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Abstract

We describe a novel method for robust identification of common brain networks and their 

corresponding temporal dynamics across subjects from asynchronous functional MRI (fMRI) 

using tensor decomposition. We first temporally align asynchronous fMRI data using the 

orthogonal BrainSync transform, allowing us to study common brain networks across sessions and 

subjects. We then map the synchronized fMRI data into a 3D tensor (vertices × time × subject/

session). Finally, we apply Nesterov-accelerated adaptive moment estimation (Nadam) within a 

scalable and robust sequential Canonical Polyadic (CP) decomposition framework to identify a 

low rank tensor approximation to the data. As a result of CP tensor decomposition, we 

successfully identified twelve known brain networks with their corresponding temporal dynamics 

from 40 subjects using the Human Connectome Project’s language task fMRI data without any 

prior information regarding the specific task designs. Seven of these networks show distinct 

subjects’ responses to the language task with differing temporal dynamics; two show sub-

components of the default mode network that exhibit deactivation during the tasks; the remaining 

three components reflect non-task-related activities. We compare results to those found using 

group independent component analysis (ICA) and canonical ICA. Bootstrap analysis demonstrates 
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increased robustness of networks found using the CP tensor approach relative to ICA-based 

methods.
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1. Introduction

Characterization and identification of brain networks from functional MRI provides 

important insights into brain organization and the influence of development, aging and 

disease on large-scale communication in the brain. The most widely used tools for 

identification of these networks across subjects are based on independent component 

analysis (ICA). One approach to group analysis is to perform ICA individually on each 

subject and then combine components across groups (Calhoun et al., 2001a; Esposito et al., 

2005). Alternatively, group ICA can be performed directly across subjects through either 

temporal or spatial concatenation (Calhoun et al., 2001b; Guo and Pagnoni, 2008; 

Schmithorst and Holland, 2004; Svensén et al., 2002). Temporal concatenation produces 

components with unique time series for each subject but shared spatial maps. Spatial 

concatenation produces common time-series but unique spatial maps for each subject.

Although meaningful components can be found using these ICA-based approaches (Calhoun 

et al., 2009), by concatenating multi-subject data into a 2-dimensional representation, we 

lose the higher-dimensional (space × time × subject) low-rank structure that may be inherent 

in the data. This low-rank structure can be captured and efficiently represented in a tensor 

format as we illustrate below in Fig. 1. Another limitation of group ICA is that it requires an 

additional assumption of either spatial or temporal independence, which may not be realistic 

as brain networks can overlap and be correlated in both space and time (Karahanoğlu and 

Van De Ville, 2015). Further, it has been shown that stability or robustness of the solutions is 

a well-known issue associated with ICA (Himberg and Hyvärinen, 2003), although several 

variants have been developed to improve its stability (Du and Fan, 2013; Varoquaux et al., 

2010). Significantly different independent components may be obtained from bootstrap 

resamples of the data, or even as a result of different initializations with the same data.

In order to address these issues, we use a tensor decomposition of the multi-subject fMRI 

data. Higher-order tensor decomposition is a generalization of matrix factorization. 

Application of tensor decomposition to fMRI data for brain network identification has 

previously been explored. The Tucker and canonical polyadic (CP) models (Cichocki et al., 

2015; Kolda and Bader, 2009) are the two most commonly used tensor representations. 

Leonardi and Van De Ville applied a Tucker model to sliding-window-based dynamic 

connectivity tensors derived from task fMRI data and predicted the task design paradigm for 

unseen subjects (Leonardi and Van De Ville, 2013). Al-sharoa et al. performed a 4D Tucker 

decomposition by adding one extra dimension over the Leonardi model via random 

sampling over time and subjects, allowing them to identify five different brain states using k-

means clustering (Al-sharoa et al., 2019). In comparison with the CP model, Tucker allows 
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interactions between different modes through its core tensor which can have an impact on 

interpretability. Furthermore, the orthogonality constraints imposed on the Tucker solutions 

may not be realistic for brain networks. For these reasons, here we focus on the CP 

decomposition.

CP decomposition is most frequently performed using an alternating least square algorithm 

for a group-level fMRI study to find common networks among subjects. For example, 

Andersen and Rayens applied a third-order CP decomposition to finger-tapping task fMRI 

(Andersen and Rayens, 2004). Beckmann and Smith extended ICA to higher-order tensors 

by imposing an independence constraint in the spatial dimension (Beckmann and Smith, 

2005). Instead of adding an independence constraint, Sen and Parhi imposed an 

orthogonality constraint in the spatial dimension as with PCA (Sen and Parhi, 2017). 

