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In recent decades, artificial intelligence (AI), and in par-
ticular machine learning (ML), has rapidly gained traction 
in healthcare applications. This includes the field of phar-
macology, where AI and ML approaches are particularly 
useful to analyze data from different sources, ranging from 
the chemical structure of a drug to clinical patient charac-
teristics and from genomic data to disease characteristics. 
The rise of AI applications in pharmacology is also evi-
dent in the number of studies published on the topic. A 
PubMed search for “artificial intelligence” AND “pharma-
cology” shows that whereas in 2017 only 49 papers on the 
subject were published, by 2021 this had increased 10-fold 
to 502 publications (https://pubmed.ncbi.nlm.nih.gov).

AI is already successfully applied in drug discovery 
and target identification for several years. More recently 
AI models which help to characterize patient populations 
and predict an individual's drug response are emerging, 
thereby covering the entire pipeline from drug discovery 
to personalized medicine (Figure 1). In 2020, the use of 

AI in clinical pharmacology was extensively discussed.1 
Many of these applications are still used and relevant. 
However, there have been many new developments since. 
In this mini-review, we will discuss the current applica-
tion of different AI and ML approaches in the field of 
pharmacology.

THE BASICS OF AI

AI describes all forms of intelligence in machines. This 
ranges from reasoning and language processing to learn-
ing based applications. ML is one of the most commonly 
used forms of AI in clinical applications. ML is a type of 
AI which is heavily based on statistical methods and relies 
on the capability of computers to infer relations and make 
predictions rather than human efforts. ML approaches 
can be further subdivided in unsupervised learning to ex-
plore and cluster data, and supervised learning, aimed at 
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predicting outcomes (Figure 2). Unsupervised learning is 
often used to develop hypotheses, for example, if there are 
subgroups of patients with good response that can be iden-
tified in a larger cohort. Supervised learning, on the other 
hand, is most commonly applied to develop models that 
can accurately predict one or more clinical outcomes, such 
as predictions of drug response for an individual patient. 
One commonly used example of supervised learning is a 
neural network. An artificial neural network is structured 

to mimic biological neural networks. A neural network 
consists of input- and output layer and hidden layers in 
between, the nodes connecting the different layers get dif-
ferent weights which are optimized during the training. 
Neural networks are particularly good at recognizing pat-
terns in the data they are trained on and can process fast 
amounts of data. This makes them useful and commonly 
applied in a wide range of applications. Each ML model 
is based on a theoretical understanding of the problem at 
hand, and on an experimental part that the model learns 
upon training. The larger the experimental part, the more 
difficult a model is to understand, the so-called black-box 
models. Although it is still understood what goes into the 
model and what comes out, the internal reasoning and 
weighing of factors is not transparent unless measures are 
taken to make these factors transparent.

Besides ML, natural language processing (NLP) is also 
increasingly used. NLP is the domain within AI that fo-
cusses on processing and interpreting natural human lan-
guage and can, for example, help to “read” and process 
the huge amount of (un)structured text. In pharmacology, 
NLP can be used to mine databases and electronic health 
records (EHRs) to obtain data related to pharmacology, 
such as clinical outcomes.2,3 Advanced NLP approaches 
can also help to interpret the data and filter the most im-
portant items and structure the data to allow for interpre-
tation and further studies.

AI IN DRUG (RE)DISCOVERY

Drug discovery is a long process that involves an exten-
sive pipeline with multiple selection steps. Although the 
process starts with many lead compounds, at each step 
of the development pipeline, a stringent selection is ap-
plied to select the most favorable compounds to finally 
deliver one compound receiving market approval. The 
more compounds that need to be tested, the higher the 
costs of drug development. AI can be applied to help se-
lect the compounds that are most likely to be success-
ful by analyzing the chemical structure and properties. 
The way AI has been applied in drug discovery is mul-
tifaceted. First, if the target is known, AI can be used to 
predict what type of chemical structures might bind the 
target in the desired way. Second, the chemical struc-
ture of known and efficient drugs or endogenic factors 
can be used to identify the targets, thereby elucidating 
the structure of a potential drug target. Last, the in vivo 
characteristics of a novel compound can be predicted 
by using knowledge of known drug compounds, phar-
macokinetics (PKs), and pharmacodynamics. If in the 
early stages of drug discovery, it can be predicted if a 
compound is likely to fail, either by not binding to the 

