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Weighted gene co-expression network analysis (WGCNA) is used to detect clusters with highly correlated
genes. Measurements of correlation most typically rely on linear relationships. However, a linear rela-
tionship does not always model pairwise functional-related dependence between genes. In this paper,
we first compared 6 different correlation methods in their ability to capture complex dependence
between genes in three different tissues. Next, we compared their gene-pairwise coefficient results
and corresponding WGCNA results. Finally, we applied a recently proposed correlation method,
Hellinger correlation, as a more sensitive correlation measurement in WGCNA. To test this method, we
constructed gene networks containing co-expression gene modules from RNA-seq data of human frontal
Alzheimer's disease cortex from Alzheimer’s disease patients. To test the generality, we also used a microarray data set from
Hellinger correlation human frontal cortex, single cell RNA-seq data from human prefrontal cortex, RNA-seq data from human
GTEx temporal cortex, and GTEx data from heart. The Hellinger correlation method captures essentially similar
scRNA-seq results as other linear correlations in WGCNA, but provides additional new functional relationships as
exemplified by uncovering a link between inflammation and mitochondria function. We validated the
network constructed with the microarray and single cell sequencing data sets and a RNA-seq dataset
of temporal cortex. We observed that this new correlation method enables the detection of non-linear
biologically meaningful relationships among genes robustly and provides a complementary new
approach to WGCNA. Thus, the application of Hellinger correlation to WGCNA provides a more flexible
correlation approach to modelling networks in gene expression analysis that uncovers novel network

relationships.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Weighted gene co-expression network analysis (WGCNA) is a
popular method for detecting and investigating highly correlated
gene clusters based upon high-throughput sequencing expression
datasets. These gene clusters may then act in coordination to facil-
itate specific biological processes [1-5]. The default correlation
method of traditional WGCNA is Pearson’s correlation, a standard
measurement of linear correlation between two variables, measur-
ing the extent of pairwise dependence between genes based on
their expression level. However, linear correlation, or more gener-
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ally monotone correlation, is not the only form of dependence (e.g.
parabolic function, trigonometric function, etc.) [6]. Although dom-
inated by several historical methods, such as Pearson'’s correlation,
Spearman’s correlation, and Biweight midcorrelation, new statisti-
cal methods quantifying dependence are constantly being
explored. Mutual information (MI) quantifies complex dependence
by measuring how much a random variable can be determined by
knowing another [7]. Distance correlation is a new method that has
the ability to detect both linear and non-linear dependence but has
a higher priority for detecting linear dependence [8]. Hellinger cor-
relation is a recently proposed estimator, which has better perfor-
mance in characterizing general dependence. In contrast, Pearson’s
correlation and Biweight midcorrelation capture perfect linear
dependence, and some rank-based measures such as Spearman’s
correlation only achieve their best performance in monotone
dependence cases [9,10].

2001-0370/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.07.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.07.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:GarryGWong@um.edu.mo
https://doi.org/10.1016/j.csbj.2022.07.018
http://www.elsevier.com/locate/csbj

T. Zhang and G. Wong

Alzheimer’s disease (AD) is the most common neurodegenera-
tive disease that is pathologically characterized by B-amyloid
(AB)-containing extracellular plaques and tau-containing intracel-
lular neurofibrillary tangles, and clinically characterized by gradual
cognitive decline and dementia [11-13]. Several hypotheses have
been proposed to underlie AD including amyloidosis [14-17], tau
pathology [18-20], mitochondria dysfunction [21-23], oxidative
stress [23-25], and neuroinflammation [26-28], whereas the etiol-
ogy remains elusive. Large-scale genome-wide association studies
(GWAS) identified several risk genes of AD, such as mutations in
APP (encoding amyloid precursor protein), AGRN (encoding agrin),
LILRB2 (encoding leukocyte immunoglobulin-like receptor B2),
GRN (encoding granulin), and APOE (apolipoprotein E) [29]. How-
ever, no single gene has been identified to explain the mechanism
of most AD cases. Therefore, network-based analysis, representing
a more comprehensive approach to recapitulate and investigate
the pathogenic mechanism at the molecular level, is popular in
understanding pathogenesis and discovering therapeutic targets
in human disease [30-33].

