of captured target was then incubated with
100 ul of TNT-PNA probe solution comprising 1 nmol of
each of two TNT-PNA probes of the same length in
hybridization buffer, i.e. 1 nmol of ANTHRAX-12 would
be mixed with 1nmol MOMP-12. Hybridization was
carried out at room temperature for two hours.
After hybridization, the probe solution was removed
from the beads and the beads were washed three times
with ice-cold 70 mM aqueous ammonium citrate solution.

The hybridized TNT-PNA probes were then denatured
from their captured target by incubating the beads at 85°C
for 20 min in 50:50 water:methanol with 1% formic acid.
The elution solutions were then analysed by direct
injection ESI-MS/MS.

Mass spectrometric analyses

ESI-MS/MS spectra were obtained on a Micromass
Q-TOF Micro mass spectrometer (Micromass (Waters),
Wythenshaw, UK). The TNT-PNA oligonucleotides
were denatured from the Dynabeads into 50:50
Methanol:Water with 1% formic acid. Mass spectra
were externally calibrated using the manufacturer’s
standards and calibration protocols.

RESULTS

Tandem nucleic acid mass tag-PNA oligonucleotide probe
design and synthesis

Two pairs of example TNT-PNA oligonucleotide probes
are shown in part (i) of Figure 2a and b. The TNTs are
peptides comprising two parts, the tag fragment portion,
which carries a charge due to the presence of a tertiary
amino-functionality and the mass normalization portion,
which remains essentially uncharged. These two portions
of the tag are linked by a cleavage enhancement group,
a piperazine ring, which also carries the charge of the tag
fragment on its tertiary amino-group. The two tag
portions both comprise a mass modifier component,
which are isotopes of alanine in this tag although a large
number of different mass modifiers could be used. It can
be seen from Figure 2 that the two tags shown employ the
same mass modifier components but the order differs
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between the tags. Thus, the overall masses of the tags are
the same but the tag fragments have different masses,
which are equalized by the mass of the mass normalization
portion. These tags are designed so that on analysis by
collision-induced dissociation (CID), the tag fragment is
released to give rise to a uniquely resolvable ion. Thus, this
pair of tags allows a pair of PNA probes to be
distinguished by MS/MS analysis. Each tag is linked
to a PNA oligonucleotide probe by a second linker,
comprising aspartic acid and proline that is easily
cleaved by CID (37). As shown in Figure 2, the aspartic
acid/proline linker is used to cleave the tags from their
oligonucleotides during electrospray ionization of the
tagged oligonucleotides. The expected structures and
mass-to-charge ratios of the cleaved parent tag ions
generated by dissociation of the aspartic acid/proline
linkage are shown in part (ii) of figure 2a and b (37).
Similarly, the expected structures and mass-to-charge
ratios of the tag fragment ions and the structures of
the neutral mass normalizer fragments, based on the
predictions of the ‘mobile proton model of
peptide fragmentation (38,39), are shown in part (iii) of
Figure 2a and b.

The use of FMOC peptide synthesis chemistry to
synthesize the TNTs combined with FMOC PNA
chemistry to synthesize the oligonucleotide probe
sequence means the same resin can be used to synthesize
both portions of the tagged probe in a single total
synthesis approach. For the probes discussed here, the
TNT portion of the probe was synthesized in a
commercial peptide synthesizer using standard peptide
synthesis resin cartridges. The cartridge was then opened
and the resin within was loaded into a cartridge suitable
for a commercial oligonucleotide synthesizer that supports
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allowing the completion of the synthesis of the probe.
The completed probe was then cleaved from the resin and
deprotected in one step (TFA/cresol) and then purified.
With this approach, only one purification step is required
resulting in better yields of finished probe than multi-stage
processes.

Figure 3 illustrates the ease with which a substantial
number of tags can be synthesized from a small set of mass
modifier components: nine tags, shown in Figure 3b can
be made from three mass modifiers, which are the three
commercially available isotopes of alanine shown
in Figure 3a. In fact, the number of tags that can be
synthesized increases as the square of the number of mass
modifier components, e.g. there are at least five isotopes
of alanine with different masses that are commercially
available which would actually allow the synthesis of
25 tags using the design presented here.