However, CP decomposition on fMRI data is not as popular as other methods because of 

several issues limiting its applicability to fMRI studies as discussed below.

Multi-subject group analysis on asynchronous fMRI data:

Almost all fMRI studies using CP decomposition were performed on task fMRI data, with 

the assumption that the temporal dynamics were synchronized across subjects based on 

alignment of the response stimulus timing (Andersen and Rayens, 2004). This temporal 

synchrony across multiple subjects is a strict requirement for CP decomposition to work 

well with low-rank models. However, the assumption may not be satisfied even when an 

identical task design is used across all subjects because individual responses to tasks may 

differ in latency, sometimes significantly for higher-level cognitive tasks (Friston et al., 

1998). Low-rank CP decomposition cannot be performed when using different task designs 

across scans or when no task is present as in the case of resting-state fMRI. Moreover, any 

brain processes independent of the task cannot be identified using a CP decomposition 

because this task-independent activity is not synchronized even when the data are aligned to 

stimulus presentation.

Here we combine the tensor decomposition with a temporal alignment step based on an 

orthogonal transform, BrainSync (Joshi et al., 2018; Akrami et al., 2019). This transform 

exploits similarity in temporal correlation structure across subjects to produce alignment at 

homologous locations across subjects in the sense that the resulting time series are highly 

correlated. By applying this transformation prior to computing the tensor decomposition we 

are able to produce approximate synchronization of the time series for each component or 

network across subjects, as we show below.

Robustness against local minima and scalability to large dataset:

The most common method for CP decomposition uses alternating least squares (ALS) for 

optimization. It has been shown that ALS is not guaranteed to converge to a global minimum 

or a stationary point for a CP model, even with multi-start (Cichocki et al., 2015; Kolda and 

Bader, 2009). Although adding additional constraints, such as independence (Beckmann and 

Smith, 2005) or orthogonality (Sen and Parhi, 2017), may help avoid local minima, those 

constraints may not be physiologically reasonable for brain network identification. Indeed, 

specific concerns (Helwig and Hong, 2013; Stegeman, 2007) have been raised against 
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imposing those constraints when applying the CP model to fMRI data. Moreover, the naïve 

ALS algorithm does not scale well to large datasets. As we have shown in (Li et al., 2018, 

2017), computational complexity is approximately quadratically proportional to the largest 

dimension of the tensor. In fact, most of the studies cited above heavily downsampled the 

data in the spatial domain in order to have a tractable CP decomposition. For robustness, a 

multi-start strategy needs to be employed, resulting in an even higher complexity.

In this paper we describe a method that uses tensor decomposition to robustly identify 

common brain networks, (that is, it computes both spatial maps and temporal dynamics 

simultaneously) across multiple subjects from potentially asynchronous fMRI data without 

imposing unrealistic constraints on the networks. We approach this problem using the 

Nesterov-accelerated adaptive moment estimation (Nadam) method (Dozat, 2016) applied to 

a full-gradient search to simultaneously estimate all components of the tensor. As with our 

earlier work, we use a sequential canonical polyadic decomposition framework (Li et al., 

2018, 2017), in which we compute a sequence of solutions, increasing the rank by one at 

each step and using the lower rank solution as a warm-start to initialize the search. As noted 

above, we first apply the BrainSync algorithm (Joshi et al., 2018), which uses a temporally 

orthogonal transform to align time-series across subjects.

We refer to our tensor decomposition algorithm as Nadam-Accelerated SCAlable and 

Robust (NASCAR) CP decomposition. Using this pipeline, as illustrated in Fig. 1, we show 

that spatially overlapped and temporally correlated brain networks can be successfully 

identified from multi-subject task fMRI data using NASCAR. We also explore robustness of 

the resulting networks relative to group ICA (Calhoun et al., 2001b) and canonical ICA 

(CanICA) (Varoquaux et al., 2010) using multi-start and bootstrapping.

An outline and some preliminary work of the idea described here have been previously 

presented in (Li et al., 2019). The current paper provides a more detailed description of the 

method and novel experimental results using language task fMRI data.