In the present study, we demonstrate the insensitivity and
insufficiency of calculating linear dependence (Pearson’s correla-
tion, Spearman'’s correlation, and Biweight midcorrelation) of gene
expression to predict corresponding functional dependence. Subse-
quently, we applied 6 WGCNA methods: Pearson WGCNA and
Spearman WGCNA, Biweight WGCNA, Distance WGCNA, MI
WGCNA and Hellinger WGCNA based on the corresponding corre-
lation coefficients measuring gene dependence in RNA-seq human
data sets including dorsolateral prefrontal cortex (DLPFC), tempo-
ral cortex (TC) and heart. The modules with highly correlated genes
were compared. Finally, we focused on Hellinger WGCNA results of
DLPFC, and investigated the modules selected by the significant
correlation between module eigengene and pathological (neurofib-
rillary tangles and neuritic plaques) and clinical phenotypes (cog-
nitive diagnosis). Our results demonstrate a notable advantage of
utilizing a non-linear correlation measure to uncover novel gene
co-expression networks in neurodegenerative disease. This
approach may also be applicable to a wide range of gene expres-
sion data sets.

2. Materials and methods
2.1. 2.1Brief introduction of different correlation coefficients

Let X; and X, be two continuous random variables.

2.1.1. Pearson’s correlation

In order to measure the dependence between X; and X, Pear-
son’s correlation quantifies the similarity between covariance
cov(X1,X2) and the product of standard deviations gx;0x,, defined
by:

o COU(X] 7X2)
Ox10x2

2.1.2. Spearman’s rank correlation coefficient
The Spearman correlation is defined as the Pearson’s correlation
coefficient between the rank of two variables:

), Rank(Xy))

O Rank(X1) O Rank(X2)

_ cov(Rank(X,

Compared with Pearson’s correlation, Spearman correlation is
less sensitive to outliers. However, when variables are translated
into rank, detailed information is lost. Therefore, Spearman’s rank
is less powerful than Pearson’s correlation when the data is nor-
mally distributed.
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2.1.3. Biweight midcorrelation
It is defined as:

(X2)

med(x;))w™ (xo; — med(x;))w!

l

Jwi ] \/Ek [(%2x — med

Z (X1,—
\/ZJ (%1 — med(xy)

bicor(x1,x;) J —
X
(%2))w; ]

Where.

w¥ = (1-u?)’1(1 - Juy))
b Xx; — med(x)
"7 9mad(x)

med(x) is the median of x, and mad(x) is the median absolute
deviation of x.

As a median-based correlation method, biweight correlation is
more robust to outliers than Pearson’s correlation, and without los-
ing excessive information compared with Spearman correlation.

2.1.4. Distance correlation

The representation of Distance correlation is analogous to
methods mentioned above. But instead of sample moments (e.g.,
variance), distance correlation considers certain Euclidean dis-
tances between sample elements which are defined as

2 1 n A2
Vn (X) = rTZZk,lAkl
Ag =y —ar —a;+a.

aw = [|Xi — Xil,

And V;, (X1, X2) =55 Zk IA11<IA2kl
Then, the distance correlation is defined as:

ViXi.Xs)

R X) = e X
ViX1)V;i(X2)

Rigorous proof shows that R2(X;,X;) ranges from O to 1, and
R:(X1,X3) =0

if and only if X; and X, are independent while RfL(Xl,Xz) =1if
and only if X; = aX, + b, which means perfect linear dependence
(8). Therefore, distance correlation measures all types of possible
relationships, including linear and non-linear dependence. But
have higher priority for linear correlation.

