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Introduction. Early life exposures affect health and disease across the life course and potentially across multiple generations. The Clinical and Translational Research
Institutes (CTSIs) offer an opportunity to utilize and link existing databases to conduct lifespan research.

Methods. A survey with Lifespan Domain Taskforce expert input was created and distributed to lead lifespan researchers at each of the 64 CTSIs. The survey requested
information regarding institutional databases related to early life exposure, child-maternal health, or lifespan research.

Results. Of 64 CTSI, 88% provided information on a total of 130 databases. Approximately 59% (n= 76/130) had an associated biorepository. Longitudinal data were
available for 72% (n= 93/130) of reported databases. Many of the biorepositories (n= 44/76; 68%) have standard operating procedures that can be shared with other
researchers.

Conclusions. The majority of CTSI databases and biorepositories focusing on child-maternal health and lifespan research could be leveraged for lifespan research,
increased generalizability and enhanced multi-institutional research in the United States.
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Introduction

Health at any point across the life course is determined by a complex
interplay of genetic and environmental exposures from gamete to

grave [1–4]. Early life factors, such as in utero exposure to under-
nutrition or toxins, may be particularly important because they have
the potential to adversely alter short-term health and long-term
trajectories of physical and mental health [5–7]. While basic science
and epidemiological studies have shown the importance of con-
sidering the role of early life exposures on later life health outcomes,
our understanding of these mechanisms needs to be expanded.
However, the data requirements for a well-designed life course study
may deter some investigators from adopting such a comprehensive
approach to understanding health. Longitudinal studies are costly and
time-consuming, and therefore most prospective data sources are
constrained to specific geographic subpopulations and lack
generalizability.
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Life course research also requires a diverse set of data sources and
analytic techniques because a combination of genetic, social, psycho-
logical, and environmental factors must be incorporated into the ana-
lyses. The interdependent role of these factors and timing of
exposures, as well as cumulative effects over time, remains poorly
understood. To address these concerns, we have compiled a list of
available data sources across 64 research institutions. Leveraging data
frommultiple sources across a variety of subpopulations allows for the
power necessary to further investigate the importance of timing of
exposures and their later life health outcomes [8, 9]. However, there
are few data catalogs that define data sources available for investigating
how early life exposures affect later life health to conduct this type of
lifespan research.

The US National Institutes of Health (NIH) designed a Roadmap for
Medical Research with the purpose of improving the translation of
research into practice by improving the understanding of complex
biological systems, encouraging scientists to test multiple models for
conducting research, and facilitating the efficient dissemination of
research findings into clinical care [10]. Such a broad and lofty mission
is essential for improving the health and well-being of the US popula-
tion and requires the implementation of new forms of collaboration in
the medical community. The Clinical and Translational Science Awards
(CTSA) program of the NIH National Center for Clinical and Trans-
lational Sciences (NCATS) is a national network of institutions (Clin-
ical and Translational Research Institutes (CTSIs)) designed to address
this goal. Thus, the CTSA program creates a definable academic home
designed to facilitate translational research and includes 64 medical
research institutions in 31 states and the District of Columbia. Har-
nessing the data from these institutions with the goal of further eluci-
dating links between early life exposures and later life health and using
findings to inform focused interventions has the potential to affect the
health of millions of the US population. The vast data sources that
already exist to conduct lifespan research across all the CTSIs could be
integrated to conduct lifespan research. Therefore, we conducted a
survey to identify these resources and to begin to identify common
data elements as well as linkages to established biorepositories.

The NCATS national CTSA organization created domain task forces
(DTFs) to serve as the infrastructure for sharing ideas and collabor-
ating to develop efficient and effective approaches to conducting and
translating research into improved health. The Lifespan Domain Task
Force is comprised of researchers across domains from preconcep-
tion, infancy to geriatrics who examine ideas and conduct studies
needed to advance lifespan research. A group of maternal and child
health researchers and life course epidemiologists formed a sub-group
of the Lifespan DTF, the Early Life Exposures Working Group
(ELEWG), and identified the need to create a publicly available catalog
of existing studies and cohorts that would broadly benefit investigators
interested in ELE research. Developing a catalog of datasets from a
national network of clinical research centers will provide a resource
for future research examining the role of early life factors on later life
health across the US population. It will also encourage collaboration
between academic institutions and their community health partners
and facilitate the future evaluation of programs aimed at integrating
information about social, psychological, and environmental factors
contributing short-term and long-term health outcomes. In order to
address this objective, a survey was designed in REDCap and dis-
seminated to all CTSIs with the goal of identifying potential resources
that would benefit investigators interested in life course research with
a special interest in early life exposures.