2. Methods

2.1. Time-series synchronization

Functional MRI time series from two different subjects are often not directly comparable. 

This is clearly the case for resting-state fMRI studies where spontaneous activity varies over 

subjects and time. Even in stimulus-locked event-related studies, brain activity can vary due 

to differing latencies in response (Friston et al., 1998). However, in order to usefully 

represent multi-subject fMRI data as a third-order tensor, they must be temporally aligned. 

We address this problem before computing the tensor decomposition using the recently 

developed BrainSync method for temporal synchronization (Joshi et al., 2018). This method 

exploits similarity in correlation structure across subjects to perform an orthogonal rotation 

of time series data between two or more subjects to induce a high correlation between time 

series at homologous locations.

Let Xi and Xj be matrices representing fMRI data for any two subjects, each of size V × T, 

where V is the number of vertices and T is the number of time points with V ≫ T. We 
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assume in the following that these data have been mapped onto a tessellated representation 

of the mid-cortical surface, non-rigidly aligned and resampled onto a common mesh 

(Glasser et al., 2013). BrainSync finds an orthogonal transform OS that minimizes the total 

squared error:

OS = argmin
O ∈ O(T)

‖Xi − XjO‖F
2

where O(T) represents the group of T × T orthogonal matrices. The problem is well-posed 

when V ≫ T and has the closed form solution (Joshi et al., 2018):

OS = UV ⊤

where UΣV ⊤ = XiXj⊤
 is the singular value decomposition of the cross-correlation matrix 

between Xi and Xj and “T” is the transpose operator. After applying this transform, the time 

series at homologous locations in the two subjects will be aligned in the sense that they will 

be highly correlated as illustrated in Fig. 1 (a) and (b). An extension of BrainSync from pair-

wise to group alignment is described in (Akrami et al., 2019).

2.2. Tensor representation and decomposition of fMRI data

The Canonical Polyadic (CP) decomposition approximates a third-order tensor 

X ∈ ℝI × J × K ℝspace × time × subject  as a sum of rank-1 tensors:

X ≈ ∑
r = 1

R
λrar ∘ br ∘ cr (1)

where ar ∈ ℝI, br ∈ ℝJ, cr ∈ ℝK have unit norm; λr represents the scale factor for each 

component; “∘” is the vector outer product and R is the rank or number of components. For 

fMRI data, the tensor X is formed by arranging spatiotemporal data for a group of subjects 

as illustrated in Fig. 1 (c). Each component obtained from the decomposition, λr ar °br °cr, 

can be viewed as representing a distinct brain network, where ar, br, cr are the spatial map, 

temporal dynamics, and relative amplitude of each subject’s involvement in that network, 

respectively, as illustrated in Fig. 1 (d) and (e).

If we combine the ar to form a matrix A = [a1 a2⋯aR] ∈ ℝI × R and similarly for B ∈ ℝJ × R

and C ∈ ℝK × R, then we can express a least-squares fit of the tensor model to the data in 

terms of the following three equivalent cost functions (Kolda and Bader, 2009):

f = min
A, B, C

1
2‖X(1) − A(C ⊙ B)⊤‖F

2

= min
A, B, C

1
2‖X(2) − B(C ⊙ A)⊤‖F

2

= min
A, B, C

1
2‖X(3) − C(B ⊙ A)⊤‖F

2

(2)
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where X (i) is the matricized or unfolded version of tensor X along the ith dimension (Kolda 

and Bader, 2009); “⊙” is the Khatri-Rao product between two matrices.

A common approach to fitting the tensor is to use Alternating Least Squares (ALS): first 

solving for A with B and C fixed, then solving for B with A and C fixed, and so on until 

convergence. We previously used an ALS approach for tensor decompositions of EEG data 

in combination with a warm start procedure. The warm start approach, Scalable and Robust 

Sequential CP Decomposition (SRSCPD), builds a model of successively higher order, r, 
with each search initialized using the results from the previous order, r − 1 (Li et al., 2018, 

2017). Here we use a full gradient-based method, again in combination with a warm start, 

which we found to converge substantially faster than ALS.