2.1.5. Mutual information

Pxr(x, y)
MI(X1,X;) = %PXV (X, y)IOgP WPy
dF
//RZ dF Zti]ﬁj(ziz))dFl(Xl)sz(xz)
d(t) = tlogt

It is easy to notice that MI(X;,X>) ranges from 0 to +oco. How-
ever, previous proof indicates that there are cases in which MI goes
to infinite without a strong dependence between X; and X; [34]. In
practical applications, a normalization value from 0 to 1 for MI is
usually used for comparison purposes. In this paper, we define
MI as:

MI(Xq,X3)
max(Entropy(X,), Entropy(Xz))

—2x, P(x1)logP(x1)

Mlnormalized (Xl s XZ) =

Where: Entropy(X;) =
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MI reasonably and equally detects both linear and non-linear
dependence. However, the power of MI is lower than other coeffi-
cients mentioned in this paper [35,36].

2.1.6. Hellinger correlation

In contrast, the Hellinger correlation (1) measures the depen-
dence of X;, X, by quantifying the similarity between their joint
distribution F;; and marginal production F;F,. Given by:

2
n= (,2

B

1
2

){z;f‘ +(4-34%) -2}

where:

3

Detailed information and estimation procedures of # are shown
in [9]. Hellinger correlation ranges from 0 to 1 (from completely
independent to perfect dependence) and has comparable power
compared to the above-mentioned methods. Compared with MI
information, Hellinger coefficient has higher statistical power and
achieves highest value if and only if there are perfect dependent
cases. At the same time, unlike distance correlation, it does not pri-
oritize linear correlation.

In this paper, we used WGCNA package [2] to estimate Pearson
correlation (complexity: O(n)), Spearman correlation (complexity:
O(n)), Biweight correlation (complexity: O(n)), and MI (complex-
ity: O(n?)); energy package [37,38] to estimate distance correlation
(complexity: O(n?)); HellCor package [9] to estimate Hellinger cor-
relation (complexity: O(n?)). Based on the properties of different
coefficients, we named coefficients only measuring linear correla-
tion as linear coefficients (Pearson, Spearman, and Biweight) while
named coefficients measuring both linear and non-linear correla-
tion as dependence-based coefficients. Since dependence-based
coefficients identify dependence instead of linear correlation with
direction, we built undirected WGCNA graphs. Therefore, we took
the absolute value of linear coefficients during gene co-
expression network construction.

dF2(Xq, X2)

2
dF; (x1)dF;(Xz) 1) dF; (x1)dF2(x2)

2.2. Data collection and preprocessing

Table 1 shows the description of RNA datasets curated for the
analysis.

RNA-seq DLPFC dataset. ROSMAP RNA-seq normalized data
(syn3505720) and clinical file (syn3191087) were download from
SYNAPSE [31]. We filtered out genes with FPKM less than 1 in more
than 50 % of samples. A variance-stabilizing transformation from
package DESeq2 [42] was applied. We clustered the whole samples
on their Euclidean distance to test their similarity, and one sample
was considered an outlier and removed from further analysis.
Finally, the top 5000 genes with the highest standard deviation
and the remaining 641 samples were selected for the rest of the
analyses.

Microarray DLPFC dataset. Processed raw gene expression data
and metadata were downloaded from GSE44772 [30]. The batch
effect was removed by limma package [43]. Genes intersected with
the 5000 genes selected from RNA-seq DLPFC dataset were chosen
to validate the preservation of modules from RNA-seq DLPFC data-
set WGCNA results.

RNA-seq Heart dataset. Heart RNA-seq normalized data was
downloaded from GTEx database [41] and processed in the same
manner as RNA-seq DLPFC dataset. The top 5000 genes with the
highest standard deviation and 430 samples were selected for
the rest of the analyses.
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RNA-seq temporal cortex (TC) dataset. TC RNA-seq normalized
data (syn8466815) and clinical file (syn8466814) were down-
loaded from SYNAPSE [40] and processed in the same manner as
RNA-seq DLPFC dataset. Genes intersected with the 5000 genes
selected from RNA-seq DLPFC dataset were chosen for further
analyses.