F I G U R E  1   Applications of artificial intelligence in the 
continuum of clinical pharmacology. AUC, area under the curve; 
PK, pharmacokinetic.
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desired target or by potentially undesirable absorption, 
distribution, metabolism, and excretion (ADME) char-
acteristics, the investment in the development can be 
stopped before expensive trials have started. These ap-
plications of AI are already standard practice in many 
pharmaceutical companies4–6 to the point that compa-
nies (e.g., Cytoreason) have been founded to specifically 
develop and offer models to pharmaceutical companies 
to help them study disease and drug pathways.

In a later phase of the development pipeline, the tox-
icity profile of a novel compound needs to be assessed. 
This requires substantial datasets with in vivo data ob-
tained in clinical studies. However, as chemical struc-
ture plays a large role in the occurrence of toxicity, the 
same approaches as in drug discovery could be applied. 
Two important toxicities that are assessed during drug 
development are cardiotoxicity and hepatotoxicity. 
Therefore, being able to predict if a compound causes 
these toxicities in an early stage of the development 
pipeline would greatly reduce the risk of compound fail-
ure, and several groups applied AI approaches to predict 
them.7–9 Mamoshina et al. have tested the feasibility of 
an AI-based model to predict cardiotoxicity of different 
compounds. They developed a model to predict cardio-
toxicity based on drug characteristics obtained from 
publicly available data (e.g., Drugbank and medDRA). 
The model was able to predict cardiotoxicity with high 
accuracy (area under the curve [AUC] 79% for validation 
data and AUC 66% for unseen data) by classifying drugs 
as safe or risky.10 Similar approaches have been used to 
predict drug-induced liver injury from drug character-
istics reaching even higher accuracies with 89% correct 
classifications.11

The application of AI cannot be limited to selection of 
the most optimal compound and predict its' in vivo activ-
ity. It can also be used to find new applications for existing 
drugs with an established risk/benefit ratio. This drug re-
positioning is particularly valuable for small patient pop-
ulations for which clinical trials are not feasible and the 
costs for drug development are often considered too high. 

There are different forms of drug repositioning, all of 
which require large datasets and intensive computational 
analyses. First, with a drug-focused approach, existing 
drugs are compared to novel compounds to identify com-
pounds with similar properties that may be successfully 
used to treat the therapeutic indications of the comparator 
drug. Second, a disease-focused approach aims to compare 
disease characteristics and pathways to identify drugs that 
work for diseases with similar characteristics. Most often 
these two strategies are combined, for example, by match-
ing gene expression profiles of a disease with the profiles 
caused by different drugs to find a match. Al-taie et al. 
used this combinatorial approach to identify new thera-
pies for colorectal cancer (CRC).12 They combined clini-
cal data and RNA-sequencing data with publicly available 
information regarding drug expression profiles (Hetionet 
– neo4j.het.io).13 An AI model was trained to identify sub-
populations in the clinical data. Next, the unique gene 
profiles of each subgroup were compared with the drug 
database to identify potential candidates for repurposing. 
From the top 16 drugs identified this way, 12 are cancer-
related drugs of which eight are registered for CRC treat-
ment illustrating the potential of this approach.12 Similar 
applications of AI models have been used for other disease 
areas as well. For example, a study focusing on Alzheimer's 
disease found 103 hits of which three were supported with 
population-based validation studies.14 For diabetes, Zhang 
et al. used an approach to identify potential drug targets 
followed by the identification of drugs which are known 
to impact these targets. This led to 58 drugs identified of 
which nine were found to be relevant based on connectiv-
ity in gene expression profiles.15

CLINICAL TRIALS AND REAL-
WORLD EVIDENCE

After the preclinical development of a new drug, the clini-
cal trial phase starts, which brings even higher costs. Some 
of the biggest challenges in clinical trials are related to 