2.3. Gradient of the CP Model, Adam and Nadam

If we treat the variables in a CP model as a high-dimensional vector lying in the space of 

x ∈ ℝN, where N = I × R + J × R + K × R, then objective function f(A, B, C) in Eq. (2) is a 

scalar-valued cost function f(x):ℝN ℝ. Solutions can be obtained using gradient-based 

optimization. The partial gradient of the objective function f with respect to the loading 

matrix A is:

∇Af = − X(1)(C ⊙ B) + A C⊤C ∗ B⊤B

and like-wise for B and C, where “*” is the Hadamard product between two matrices (Acar 

et al., 2011). A gradient-based search on the unregularized cost function will not produce a 

unique solution because all solutions in the form of {η1A, η2B, η3C } with η1η2η3 = 1 are 

equivalent. To resolve this ambiguity, we use the Tikhonov regularizer:

f = min
A

1
2‖X(1) − A(C ⊙ B)⊤‖F

2 + μA
2 ‖A‖F

2
(3)

where μA is the regularization parameter and similarly for B and C. The role of the 

regularization term is to prevent individual terms in the outer product becoming arbitrarily 

large. For this reason, the minimizer of Eq. (3) is relatively insensitive to the choice of 

regularization parameter μA provided the value is not too large (see Section 3.2). In this 

regularized case, the gradient becomes (Acar et al., 2011):

∇Af = − X(1)(C ⊙ B) + A C⊤C ∗ B⊤B + μAA (4)

and similarly for B and C. Moreover, in real application to in-vivo fMRI data below, we 

imposed an additional non-negativity constraint on the subject mode (C ≽ 0) since we 

assume each subject could either participate or not in a network but could not negatively 

participate.

Adaptive moment estimation (Adam) (Kingma and Ba, 2014) is a popular first-order solver 

used in the deep learning community (Ruder, 2016). Its superior performance is achieved 

using momentum-based acceleration together with an adaptive learning rate, which allows 
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small step sizes for parameters with large accumulative gradients and large step sizes for 

parameters with small accumulative gradients. Recently, Dozat described a modified 

algorithm, Nadam, in which Nesterov acceleration is incorporated into Adam (Dozat, 2016). 

In the following, we use Nadam to update all modes simultaneously using the gradients 

above. The default values for the parameters are chosen to be α = 0.001, β1 = 0.9, β2 = 

0.999 and ϵ = 10−8 per (Kingma and Ba, 2014).

We use a warm initialization from lower rank solutions to improve convergence rates. We 

demonstrate below that this full gradient-based approach is also more robust than ALS. The 

Nadam-Accelerated SCAlable and Robust (NASCAR) CP decomposition algorithm is 

outlined in Algorithm 1. Starting with a rank-1 solution using ALS, we then use Nadam to 

solve the main decomposition problem at each rank from 2 to R with warm initializations 

{A*, B*, C*}, where f in line 7 is the Tikhonov regularized objective function shown in Eq. 

(3) with gradient shown in Eq. (4), and similar forms for B and C, except that the non-

negativity constraint on C is tackled by a projected version of Nadam to the non-negative 

orthant. Note that the model in Eq. (1) constrains the components of {A*, B*, C*} to have 

unit norm. Rather than integrate this constraint into the Nadam search, we simply normalize 

and then re-scale the components after and before the Nadam procedure as shown in lines 8 

and 6 respectively.

Algorithm 1:

NASCAR.

s Algorithm NASCAR (X, R)

1  a1, b1, c1, λ1 ← CP-ALS (X, 1)

2  Xres ← X – Tensor_Recon (a1, b1, c1, λ1)

3  a′, b′, c′, λ′ ← CP-ALS (Xres, 1)

4
 A* ← [a1 a′]; B* ← [b1 b′]; C* ← [c1 c′]; λ * λ1

λ′
5  For r = 2, 3, …, R

6   Scale the ith components of A*, B*, C* by λi*3

7    Ar, Br, Cr ← Nadam (f, {A*, B*, C*})

8   Normalize the ith components of Ar, Br, Cr and store the norm product into λr

9   Xres ← X – Tensor_Recon (Ar, Br, Cr, λr)

10   a′, b′, c′, λ′ ← CP-ALS (Xres, 1)

11
  A* ← [Ar a′]; B* ← [Br b′]; C* ← [Cr c′]; λ * λr

λ′
12 End For

13 Return a set of solutions {a1, b1, c1, λ1}, {A2, B2, C2, λ2}, …, {AR, BR, CR, λR]

e End Algorithm
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3. Materials and experiments