Single-cell sequencing dataset. ROSMAP single-cell sequencing
data (syn18485175) and metadata (syn3157322) were download
from SYNAPSE [39]. Single-cell raw data was processed by the
package Seurat [44]. Specifically, we kept genes detected in no less
than 3 cells and kept all cells with at least 200 detected genes. Out-
lier cells in quality metrics, including unique gene counts, the ratio
of mitochondrial relative to endogenous RNAs, total gene counts,
were filtered out as they might represent dead (or unqualified)
or doublets (or multiplets) cells. For the rest of cells that passed
the quality control, we carried out log-normalization with a scale
factor 10000. Louvain algorithm in Seurat was implemented to
detect clusters. The cell type of each cluster was identified by the
corresponding marker genes provided by a previous publication
[39]. Considering the sparsity of single-cell sequencing data, we
applied scWGCNA [45], a package aggregating k nearest neighbor-
ing cells (neighboring cells within a cell-type-specific cluster) as a
newly constructed pseudo-cell. Finally, genes overlapped with the
5000 genes selected from RNA-seq DLPFC dataset were obtained to
set up cell-type-specific gene expression matrices of pseudo-cells,
which were included to validate the preservation of modules from
RNA-seq DLPFC dataset WGCNA results.

2.3. WGCNA and identification of significant modules

Different coefficients were calculated to measure the pairwise
dependence between genes. To comply with scale-free topology
criterion and the recommendations of WGCNA use, we chose
appropriate soft-thresholding powers to convert the gene expres-
sion matrices to adjacency matrices. Then topology overlap matri-
ces (TOM) were calculated by adjacency matrices [46]. We then
use hierarchical clustering and dynamic tree cut method to identify
gene clusters [2,47]. All steps of WGCNA with different coefficients
are the same except for the calculation to measure gene
dependence.

2.4. Network validation

STRING database. We built Protein-Protein networks based on
the annotation from the STRING database (version = 11.5) [48].
To increase the credibility of validation, high confidence (score
threshold = 900) was referred to in determining the connection
between two proteins.

Normalized Mutual Information (NMI) [49] and adjusted rand
index (ARI) [50]. NMI and ARI are two common statistics measur-
ing the similarity between two data clustering results. NMI ranges
from O to 1 and ARI ranges from —1 to 1, which corresponds to
completely different to exactly the same.

Module preservation. We mainly used z-summary [51], a net-
work preservation statistic aggregating multiple preservation
statistics (3 density-based statistics and 3 connectivity-based
statistics), to quantify the conservation of the co-expression net-
work in another dataset.

2.5. Modules-phenotype association analysis and Bayesian network
construction

Module eigengene was defined as the first principal component
of a module gene expression matrix [2]. We identified the module
of interest by the correlation strength between module eigengene
and phenotypes, including pathologic stages (braak stage, CERAD
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score) and clinical behaviors (Clinical diagnosis of cognitive status
(dcfdx_lv), Final consensus cognitive diagnosis (cogdx)).

Markov chain Monte Carlo (MCMC) methods for structure
learning and sampling of Bayesian networks were demonstrated
to have better performance [52]. We used order MCMC algorithm
in BiDAG, and 20 million iterations were applied [53].

2.6. Gene set enrichment analysis and cell-type-specific expression
analysis

We implemented gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis by
g: Profiler [54], and cell-type-specific expression analysis by CSEA
tool [55].

2.7. Hub genes identification

We used cytoHubba [56] in Cytoscape [57] to identify hub
genes in the protein-protein network. For networks with linked
genes larger than 300, we identified the top 200 hub genes and
showed related subnetworks, otherwise we displayed the entire
PPI network.