One issue that emerged from the experiments presented
here was a loss of '*C isotope from the carboxylic acid of
alanine when the alanine isotope was present at the
C-terminus of the peptide TNT, i.e. in TNT2 shown in
Table 1. This loss is consistent across every TNT-PNA
synthesized with TNT2 and may be an effect of the resin
used, which relied on a 4-HydroxyMethyl-Phenoxy Acetic
acid (HMPA) linker to the carboxylic acid group of the
first amino acid to allow the peptide to be cleaved from the
resin at the end of the synthesis. Other resins will be tested
in future to avoid the loss of isotope. This has meant that
the TNTs synthesized were not completely isobaric as
shown in Figure 2. The mass of the singly charged parent
tag ion of TNTI is 388.2 while that of TNT2 is 387.2. For
the MS/MS analysis of these tags, both tags could
still be selected simultaneously by the first quadrupole
of the Q-TOF instrument, as the mass range that is

PNA synthesis (Expedite DNA/PNA synthesizer), gated is actually about 3 daltons for the default setting of
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Figure 3. The structures in Figure b illustrate the combinatorial nature of the tandem mass tag design. Different combinations of the three
commercially available isotopes of Alanine shown in Figure a have been used to produce nine uniquely resolvable tandem mass tags that are all
chemically identical and which fall into five groups of different masses. TNTs in each mass group are isobaric.
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the instrument. It was found that setting the nominal
selection mass to 388 daltons facilitated transmission of
both ions without significantly favouring the selection of
either tag.

The TNT approach is similar in principle to other mass
tagging techniques and enjoys the same features as other
approaches, such as ease of multiplexing and the ability to
design tag masses to suit applications, with some addi-
tional advantages. TNT tags can be made chemically
identical, even sharing the same mass as long as the tag
fragments are different, so they can act as more precise
reciprocal internal standards, which leads to more accurate
quantification and the same behaviour in analytical
separations, hybridizations and labelling reactions thus
avoiding ‘dye effects’ that plague fluorescent methods
(40,41). The use of an MS/MS-based detection method
allows TNTs to be selected from background noise thus
improving signal to noise ratios. This allows untagged
material to be ignored, greatly improving data quality.

Confirmation of cleavage mechanism

To confirm that the TNT-PNA oligonucleotide conju-
gates cleave as they are expected to (see expected fragment

100 Gollision Energy: 20V
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structures and mass-to-charge ratios in Figure 2),
the TNT-PNA oligonucleotides were analysed by
ESI-MS/MS on a micromass quadrupole-time-of-flight
(Q-TOF) mass spectrometer. The complete TNT-PNA
probe molecules were initially ionized with the cone
voltage (an accelerating voltage in the ESI source that
can be varied on the micromass instrument to control the
levels of collision induced dissociation) set to minimize
fragmentation of the whole TNT-PNA probe conjugate
ions. The whole molecular ions were selected using the
first quadrupole of the instrument and were then subjected
to collision induced dissociation at different collision
energies. Fragmentation of the complete TNT-PNA
conjugate ions was carried out as it allows both the
cleavage of the TNT parent tag from the PNA and the
cleavage of the tag fragment from the parent tag to be seen
simultaneously in the TOF analyser of the Q-TOF
instrument thus demonstrating both cleavage processes
and their relative efficiencies. Typical results are shown in
Figure 4, in which it can be seen that, as the collision
energy is increased, the whole TNT-PNA probe ion
fragments to release the parent tag ion as the predominant
fragmentation product. As the fragmentation energy is
increased further, the parent tag ion undergoes subsequent
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Figure 4. The spectra above show the effect of increasing the collision energy on the release of the TNT from the TNT-PNA conjugate. In this
experiment, a mixture of two 12-mer TNT-PNA conjugates comprising the same sequence but different tags (MOMP-12-TNT1 and MOMP-12-
TNT2) have been analysed. It can be seen that as the collision energy is increased, the intensity of the TNT parent tag ions at m/z 387.3 and 388.3
also increases. The tag fragment ion at m/z 216.1 and 219.2 is also released (only the 216.1 ion is annotated although the 219.2 is present at similar
quantities if the spectra are zoomed—not shown). The tag fragment intensity are lower than those for the parent tag ions at 25 and 30V as they
cleave less easily, but the relative intensity of the tag fragment ions increases as the CID energy increases to 35V and consecutive fragmentation of
the parent tag ion reduces the intensity of the parent tag ion.
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Figure 5. Analysis of a pair of TNT-PNA conjugates in 20:1 ratio by ESI-MS/MS. The TNTs are cleaved from their conjugates in the
ESI ion source using a cone voltage of 25V followed by subsequent selection of the parent tag ions from background by simultaneously gating
both the 387.2 and 388.2 ions with the first quadrupole of the Q-TOF instrument. These parent tag ions are subjected to CID in the
second quadrupole of the Q-TOF instrument followed by mass separation and detection in the TOF analyser. It can be seen that there is very little
noise in the region of the spectrum where the tag fragment ions are detected and that the ratios reflect the relative abundance of the TNT-PNA

conjugates.