Materials and Methods

The ELE WG created a RedCap survey designed by members of the
ELE WG to be distributed to all CTSIs (n= 64). The REDCap survey
requested information regarding institutional databases, such as

cohorts or biorepositories from unique populations, related to early
life exposure, child-maternal health, or lifespan research.

Surveys were sent to all CTSA Principal Investigators (PIs) who were
asked to identify and send the survey to those in their institution with
the greatest knowledge about lifespan research and/or existing data
repositories. Reminder prompts were then sent to the PIs if there had
been no initial response. Prompts were followed with personal appeals
frommembers of the task force if the surveys had not been completed.
If responses had not been received in a timely manner (2–3 months),
follow-up emails were sent to each of the PIs by J.E.H. and thereafter
his administrative assistant reached out to the PIs’ administrative
assistants to be certain that the PI had received and responded to the
request.

Data collected from the RedCap survey were stored in the Early Life
Exposure Database Repository and can be downloaded from the
Center for Leading Innovation & Collaboration Web site (https://clic-ctsa.
org/content/ele-redcap-table-resources). The full list of questions
asked of participants is available in Supplementary Table S1.

Results

The survey was completed by 56 of the 64 CTSA hubs for an overall
response rate of 88%. All CTSA hubs completing the survey were
academic centers and are widely dispersed across the United States
(see Fig. 1a). There were 73 total respondents to the survey, with
multiple respondents from 7 of the institutions. Nearly all respondents
completed the survey, with an overall survey completion rate of 96%.
In all, 90 completed surveys representing 130 lifespan related data-
bases formed the basis of the result section.

Information on a total of 130 databases relating to early life exposures,
maternal-child health, or life course research was collected from 49 of
the participating CTSA centers. Fig. 1b shows the number of early life
exposures, child-maternal health, or lifespan research databases by
institution. The majority of CTSA hubs with a life course database had
more than one database relating to early life exposures, child-maternal
health, or lifespan research (n= 26), with the maximum of 10.

Table 1 provides a broad overview of the data collected from the
RedCap survey (Supplementary Table S2 provides a detailed summary
of each database). The reported databases contain information on
cohorts ranging in size from 1–500 participants (n= 39 or 30.5%) to
more than 100,000 participants (n= 13 or 10.2%), with cohort size
being unknown for 18 of the databases. Cohorts included prenatal
(n= 47), infants (n= 66), children (n= 55), young adults (n= 45),
pregnant women (n= 46), adults (n= 53), older adults (n= 30).
Longitudinal data, defined as having multiple measurements for a single
patient over multiple time points, were available for 72% (n= 93) of
the reported databases.

Approximately 59% (n= 76/130) of all reported databases have an
associated biorepository, with multiple types of biosamples (nBlood=
58, nPlacenta= 14, nTissue= 28, nOther/Unknown= 23). Blood is the most
commonly collected biosample. Examples of the other/unknown
category of biosample include breast milk, fecal samples, umbilical
cord, and omental adipose tissue. Nearly 57% of biorepositories were
considered shareable (n= 43/76), which was defined as storing data on
a platform that permits sharing and having an Institutional Review
Board [IRB] protocol that facilitates sharing. Participants were asked to
provide a brief description of how researchers can request biospeci-
men data and the responses ranged from contacting the PI to con-
tacting specific NIH institutes that oversee the study. More than half of
the biorepositories (n= 44/76; 58%) have standard operating proce-
dures (SOP) that can be shared with other researchers. These pro-
cedures include the time between sample collection, collection
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method, and other SOPs. Of the biorepositories with SOPs, 64%
(n= 28/44) have collection procedures that can be modified to
accommodate prospective or new studies.