3. 3.Results
3.1. 3.1Comparison of different correlation coefficients

3.1.1. Coefficients measuring both linear and nonlinear association fit
complex dependence

We hypothesized that there are complex relationships beyond
linear correlation between genes in their expression in biological
tissues. To test this hypothesis, we plotted several typical pairwise
relationships of genes from the DLPFC RNA-seq dataset (Fig. 1A,CE;
Fig. 2A,C,E,G). We found that all correlation metrics are competent
in accepting significant linear dependence and rejecting purely
independent gene pairs, except that Pearson correlation is rela-
tively more sensitive to outliers (Fig. 1B,D,F). They perform differ-
ently in detecting more complex dependence relationships (Fig. 2
B,D,F,H). In these cases, dependence-based coefficients have a
higher correlation value. We subsampled the data and show the
receiver operating characteristic (ROC) curves [58] to evaluate
the performance and robustness of different correlation coeffi-
cients. The results indicate that only dependence-based coeffi-
cients can consistently detect all kinds of complex dependence
(Fig. 2B,D,F,H). To further verify the authenticity of these complex
dependencies, we provide 6 coefficients of these gene pairs in 53
GTEx tissues (Supplementary Table 1)[41]. We found that the
dependence of HBB and RCN2 (independent); CRABP2 and HS3ST2
(independent with outliers) are not significant in most of the tis-
sues by most coefficients. The dependence of CYTB and ND1 (linear
dependent); RPS28 and RPL36 (threshold); RAC2 and CYBB (com-
plex dependent) are significant in most of the tissues by most coef-
ficients. The dependence of GSTM1 and GSTM2 (dependent with
outliers) is significant in most of the tissues by Hellinger correla-
tion. However, in liver tissue, where GSTM1 and GSTM2 are highly
expressed [59], the dependence is significant in all coefficients. The
dependence of MYC and COX2 (power function) is significant in
most brain tissues and other tissues, especially in the kidney. Inter-
estingly, MYC and COX2 also show power function in those tissues.

3.1.2. Comparison of different coefficients

In Fig. 3, we show the edge-agreement results of the top 10 per-
cent of gene pairs with the highest correlation values of each coef-
ficient in the DLPFC dataset. As we expected from the statistical
properties of each method, the results of dependence-based coeffi-
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cients are more different from linear coefficients. Outlier insensi-
tive methods have more overlap with each other (Spearman and
Biweight). For dependence-based coefficients, MI and Hellinger
are more likely to agree as they equally measure the linear and
non-linear processes based on dependence. In contrast, distance
correlation is more prone to give higher value to linear processes,
so the results agree more with linear coefficients. Fig. 3B shows
the number of gene pairs in Fig. 3A that can be found in the pro-
tein-protein interaction database (STRING database). It shows that
many gene pairs with higher dependence-based coefficients have
the potential to be functionally related. The corresponding figures
of TC and heart are shown in Supplementary Fig. 1,2. These results
highlight the necessity and advantage of applying a dependence-
based coefficient to detect more comprehensive gene networks
that linear coefficients might miss or ignore.

3.1.3. Comparison WGCNA results using different coefficients

To investigate the consistency and novelty of applying
dependence-based coefficients in WGCNA, we compared their
module results in cluster agreement, network preservation, and
Module-wise comparison. The NMI and ARI suggest the cluster
agreement level of WGCNA cluster results with different coeffi-
cients in DLPFC (Table 2), while the results of TC and heart are
shown in Supplementary Tables 2 and 3, respectively. The results
of dependence-based coefficients are more similar, which also hap-
pens in linear coefficient results. Network preservation results
show that most modules are preserved in the network constructed
by different coefficients (Supplementary Fig. 3,4,5). However, there
are still few modules identified by dependent-based coefficients
WGCNA that are not consistently preserved in networks built by
other methods. For example, the turquoise module detected by
Hellinger WGCNA appears to be a collection of several distant gene
clusters in other WGCNA methods, and its density and connectivity
are less preserved (Supplementary Fig. 3A, Supplementary Fig. 6).
For DLPFC RNA-seq dataset, we also quantified module preserva-
tion in an independent microarray DLPFC dataset from another
study (Fig. 4). We found significant preservation evidence for 9 in
Pearson, 10 in Spearman, 10 in Biweight, 7 in Distance, 8 in MI,
and 6 in Hellinger, indicating the modules identified by WGCNA
with different coefficients are consistent in another DLPFC study.
These results show the feasibility of applying dependence-based
coefficients in WGCNA as a complementary approach to the stan-
dard approach (e.g. Pearson’s correlation).

3.2. Investigation of Hellinger WGCNA modules

Here, we show the results of Hellinger WGCNA in DLPFC RNA-
seq dataset, and investigate the novel network constructed by its
dependence-based coefficients.