consecutive fragmentation to give the desired daughter
fragment ion. As the collision energy increases further, the
intensity of the parent tag ion increases. Similarly, the
ratio of the daughter ion to parent ion increases more.
These results show that the TNT-PNA probe molecules
fragment as anticipated with the aspartic acid/proline
linkage cleaving more easily than the piperazine linkage.
The higher collision energy spectra are quite noisy as these
also contain other products from the fragmentation of the
TNT-PNA probe molecule, which would not normally be
present when the TNT parent tag ions are analysed by
themselves.

The normal mode of analysis is shown in Figure 5. Here
the cone voltage in the electrospray ion source is increased
to 25V increasing the level of fragmentation during
ionization thus releasing the parent tag ion from the
TNT-PNA conjugate. The parent tag ion is then selected
from background by the first quadrupole in the Q-TOF
instrument. The parent tag ion is subsequently subjected
to CID in the second quadrupole of the Q-TOF
instrument. A collision energy of 25V was used for
CID. MS/MS spectra showing the detected tag fragment
ions are shown in Figure 5. These spectra show ratios of
two tags and demonstrate the accuracy of quantification

of the TNT technology, which is discussed in the next
section.

A brief experiment to determine whether there were
any obvious size dependent effects on the efficiency of the
cleavage of the TNT from the TNT-PNA conjugate
during electrospray ionisation was carried out. In this
experiment, pairs of TNT-PNA oligonucleotides of
different lengths were mixed together in 1:1 concentra-
tions. It might be expected that the larger TNT-PNA
probes would fragment somewhat less easily due to their
greater size and the consequent ability to dissipate kinetic
energy from collisions over many more different modes of
vibration. This would mean that the larger probes should
be detected with less sensitivity. It turned out that the
larger sequences gave slightly more sensitivity with the
16-mer being almost twice as sensitive as the 8-mer in this
experiment. This result may reflect the mechanisms of
cleavage and detection, which are dependent on protona-
tion of the aspartic acid and the piperazine groups in
the tags. The larger probes tend to adopt higher charge
states (not shown), i.e. they are more heavily protonated
and the availability of more free protons on the
larger probe ions may facilitate the cleavage of the tags,
masking steric effects. However, only three different size
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Figure 6. The deviation of the observed ratio from the expected ratio of various concentrations of a mixture of TNT-PNAs in a 2:1 ratio is shown.
The deviations are a mean of four replicates at each concentration. Data was accumulated for 3min for each replicate. The concentration of the
probe with the higher concentration ranged from approximately 6.6 pmol/ul to 66 fmol/pl. The expected ratios are conserved reasonably accurately

over the dilution series, within a margin of about 10%.

molecules were evaluated, and this will be explored more
fully in future.

Accuracy of quantification, sensitivity and dynamic range

A key feature of the Tandem Nucleic acid mass Tag design
is the ease with which large numbers of chemically
identical, isotopomeric tags can be made (Figure 3). Sets
of TNT isotopes should have almost identical behaviour
in analytical separations (17) and during the ionization
process. This means that it should be possible to use these
tags to accurately quantify their associated oligonucleo-
tide sequences as the ratios of the intensities of the TNT
isotopomer fragments should reflect the ratios of the
concentrations of the probes in solution or hybridized on
their targets (Figure 5). To demonstrate this feature of
the TNT design, various experiments were conducted.
In these experiments, pairs of TNT-PNA conjugates are
analysed by ESI-MS/MS, where the parent tag ions are
cleaved from their probes in the ESI ion source using
a cone voltage of 25V. The cleaved parent tag ions are
subsequently selected from background by gating both
387.3 and 388.3 ions with the first quadrupole of the
Q-TOF instrument. The gated parent tag ions are then
subjected to CID in the second quadrupole of the Q-TOF
instrument using a collision energy of 25V followed by
mass separation and detection in the TOF analyser to

determine the ratios of the tag pairs. In the first set of
experiments, pairs of TNT-PNA oligonucleotide probes of
the same length and sequence, but with different tags were
mixed in a predefined ratio and diluted to determine how
well the ratios are conserved as the concentration of
probes is decreased. Results are shown in Figure 6. It can
be seen that the ratios of the isotopic TNT-PNA probes
are conserved over the range of concentrations
investigated.