F I G U R E  2   Comparison of supervised 
and unsupervised learning approaches in 
clinical pharmacology.
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patient selection and recruitment. If insufficient patients 
can be recruited, the trial might need to be stopped. AI 
applications can help to improve the patient recruitment, 
for example, by processing large amounts of EHR data to 
select the patients that meet the eligibility criteria that 
are most likely to participate. This ensures that less time 
and money are lost in patient recruitment. Second, AI 
can help to monitor patients during the trial. This can be 
done by datamining the EHR but also by processing real-
time data from participants that are collected by track-
ers, such as smartwatches and other wearables. Finally, 
AI approaches can help to collect real-world evidence by 
mining EHRs for relevant data (as described below), as 
well as by processing these data into clinically meaningful 
outcomes.16,17 An example are the abundance of AI-based 
approaches available for automated processing of imaging 
data which are shown to have similar accuracy rates as a 
radiologist.

Similar to the use in clinical trials, AI can also be 
used for the analysis of real-world clinical data. EHRs 
are a rich source of information regarding disease prog-
ress and drug response, making them an ideal source 
for postmarket studies. However, the sheer amount of 
(unstructured) data collected in the EHRs makes it very 
challenging and time intensive to conduct large and 
thorough studies. Recently, programs that use NLP have 
been developed to process the data in an EHR to make 
it useful for analysis. This does, however, come with 
challenges. An EHR contains many different sources of 
data which all have different levels of reliability and ro-
bustness. Laboratory values, for example, are numeric 
and objective, making them relatively easy to extract. 
Unstructured text on the other hand is subject to many 
different variables, not in the least the use of abbrevi-
ations and typos. Van Laar et al. evaluated the accu-
racy of datamining in EHRs by comparing automated 
extractions with manual extractions. They focused on 
treatment outcomes of renal cell carcinoma treatment. 
In general, they found high precision and recall for 
structured data with and F1 score of 100% for variables 
as sex, death, and greater than 90% for variables, such 
as laboratory measurements. The accuracy was signifi-
cantly lower for unstructured data, such as adverse drug 
events and comorbidities (F1 score 53%–90%) which are 
often part of the free text in an EHR and therefore more 
challenging to extract accurately.2

Besides the use of AI in conventional clinical trials and 
datamining, AI can also be used to predict drug response 
for a specific patient by using digital twins. A digital twin 
is a digital profile that matches the real-world patient and 
can be used, after training, to model the impact of differ-
ent treatments on disease outcome for that one specific 
patient.18

DRUG TREATMENT OPTIMIZATION

For many marketed drugs, it is useful and important to 
individualize the treatment. For example, for drugs with 
a small therapeutic window, therapeutic drug monitor-
ing (TDM) is applied to individualize the dose. Methods 
to extrapolate TDM data to calculate drug exposure and 
optimal treatment strategies are often based on statistical 
prediction models. The application of AI in this field is 
less developed compared to drug discovery, mainly due to 
the fact that large clinical datasets are needed to train the 
models which are not readily available.9,19 For example, 
Labriffe et al. have trained several XGBoost models to sim-
ulate patient PK profiles of everolimus. An XGBoost model 
is a form of supervised learning which works by combining 
multiple (weak) decision trees to obtain a strong overall 
model. They trained the models with different combina-
tions of simulated and real patient PK profiles and TDM 
measurements of everolimus at three timepoints (predose, 
1, and 2 h). The best performing model was trained using 
5016 simulated PK profiles and resulted in a model that 
was able to accurately predict the everolimus AUC for an 
external validation set (n  =  114, R2  =  0.956, root mean 
squared error [RMSE]  =  10.3%).20 Similar approaches 
have been developed for other drugs.21–23 However, by de-
sign, these models will always have the same error mar-
gin as the TDM measurements that were used to train the 
model. Meaning that an AI model can never be more ac-
curate than the outcome on which it was trained.