3.2.1. Modules related to AD pathologic and clinical phenotypes

We identified modules associated with pathologic and clinical
features from two aspects: (1) correlation between module eigen-
genes and clinical phenotypes; (2) module-phenotype network by
Bayesian network structure learning. We found the module blue,
turquoise, green and red are highly related to braak stage (severity
of neurofibrillary tangle), CERAD score (severity of neuritic pla-
ques), and clinical cognitive diagnosis (Fig. 5A). Bayesian network
indicated the relationship between these 4 selected modules and
clinical phenotypes (Fig. 5B). GO functional and KEGG pathway
enrichment analyses indicated that blue module related to oxida-
tive phosphorylation and mitochondrial function (mainly
genome-coding genes); turquoise module associated with mito-
chondrial function (mainly mitochondria-coding genes) and
immunity; red and green modules are significant with synaptic
vesicle cycle, neurotransmitter, and other neuron functions.
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Fig. 1. Gene-wise relationships observed in DLPFC data and corresponding ROC curves. The scatter plots with axes represent related genes’ expression levels (variance-
stabilizing transformed FPKM). To construct the ROC curves, we calculated the gene pair coefficients of 50 samples sampling from DLPFC data sets. The sampling process was
repeated 1000 times, and the proportion of rejecting the null hypotheses at different significance level are shown in the ROC. The null hypothesis indicates independence. The
scatter plots and ROC curves of independent (A, B), independent with outliers (C, D), and linear dependent (E,F) gene-pairs are shown.
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Table 1
Description of RNA datasets curated for the analysis. References for the datasets are shown in parentheses after the dataset. Abbreviations: DLPFC, dorsolateral prefrontal cortex;
AD, Alzheimer’s disease.

Dataset Tissue Sample Size
RNA-seq dataset (31) DLPFC Control: 235
AD: 406
Microarray dataset (30) DLPFC Control: 101
AD: 129
Single-cell sequencing dataset (39) Prefrontal cortex (Brodmann area 10) Control: 24
AD: 24
RNA-seq dataset (40) Temporal cortex AD: 80
Control: 71
Path age: 30
Progressive supranuclear palsy (PSP): 81
RNA-seq dataset (41) Heart 430

(A) Pearson (B) Pearson

a6

Distance

Mi

Fig. 3. Venn plot of gene pairs with top 10 % highest correlation values of each coefficient in DLPFC RNA-seq dataset. (A) Specifically, the gene-pairs with
coefficients:Biweight > 0.62, Pearson > 0.63, Spearman > 0.62, Hellinger > 0.74,MI > 0.16; Distance > 0.61 were chosen and shown in Venn plots. (B) The number of gene
pairs in panel (A) that can be found in the protein-protein interaction database (STRING database).

Table 2
NMI and ARI between the clustering results of WGCNA constructed by different coefficients in DLPFC. NMI and ARI measure the similarity between two data clustering results.
NMI ranges from 0 to 1 and ARI ranges from —1 to 1, which corresponds to completely different to exactly same.

Pearson Spearman Biweight Distance MI Hellinger

ARI

Pearson 1 0.38 0.54 0.63 0.37 0.21
Spearman 0.38 1 0.55 0.44 0.29 0.15
Biweight 0.54 0.55 1 0.58 0.38 0.19
Distance 0.63 0.44 0.58 1 0.39 0.23
MI 0.37 0.29 0.38 0.39 1 0.30
Hellinger 0.21 0.15 0.19 023 0.30 1
NMI

Pearson 1 0.56 0.61 0.67 0.43 0.40
Spearman 0.56 1 0.67 0.59 0.40 0.38
Biweight 0.61 0.67 1 0.62 0.44 0.39
Distance 0.67 0.59 0.62 1 0.45 0.42
MI 0.43 0.40 0.44 0.45 1 0.47
Hellinger 0.40 0.38 0.39 0.42 0.47 1