In a second experiment, pairs of TNT-PNA probes of
the same length were mixed in various different ratios. The
correlation between the expected and measured quantities
of these different TNT-PNA ratios is shown in Figure 7.
It can be seen that there are simple linear correlations
between the expected and measured ratios. The blue
crosses in Figure 7 indicate the results of experiments
where the two TNT-PNA probes with the same sequences
but with different isotopomeric tags were mixed, i.e.
the whole TNT-PNA probes were isotopes of each other.
The measured ratios for these probes closely match the
expected ratios.

The red squares in Figure 7 indicate the results of
experiments where the two different probe sequences of
the same length were mixed, i.e. although their TNT labels
were different isotopes of each other, the complete TNT-
PNA probes were not isotopes of each other. The red line
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Figure 7. The relationship between the expected and the measured quantities of tag fragments cleaved from predefined mixtures of pairs of
TNT-PNA probes. The red boxes and red regression line represents an experiment to measure the accuracy of TNT quantification when the paired

TNTs are on different PNA sequences.

represents a linear regression through these data points.
Although the predicted and expected ratios do not match
exactly, there is a good correlation between the results
indicating that the measurements are quantitative. Since
the TNT-PNA probes were actually different in these
experiments, it is pleasing to see that there is correlation
between the measured and expected quantities and the
result suggests that, in future use, the measurements of the
quantity of different targets in a sample could be
calibrated against an internal control such as
a housekeeping gene or, preferably, a known quantity of
a spiked target sequence.

External calibration to quantify hybridized probes

Quantification of hybridized probes was also evaluated.
In the first experiment, external calibration of the
quantities of hybridized probes was assessed, i.e.
the amount of target in one sample was probed with a
TNT-PNA whose abundance was then determined by
comparison with a second reference sample comprising
a predefined quantity of the duplex of the same target
sequence and PNA probe sequence, but with a different
TNT isotope conjugated to the probe, after the hybridiza-
tion. In these studies, aliquots of a synthetic biotinylated
50-mer DNA oligonucleotide target was captured onto
avidinated magnetic beads and hybridized with
TNT-PNA probes with identical probe sequences but
different tags. The hybridized beads were then mixed in
different ratios. The target, arbitrarily selected, was

a fragment of a sequence from the MOMP gene from
Chlamydia pneumoniae. A fixed quantity of one
TNT-PNA probe complementary to one of the targets
was hybridized to the captured target sequences. The
aliquots of beads were then washed extensively to remove
probe that had not hybridized. The captured TNT-PNA
probe mixture was then eluted into 50:50 water:methanol
with 1% formic acid (a solvent suitable for ESI-MS/MS
analysis) by thermal denaturation. The eluted TNT-PNA
and the spike were then injected directly into the Q-TOF
instrument for MS/MS analysis. The ratios of the
intensities of the two tags derived from the TNT-PNAs
should allow the amount of the target sequences in the
pooled samples to be determined. Figure 8 shows the
actual correlation between the expected and measured
quantities of the target sequences. The results are very
similar to the experiments where TNT-PNA probes with
the same sequence but different tags are simply mixed
together: the measured ratio matches very closely the
expected ratio. Negative controls in which the target was
absent do not show significant binding of TNT-PNA
conjugates to the beads so the probe binding is sequence
specific. This gives a clear indication that the probes
behave quantitatively in hybridization assays and that
TNT-PNA probes can be used for accurate quantification.

Internal calibration to quantify hybridized probes

A further evaluation of the quantification of the
TNT-PNA conjugates was carried out to determine
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Figure 8. The relationship between the expected and measured ratio of mixtures of captured target sequences probed with 12-mer TNT-PNA probes.
Experiments to quantify targets by external calibration where the PNA probes had identical sequences but different TNTs are shown with blue
crosses and the blue regression line while experiments to quantify targets by internal calibration, i.e. using one sequence as a reference to quantify a

different sequence are shown as red squares and the red regression line.

whether accurate relative quantification can be derived
from TNT-PNA pairs with different PNA sequences, i.e.
can a reference sequence in a sample probed with one
TNT-PNA be used to quantify a second sequence with
a different PNA probe as long as the TNTs used in the
probe pair are isotopes of each other. This would enable
quantification by internal calibration wusing spiked
sequences, housekeeping genes or similar controls in
quantitative expression profiling or diagnostic assays.
In these experiments, a pair of biotinylated 50-mer
target oligonucleotides was used (MOMP-50 again and a
sequence from B. anthracis, ANTHRAX-50; see Table 3).
These were captured onto streptavidin-coated magnetic
beads. The quantity of one target was fixed while the
relative quantity of the second was varied. The captured
targets were then hybridized at room temperature with a
probe solution comprising equal quantities of MOMP-12-
TNT1 and Anthrax-12-TNT2 probes (see Table 2). Probes
of the same length were used together. After the
hybridization, the magnetic beads were washed as before
and the hybridized TNT-PNAs were eluted from their
targets on the beads into 50:50 methanol:water with 1%
formic acid and analysed as described ecarlier. Typical
results are shown in Figure 8. As observed in the simple
mixture experiments, the measured TNT ratios show
a linear relationship with the expected ratios but the