Most biorepositories have collected samples from subjects in both
healthy and diseased states (n= 31/76; 41%). There are smaller num-
bers collected for disease-only (n= 11/76; 14%), healthy-only (n= 19/
76; 25%), or unknown/other purposes (n= 15/76; 20%). The types of
subjects that were classified as “other” include peri-menopausal
women, children with lead poisoning, genetically at risk individuals, or
pregnant women. The disease states reported include general disorders
such as autoimmune diseases, autism, diabetes, preterm births, obese
subjects, kidney disease, peripartum depressed women, and neurolo-
gical disorders, as well as specific disorders such asWolfram syndrome.

Data integrated with electronic medical records provide an exciting
prospect for observing how early life exposures affect later life health
trajectories. Nearly 70% of the biorepositories have been integrated
with electronic medical records in some manner (nIntegrated= 37/76;
49% and nSomewhat/Maybe= 16/76; 21%). Nearly all data that have been

linked to electronic health records (EHRs) have systems that are
amenable to natural language processing (n= 49/53; 92%). In addition
to administrative health care data, 49% of all biorepositories
(n= 37/76) have laboratory results on tissues that are part of research
and not medical practice. Another 21% (n= 16/76) may have these
data available in partial form.

Figure 2 displays a summary of features of the databases with long-
itudinal and biorepository data by cohort size. A large proportion of
longitudinal databases also have a biorepository (n= 57/93; 61%). The
majority of the cohorts with biorepositories are smaller studies with
under 5000 participants (n= 52/93; 56%). Three CTSA hubs
(4 databases) reported having cohorts with over 100,000 participants
and biorepository data. Biospecimens are available for the longitudinal
studies over a range of cohort sizes, including cohorts with over
100,000 individuals. Blood is the most commonly available sample in
databases with longitudinal data (n= 44/57; 77%), followed by tissues/
fluids (n= 21/57; 37%). The data sets are not merely collections of
diseased cohorts, with nearly half of the databases having subjects that
are healthy and in a disease state (n= 25/57; 44%). Another 37% have

Fig. 1. Map of responding Clinical and Translational Science Awards institutions. (a) All participating institutions and the type of data stored in their database. (b)
The number of early life exposures, child-maternal health, or lifespan research databases by institution.
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subjects that are all healthy or all in a diseased state (nHealthy= 11/57;
19% and nDiseased= 10/57; 18%) and the remaining 19% (n= 11/57) are
unknown. The available databases also encompass many stages across
the life course. Nearly all of the databases enrolled individuals between
the prenatal period and young adulthood (n= 51/57; 89%), with the
distribution by period of development as follows (categories are not
mutually exclusive); prenatal (n= 23/57; 40%), infant (n= 33/57; 58%),
childhood (n= 27/57; 47%), and young adult (n= 23/57; 40%).

One of the most exciting prospects for future life course research is the
development of longitudinal databases that are linked to biorepository
data and EHR. Fig. 3 displays a summary of features of the 40 CTSA
databases from 22 CTSA hubs with all 3 components (nLongitudinal= 40/
93; 43% and nTotal= 40/130; 31%). The 4 large databases have been
integrated with electronic medical records. Biospecimen data collected
by longitudinal studies linked to EHR is available for a range of cohort
sizes, health statuses, and age groups. Blood is the most commonly
available biospecimen in databases with all 3 components (n= 33/40;
83%), followed by tissues/fluids (n= 13/40; 33%). Most of the long-
itudinal data with biosamples and electronic medical records have fewer
than 5000 individuals enrolled (n= 29/40; 73%). Databases with all 3
components also span the entire life course, from prenatal to older
adulthood, with 90% having enrolled individuals between the prenatal
period and young adulthood (n= 36/40; 90%). The distribution of
records by period of development is as follows (categories are not
mutually exclusive); prenatal (n= 16/40; 40%), infant (n= 24/40; 60%),
childhood (n= 22/40; 55%), and young adult (n= 20/40; 50%).

Discussion

Life course methods conceptualize health as the dynamic interplay
between biologic and environmental factors from conception to death

and has long been accepted by the World Health Organization [11–13].
Understanding factors that are amenable to intervention during early
periods of development is particularly important because of its potential
to improve health over an entire life course and possibly for future gen-
erations [14]. It may also prove useful for predicting the occurrence or
progression of disease in current populations, allowing for a more tar-
geted approach to disease specific surveillance and screening programs.
Multiple databases and biorepositories focusing on maternal-child health
and life course research are available to investigators within or outside the
responding institutions that can be used to facilitate lifespan research.