3.1. Simulation

Third-order tensors X ∈ ℝ20 × 10 × 8, with rank R varying from 1 to 10, were simulated from 

the outer product of factors randomly sampled from a standard normal distribution. We 

added Gaussian white noise to the simulated tensor X with a SNR of 2. We then performed 

tensor decomposition with rank R on X using NASCAR (Nadam inside) as well as SRSPCD 

(ALS inside) (Li et al., 2018, 2017). For a fair comparison, we used the same random 

initializations for both methods. We evaluated the performance using the averaged 

congruence product (ACP) (Tomasi and Bro, 2005). ACP is a measure of correlation 

between components defined as

ACP = max
P

tr((A⊤A) ∗ (B⊤B) ∗ (C⊤C)P)

where A, B, C are the ground truth loading matrices and A, B, C their estimated 

counterparts, P is a permutation matrix accounting for the ambiguity of the ordering of the 

solutions (Harshman, 1970) and tr (·) is the trace of a matrix. We evaluated ACP of the 

solutions obtained from both NASCAR and SRSCPD as a function of R. For each R, we ran 

100 Monte Carlo trials and generated box plots of the ACP for visualization. For each 

simulated trial above, we also recorded the run time for each of the methods.

3.2. In-vivo language task fMRI data

The minimally preprocessed language task fMRI data from 40 randomly selected subjects 

(16 male and 24 female, age 26–30, all right-handed) in the publicly available Human 

Connectome Project (HCP) database (Glasser et al., 2013; Van Essen et al., 2013) were used. 

The list of subject IDs is shown in the supplementary materials. These data were acquired 

for two independent sessions with opposite phase encoding direction (LR, RL) using a 

gradient-echo EPI sequence (2 mm × 2 mm × 2 mm voxels, TR = 720 ms, TE = 33.1 ms), 

where each session ran 3 mins and 57 secs with 316 frames in total.

Task fMRI was used here, instead of resting-state fMRI, because the task designs and the 

results from the generalized linear regression model (GLM) (Barch et al., 2013) can be used 

for validation purpose. However, we note that, through the use of BrainSync alignment, 

NASCAR can be applied to a range of multi-subject fMRI recording paradigms including 

resting-state fMRI and self-paced event-related fMRI studies.

The language processing task was selected because it consists of several spatially overlapped 

networks that span a substantial fraction of the cortical surface. The design of the language 

processing task, developed by (Binder et al., 2011), consists of four interleaved blocks of a 

story task and a math task. In each story block, the subjects were presented with a brief 

auditory story (Present Story) followed by a forced-choice question about the topic of the 

story (Question Story). Then, the subjects chose one answer from two alternatives by 

pressing a button (Respond Story). In each math block, the subjects were asked to perform 

some addition or subtraction calculation (Question Math) after listening to a series of 
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arithmetic operations (Present Math). Finally, similar to the story blocks, the subjects 

selected one answer from two alternative choices (Respond Math). The order of task blocks 

is identical within each session but different between the two sessions.

The results below used language task fMRI data resampled onto the cortical surface 

extracted from each subject’s T1-weighted MRI and co-registered to a common surface atlas 

as described in Glasser et al., 2013). Each session was represented as a V × T matrix, where 

V ≈ 22 K is the number of vertices across the two hemispheres and T = 316 is the number of 

time points. The time series at each vertex was normalized to have zero mean and unit norm. 

We applied the BrainSync algorithm to temporally align all sessions of task fMRI datasets to 

the first session of the first subject (this reference was HCP subject 100307). Although we 

did not find significant difference in the choice of reference subject in this study, we note 

that a pair-wise group alignment could be used to avoid potential bias towards one specific 

subject (Akrami et al., 2019). The temporally aligned task fMRI data were then combined 

along the third dimension, forming a third-order data tensor X ∈ ℝV × T × S, where S = 80 is 

the number of subjects (40) by sessions (2). Analogous to rank-reduction preprocessing 

methods used in ICA, we performed a greedy CP decomposition (Acar et al., 2011) to the 

tensor X to reduce its rank to 20. Specifically, we recursively fit a rank-1 component to the 

data tensor and then subtracted this from the residual data tensor until we had found 20 

components in total. Next, we applied the NASCAR algorithm to the rank-reduced tensor to 

extract brain networks with a desired rank of 20. The rank 20 here is chosen to match the 

rank used in the group ICA method (Calhoun et al., 2001b) against which we compare 