measured quantities do not exactly match the expected
ratios when the TNT-PNA probes being compared are not
true isotopes but the linear relationship does mean that the
measurements are quantitative. These data suggest that
with appropriate choice of reference sequences, quantita-
tive internal calibration should be achievable, which
would be very useful in situations where suitable reference
samples are not available for external calibration.

DISCUSSION

In this article the synthesis, characterization and applica-
tion of ESI-cleavable TNT peptide-PNA conjugates to the
quantitative detection of target DNA sequences by ESI-
MS/MS has been described. The conjugates were prepared
by first synthesizing the TNT tag peptide sequence in a
peptide synthesizer, after which the peptide synthesis resin
was transferred to a column compatible with a DNA
synthesizer in which PNA can be prepared. The PNA
sequence was extended directly from the peptide TNT.
The use of PNA has several advantages for this applica-
tion: (i) the oligonucleotide and the peptide TNT are
generated in a single synthesis on the same resin, which
means only a single purification step is required after the
synthesis is completed; (ii)) PNA is approximately 15%
lower in mass than a corresponding DNA sequence, which
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enhances mass spectrometric sensitivity; (iii) PNA has
enhanced binding affinity for its target compared with a
corresponding DNA sequence, so a shorter probe can be
used to achieve a corresponding level of specificity;
(iv) PNA can hybridize under low salt conditions,
which is more favourable for ESI analysis of samples as
ESI-MS is susceptible to signal suppression by high salt
concentrations.

We have shown that these TNT-PNA probes hybridize
quantitatively and specifically to their targets and that
the probes perform reliably over a wide dynamic range
providing a new platform for multiplexed and quantitative
genomic analysis.

The ESI-cleavable TNT mass markers described in this
article have several properties that make them very useful
for quantitative, multiplex assays, including the following:
(i) The TNT portion can be elaborated into very large
arrays of tags using only small numbers of starting
components. The 20 standard amino acids as well as the
large number of isotopic variants of these amino acids that
are available provide the possibility of synthesis of
numerous marker molecules that are easily resolved by
the unique combination of parent and daughter ion mass-
to-charge ratios; (i) The ESI-cleavability allows direct
analysis of solution phase assays without complex workup
of the samples unlike MALDI, which requires that
samples are spotted onto targets; (iii) The ESI-cleavable
linker connecting the DNA and the TNT components
cleaves virtually instantaneously during electrospray
ionisation that will allow separations such as capillary
electrophoresis to be performed in-line with the MS/MS
analysis; (iv) In-line separation allows for a further level of
multiplexing over and above the large numbers of
available tags since the probes can be identified by their
elution time as well as by their tag and in future work,
we will explore the use of this feature to enable in-line
coupling of analytical separations such as capillary
electrophoresis; (v) sets of isotopic TNTs can be synthe-
sized that behave identically during separations, hybridi-
zations and labelling reactions enabling accurate
measurements of quantities of target nucleic acids without
‘dye effects’ widening the range of applications for which
mass tags can be employed.

The use of TNT-PNA oligonucleotide conjugates offer
many of the advantages of fluorescent detection such as
high specificity, ease and safety of handling and high
sensitivity with the additional unmatched advantages that
result from being able to generate large numbers of tags
with predefined masses and from being able to construct
these sets of tags with stable isotopes generating chemi-
cally identical entities that will behave the same in
labelling reactions and in separation steps. This means
that multiplexed analyses with accurate quantification are
now enabled in a user-friendly format. Future experiments
will be directed towards evaluation of the TNT-PNA
probes for post-PCR amplicon detection. In addition, the
development of TNT-DNA oligonucleotide conjugates
and evaluation of these probes as primers for multiplexed
PCR amplification and subsequent detection of PCR
amplicons will also be pursued. The ability to employ
in-line capillary electrophoresis with immediate cleavage
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and detection of tags will be of particular interest as many
genomics assays, such as restriction fragment length
polymorphisms, satellite marker analysis and multiplexed
PCR employ size separations and the ability to perform
such analyses with the higher levels of multiplexing
enabled by this technology will be of great advantage.
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