Life course research is expensive. Utilizing the massive volume of
research data and patient-specific information already being collected by
health care systems to study the short-term and long-term effects of
early life exposures may prove to be a cost-effective and powerful way
to elucidate further factors that affect health during critical periods of
development, and may reduce the selection biases inherent with
recruiting research participants, and will contribute to the development
of Learning Healthcare Systems. Combining research repositories with
population-level data, such as vital records and EHR, makes it possible to
quantify and potentially correct for the differences between the sample
and overall population. Further, combining repositories that have been
collected frommultiple geographic locations and for diverse populations
and purposes may result in a sample that is more representative of the
larger population, as well as samples with larger sample sizes for sub-
group analyses. Cataloging research databases and biorepositories
across institutions that facilitate research on early life exposures and
health across the lifespan is the first step in beginning to combine and
analyze data that have already been collected. Linking clinical research
records to administrative records within and between institutions could
potentially revolutionize health care research by allowing individuals to
be followed over longer periods of time. While challenging, successful
examples exist on a smaller scale that demonstrate the feasibility of
linking to records across institutions and to external data sources, such
as vital statistics and Driver’s License Data [15–18].

Synthesizing EHRs with data from external sources, such as population
databases, biomonitors and environmental exposure data, would allow
for investigations into the immediate and latent effects of risk factors
over all ages. For example, individual level birth certificate and death
certificate data can be linked to existing cohorts to increase the
breadth and quality of measures relating to early life exposures [15,
19–21]. Combining these records also allows researchers to investi-
gate dynamic health outcomes, such as how the relationship between
changes in weight during mid-life affects later life disability [22] or how
pregnancy outcomes affect trajectories of chronic conditions after the
age of 65 [23]. Using geocoded data to link the databases and bior-
epositories identified in this study to other external data sets, such as
environmental toxins and measures of the social determinants of
health, also have great potential to improve our understanding of the
long-term effects of early life exposures. One area that appears
underrepresented in current databases is patient-reported measures,
such as subjective well-being, which has been shown to be distinct
from mental illness and predictive of long-term health and longevity
[24, 25]. Whereas mental illness may be captured as diagnoses and
prescriptions in electronic medical records, social well-being will not
be captured, and thus adding brief indicators to existing databases
could yield valuable information related to long-term health and dis-
ease prognosis, as well as patient centered outcomes [26].

Although combining data from multiple sources with computational,
bioinformatics, and statistical methods allow us to observe previously
unseen patterns in biomedical data, conceptual models, such as those
used in life course epidemiology, can be used to provide the scaffolding
for integrating scientific theory and approach to making sense of the
patterns. There are multiple opportunities to utilize this framework in
ongoing initiatives such as the Precision Medicine Initiative and the
Environmental Influences on Child Health Outcomes program.

Table 1. Characteristics of reported databases (n= 130)

n %

Database includes multiple
measurements/multiple time points

93 71.5

Age at enrollment
Prenatal 47 36.2
Infant 66 50.8
Child 55 42.3
Young adult 45 34.6
Adult 53 40.8
Older adults 30 23.1
Pregnancy 46 35.4
Unknown 8 6.2
Universal consent 18 13.8

Biorepository 76 58.5
Components of biorepository % among those with

biorespository
Blood 58 76.3
Plasma 14 18.4
Tissue/fluid 28 36.8
Other 12 15.8
Unknown 11 14.5

Type of subjects in biorepository
Normal 50 65.8
Disease state 42 55.3
Unknown 6 7.9
Other 9 11.8

Centralized repository 68 89.5
EHR integration 62 81.6

EHR, electronic health records.
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Identifying factors early in life and across generations that affect
health throughout the life course will facilitate the design of inter-
vention and prevention programs that have the potential to optimize
the health of an entire population. While this first attempt to catalog

the data across institutions is valuable, more needs to be done to
further this endeavor. First, more resources should be devoted to
cataloging the data sets available for life course research. The Inter-
university Consortium for Political and Social Research (ICPSR) is an

Fig. 2. Number of Clinical and Translational Science Awards databases with longitudinal data linked to a biorepository by cohort size. (a) The number of
databases by sample type. (b) The number of databases with normal and/or disease state data. (c) The number of databases by the approximate age of the
participant at the time of enrollment.