Besides TDM-based treatment optimization there is 
also a shift ongoing in the field of pharmacogenomics 
(PGx). The field of PGx mainly focusses on explaining 
PKs by studying genetic variants in the genes encoding for 
drug metabolizing enzymes. Current clinical PGx prac-
tice still relies on prediction models using a small sub-
set of genetic variants to predict an individual's enzyme 
activity in a categorical model. The sheer abundance of 
genetic variants and the complexity of enzyme activ-
ity, which is a continuous variable and not categorical, 
makes it impossible to develop basic prediction models 
without the help of AI. A good example of a pharmacog-
ene suffering from these limitations is the CYP2D6 gene, 
of which the resulting enzyme is responsible for the me-
tabolism of 25%–30% of commonly prescribed drugs. Due 
to CYP2D6's complexity and the high amount of variants 
in this gene it is still challenging to accurately group indi-
viduals into predicted enzyme activity groups. Recently, 
two different approaches to use AI for the prediction of 
CYP2D6 activity have been published. First, McInnes 
et al. aimed to develop a model which can predict the ac-
tivity of novel haplotypes which are not yet curated in 
the publicly available PGx variant database PharmVar 
(https://www.pharm​var.org/). A network model was 

https://www.pharmvar.org/
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trained on curated alleles from the PharmVar database, 
followed by the prediction of uncurated haplotypes. The 
model was able to predict the activity of the validation set 
with 88% accuracy, indicating that this model can help 
to assign activities to uncurated alleles.24 Second, in our 
own study, we developed a neural network model to pre-
dict enzyme activity of CYP2D6 based on long-read se-
quencing data. The model was trained using full length 
CYP2D6 sequencing as its input in the form of two alleles 
of 77 variants each, followed by a combiner model that 
combined the result of the two alleles. As output param-
eter, the metabolic ratio between endoxifen and desmeth-
yltamoxifen was used as a proxy for CYP2D6 activity. The 
final model was able to explain 79% of the variability in 
CYP2D6 mediated metabolism, whereas the conventional 
categorical model was able to explain only 54%.25 The ad-
vantage of neural network-based approaches in pharma-
cogenetics is that these models are capable of identifying 
patterns in the input data which goes beyond human ca-
pability. Traditionally, the field of pharmacogenetics re-
lies on curated patterns (haplotypes) to assign activities 
to individual combinations of variants. By applying AI 
to perform pattern recognition and activity assignment, 
higher accuracies can be achieved, as is clearly illustrated 
by the two examples above.

Finally, it would be possible to combine models to im-
prove treatment optimization, as described above, with 
real-world data mined from EHRs using NLP. This would 
make it possible to not only predict the drug metabolism 
and optimal dosing based on PKs but to also link these 
models to real-world outcomes, as reported in the EHRs.

CONCLUSION

In this mini-review, we have shown that AI approaches 
are widely used in all aspects of pharmacology, from drug 
discovery to real-world evidence and personalized medi-
cine. In recent years, AI is rapidly becoming a standard 
analytical tool in drug development. For pharmacology, 
this comes with many new advancements and improve-
ments in current knowledge. However, care should 
be taken when applying AI models, and one should be 
aware of the pitfalls. Specifically, any AI model can only 
perform as good as the data that is used to train it. If 
there are innate inaccuracies in the data to train a model 
(e.g., ethnic, gender, or disease bias, measurement inac-
curacies), then those will also be present in the model, 
making the model less general and more difficult to 
apply. Therefore, care should always be taken when se-
lecting the data used to train an AI model. Another clear 
limitation for the application of AI in healthcare is the 
“accuracy-interpretability” trade-off. As a rule of thumb, 

the more accurate an AI model is, the more difficult it is 
to interpret. This is less of a problem in the preclinical 
pharmacology field as patients are not yet involved. In the 
clinical field, however, transparency and interpretabil-
ity become of high importance. This trade-off will force 
healthcare providers to choose between a highly accurate 
model of which it is difficult to understand what exactly it 
does, or a simplified model which resembles conventional 
statistics more closely which is easy to interpret but less 
accurate. Nonetheless, when one is aware of the strengths 
and limitations of AI approaches, the applications for 
which of these types of models can be used are endless. In 
the near future, we can expect that AI approaches slowly 
take over the more conventional models currently in 
use. Moreover, AI will start to make its way into clinical 
pharmacology in the form of in silico clinical trials and 
AI-based decision support tools that can be regarded as 
medical devices. For the latter application, the US Food 
and Drug Administration (FDA) is currently working on 
a guideline for the credibility of computational models 
used in medical devices and regulatory applications in 
anticipation of more widely applied AI in healthcare in 
general. This will ultimately result in more effective drug 
discovery pathways and allows us to better optimize drug 
treatment of the individual patient.
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