<

Fig. 2. Gene-wise relationships observed in DLPFC data and corresponding ROC curves. The scatter plots with axes represent related genes’ expression levels (variance-
stabilizing transformed FPKM). To construct the ROC curves, we calculated the gene pair coefficients of 50 samples sampling from DLPFC data sets. The sampling process was
repeated 1000 times, and the proportion of rejecting the null hypotheses at different significance level was shown in the ROC. The null hypothesis indicates independence.
The scatter plots and ROC curves of dependent with outliers (A, B), threshold (C, D), complex dependent (E, F), and power function (G, H) are shown.
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Fig. 4. DLPFC RNA-seq Module preservation assessed in the microarray dataset. The correlation methods used are indicated (A-F). The green dashed line (Z-summary = 10)
marks the “strongly preserved” threshold and the blue dashed line (Z-summary = 2) marks the “moderately preserved” threshold. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

3.2.2. Validation and investigation of module turquoise

As module turquoise is the main difference between Hellinger
WGCNA and WGCNA with other coefficients, we further validated
and investigated module turquoise’s structural and functional con-
struction. We performed Cell-type-specific expression analysis and
found genes in the turquoise module are significantly enriched in
oligodendrocytes, astrocytes, and immune cells. We investigated
module preservation of module turquoise in an independent
single-cell prefrontal cortex (Brodmann area 10) dataset, and
Fig. 6 shows turquoise is highly preserved in oligodendrocytes
and astrocytes. We ignored the module preservation test in
immune cells because we did not detect enough immune cells in
this single-cell dataset (Fig. 6).

The top 200 hub genes of module turquoise are summarized in
Fig. 7.

Fig. 7 shows that Hellinger Correlation WGCNA constructs a
network between mitochondria-coding genes and inflammation.
It is worth noting that a similar network was also constructed in
TC RNA-seq dataset (blue module), indicating this network might
consistently exist in brain tissue (Supplementary Fig. 7). Interest-
ingly, this module in TC is also not preserved in the network con-
structed by linear coefficients (Supplementary Fig. 4A). The
interaction between inflammation and mitochondrial were pro-
posed by many previous studies. Specifically, mitochondria plays
an important role in immune pathways by releasing components,
including mtRNA, mtROS, and related proteins, while many inflam-
matory processes affect mitochondria dynamics and functions.
[60-63]. In addition, the dysfunction within the dependence
between mitochondria and inflammation were hypothesized and
demonstrated in neurodegenerative diseases [63-65]. Recently,
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new therapeutic approaches, targeting the crosstalk between mito-
chondria and inflammation, such as COX, PPAR-y, NO synthases,
were proposed for neurodegenerative diseases [66,67]. However,
this mitochondria and inflammation relationship cannot be reca-
pitulated by linear coefficients, as the dependence within some
gene pairs beyond linear correlation (e.g. Fig. 2G,H in the DPFC
RNA-seq dataset).

4. Discussion

This study illustrates the ability of Pearson’s correlation and
other linear coefficients to predict pairwise biological dependence
between genes based on gene expression level. We identified a
thousand pairs of genes, of which the STRING database annotated
biological dependencies. However, the statistical dependence of
these pairwise genes is easily detected by Hellinger correlation
rather than linear coefficients, indicating the importance of includ-
ing non-linear correlation statistics in gene-wise dependence tests.