Fig. 3. Number of Clinical and Translational Science Awards databases with longitudinal data linked to a biorepository and electronic medical records by cohort
size. (a) The number of databases by sample type. (b) The number of databases with normal and/or disease state data. (c) The number of databases by the
approximate age of the participant at the time of enrollment.
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example of a successful data sharing resource that began archiving
data in 1962 and currently holds over 68,000 data sets from more
than 8000 studies [27]. A similar resource combining clinical and
population health existing data sources housed across multiple
institutions, guided by a conceptual model of life course research,
and supported by the CTSI program across the United States would
be a cost-effective way to further investigate the relationship
between early life exposures and health. Second, to support repro-
ducibility, data sharing across institutions should include sharing the
protocols and methodologies used to collect, clean, analyze, and
curate the data. Examples of online protocol repositories include
Protocols.io [28] and Protocol Exchange [29]. Third, building off of
the ICPSR model, training in data access, curation, and the analytic
methods of life course research should be part of the life course data
repository. Although there are many aspects, such as confidentiality
and data sharing agreements that must be considered if such an
endeavor were to be undertaken, these should not be seen as
unsurmountable obstacles. Sensitive data sources could also be held
by their respective intuitions and assigned a linkage id that would
allow data sharing between groups that have gained the appropriate
approvals from the relevant data contributors and IRB [15]. Insuffi-
cient time, lack of funding, and lack of data sharing platforms may
also be prohibitive to the promotion of data sharing across institu-
tions [30].

Other barriers also need to be addressed for large-scaled collabora-
tions across institutions. For instance, data and biospecimens may only
be internally available to researchers in the same institution. Thus,
alternative strategies for collaborations across centers for replication
of previous findings will be required. This includes concerns about
confidentiality and privacy issues revolving around creating large
databases with personal health information require pragmatic strate-
gies that minimize the risk of loss of confidentiality while enhancing the
opportunity to learn from real-world experience. One approach is to
allow collaborators to perform analyses within their own institutional
firewalls and share statistical estimates for pooling in collaborative
analyses. Several approaches, from simple to complex, could be taken
to achieve such collaborations. For example, a simple approach is to
form cross-institutional research teams focused on a single research
question, each with access to their own data sets and have them design
and execute the study and analysis protocol simultaneously, and then
combine summary data across sites. This model has also proven suc-
cessful in the social sciences [31–33]. A more complex approach
would be to develop a consortium of data science teams from parti-
cipating institutions to develop common data elements and common
procedures for life course research, also referred to as a “Federated
Model.” The National Patient-Centered Clinical Research Network
Model and CTSA Informatics Domain Task Force is an example of this
type of collaboration. It might be more successful, however, if the
sometimes daunting task of sharing all data across institutions were
focused on a smaller scale. This would circumvent the need for a data
repository, which raises complex social, legal, and ethical challenges,
and allow for the formation of cross-institutional research teams with
common goals but independent data holdings. Further, the NCATS
Streamlined, Multisite, Accelerated Resources for Trials IRB platform
(SMART IRB) will help expedite multi-site clinical studies across
CTSAs by providing a single IRB review process. Transforming such a
platform from vision to reality, however, would require substantial
support frommultiple institutions and creative solutions for a complex
problem.

There are noteworthy limitations to our study. Our survey was
specific to CTSIs, and it is likely that the number of databases and
biorepositories focusing on child-maternal health and lifespan
research within CTSIs and available to investigators is under-
reported. It is possible that the respondent at each CTSA was not
fully aware of all related databases housed within each institution.
Nonetheless, we see the development of our data catalog as a

dynamic process and plan to incorporate other databases as we
identify them. We also have considered updating the catalog to
incorporate new or expanded databases. At the very least, this is a
good start to which additional databases could be added in the
future, and facilitate conversations and collaborations across mul-
tiple institutions.
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