Whole-transcriptome analyses, such as RNA-seq, microarray,
and single-cell sequencing are conventional methods to explore
the mechanisms of complex diseases [68]. Given the cost of
sequencing experiments and inaccessibility of biopsy tissues, espe-
cially with large sample sizes of human tissues, more comprehen-
sive analysis is needed to find disease mechanisms and therapeutic
targets. We proposed integrating Hellinger Correlation as an alter-
native option of Pearson’s correlation in WGCNA analysis. In Hel-
linger WGCNA, the turquoise module, including a connection
between mitochondria-coding genes and inflammation, was
uniquely constructed. We verified the preservation of Hellinger
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turquoise in an independent microarray study. The lack of preser- dataset. Therefore, we further performed cell-type-specific expres-
vation was later confirmed due to some turquoise hub genes sion analysis and found Hellinger turquoise module was enriched
(mainly mitochondrial coding genes) missing in the microarray and preserved in astrocytes and oligodendrocytes. In fact, existing
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studies suggest the cellular metabolism of the interaction between to neurodegenerative diseases [63-65]. Furthermore, we found
mitochondria function and inflammation pathway [69], while the MYC gene as an important hub gene linking mitochondrial coding
related hypothesis and experimental demonstration was extended genes and inflammation-related genes. As a proto-oncogene in
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cancers, MYC controls the cell cycle, apoptosis, and metabolism
[70]. In peripheral nervous system, axotomy elevates MYC, which
promotes axon repair [71,72]. In the central nervous system, how-
ever, axotomy decreases MYC, and reduces axon repair [71]. This
might be because maintaining and strengthening synaptic struc-
ture rather than cell regeneration is more necessary for the central
nervous system during the evolution of mammals. Recently, many
studies have reported the potential role of MYC in causing or accel-
erating AD through abnormal cell cycle re-entry [73], apoptosis
induction [74], abnormal DNA synthesis [75], and other metabo-
lism processes [76-78]. In addition, strong MYC expression was
detected in AD astrocytes, where we demonstrated the preserva-
tion of the Hellinger turquoise module [79]. Therefore, the detailed
biological function of the Hellinger turquoise module might pro-
vide an exciting opportunity to advance our knowledge of the AD
mechanism. In the Bayesian network, 3 other Hellinger modules:
blue, red, and green, were related to the AD progression from incip-
ience to terminal. Correlation significance with phenotypes and
enrichment analysis results substantiated their relationship with
AD. However, since the minor differences between these Hellinger
modules and the corresponding modules constructed by other
coefficients, we did not discuss them in detail, but the significance
of these modules is still worth noting.

Although the default function of WGCNA package is Pearson’s
correlation, other methods of calculating correlations can also be
applied flexibly. The R [66] source code of combining Hellinger cor-
relation to WGCNA is provided in the Supplementary text. The
application of non-linear dependence rather than linear depen-
dence in weighted gene co-expression network analysis has many
advantages at the biological level. Non-linear dependence is better
at modeling dosing-related saturation or threshold interaction in
protein-binding processes and signaling pathways [67]. In addi-
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tion, the existence of outliers or missing values in high-
throughput sequencing data, especially for low expressed genes,
affects the linear relationship between gene pairs. Therefore,
non-linear correlation network is more appropriate to detect the
complex biological gene-wise interaction and technical variation
of high-throughput sequencing data, which provides a comprehen-
sive basis for detecting hub genes as therapeutic targets or
biomarkers. In this work, we only applied this non-linear depen-
dence related WGCNA in the AD dataset, and more attempts in
other datasets or diseases whose mechanisms are more clearly
defined could better demonstrate the importance of this approach.
In addition, we found Hellinger correlation is more sensitive than
Pearson correlation and the mean connectivity of Hellinger net-
work higher. Therefore, Hellinger network is easier to detect with
less clusters than Pearson network with the premise of scale free
topology.

While we were preparing this manuscript, Hou et al [80] pub-
lished an approach that applies distance correlation in WGCNA
and demonstrated the ability of distance correlation in non-linear
dependence detection, robust to outliers in microarray (macro-
phage and liver) and RNA-seq (cervical cancer and pancreatic can-
cer). The advantages of Hellinger correlation we recommend in this
paper over distance correlation is that Hellinger correlation pro-
vides a fairer measure of linear and non-linear relationship while
distance correlation takes its maximum value only in the case of
the perfect linear relationship [8,9]. As Pearson correlation, dis-
tance correlation is only defined if variables have finite second
moment, which is not required by Hellinger correlation [8,9]. How-
ever, both Hellinger correlation and distance correlation are dedi-
cated to detecting dependencies and cannot get positive or
negative correlation information compared to Pearson correlation.
Optimization by using different correlation measurements
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depending upon specific datasets or problems would be worth pur-
suing in the future.

In summary, we applied Hellinger correlation in quantifying the
dependence between gene pairs in WGCNA analysis to Alzheimer’s
disease data sets. The verification tests and downstream analyses
results provide new insight into applying non-linear correlation
statistics to construct gene networks. Such an application should
complement current methods to obtain a more comprehensive
understanding of biological processes underlying complex
diseases.
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