below. The regularization parameter μ in Eq. (3) and ((4) was chosen to be 0.001. We found 

in practice that this value works reasonably well across different fMRI datasets, possibly 

because we normalize each time-series to zero mean and unit magnitude before applying the 

decomposition. Our experiments have also shown that results are robust to a wide choice of 

parameter values as illustrated in Fig. S1 in the supplementary materials. Smaller values, or 

even no regularization, produced very similar results. Note that despite the negligible 

difference in results without regularization, using a non-zero regularization parameter is still 

prudent as theoretically the magnitude ambiguity issue (Section 2.3) can still occur. Large 

values, however, should be avoided to prevent the regularizer reducing the fit of the tensor to 

the data in Eq. (3).

We also ran group ICA on the same language task fMRI dataset as a comparison. Following 

the procedure described in (Calhoun et al., 2001b), the (temporally) PCA-denoised (to rank 

40) individual language task fMRI data was temporally concatenated, then the temporal 

dimensionality was further reduced to 20 using PCA again and a spatial group ICA 

performed to extract independent components. We also compared with the Canonical ICA 

(CanICA) method (Varoquaux et al., 2010), where a canonical correlation decomposition 

was applied in the second stage instead of the PCA as in (Calhoun et al., 2001b). Parameters 

were identical to those used in (Calhoun et al., 2001b) as a fair comparison.

3.3. Reproducibility analysis

We investigated the reproducibility of NASCAR across two sessions of the same set of 40 

subjects’ language task fMRI data. NASCAR was applied to each session independently and 
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an averaged cross-correlation between matched pair-wise components in two sessions was 

computed as a measure of reproducibility or consistency (Varoquaux et al., 2010). 

Specifically, a cross-correlation matrix Q ∈ ℝR × R was first computed:

Q = A1
⊤A2

where A1 and A2 are the spatial modes of the solutions obtained from the two sessions, 

respectively. Then the rows and columns of Q was reordered into Q such that the spatial 

maps in A1 and A2 are optimally matched to each other using the stable matching algorithm 

(Gale and Shapley, 1962). Next, the absolute values of the diagonal elements of Q were 

sorted in a descending order, denoted as q ∈ ℝR × 1. The “t” reproducibility measure used in 

(Varoquaux et al., 2010) was then equivalent to the average of the elements of q:

t = 1
R ∑

i = 1

R
qi

where R = 20 is the total number of components in our experiment. Since we do not expect 

the subject-specific components shown below to be consistent across sessions, we 

generalized the “t” measure to a “tr” measure:

tr = 1
r ∑

i = 1

r
qi (5)

indicating the change of consistency as a function of rank r. Hence, the “t” measure is the 

special case of the “tr” measure when r = R.

We repeated the analysis above and computed reproducibility using both group ICA and 

CanICA as a comparison. We also explored reproducibility of the subject mode across the 

two sessions in NASCAR as the subject mode is a unique property available in NASCAR 

but absent from the ICA methods.

3.4. Stability analysis

We investigated the stability of NASCAR, group ICA and CanICA by running them on the 

language task fMRI data 100 times, each time with different random initializations. Thus, 

2000 (20 networks/run × 100 runs) brain networks were obtained in total. We then projected 

the spatial map of these 2000 networks non-linearly onto a 2D plane using the curvilinear 

component analysis (CCA) algorithm (Demartines and Hérault, 1997) provided by the 

ICASSO software (Himberg and Hyvärinen, 2003) for easy visualization. For the tensor 

decomposition we color-coded the projected spatial maps with the number of participating 

subjects for each network. A subject is defined to participate in a particular network if the 

values of the normalized session mode (the third dimension of the tensor) exceeded 0.05 in 

any of the two sessions for that subject. The threshold was chosen heuristically based on the 

overall histogram of the session modes from all decomposition results.
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Quantitatively, for each method, we randomly selected a pair of solutions from the 100 runs 

with replacement and computed the “tr” in Eq. (5) as a measure of consistency across runs. 

We repeated the random selection 1000 times and visualized the results using box plots.

We also investigated stability of group ICA, CanICA, and NASCAR using bootstrap 

analysis. We repeated the decompositions for each of 100 bootstrap resamples and used the 

CCA embedding and color coding as described above to visualize the results.

3.5. Are BrainSync and Nadam essential for successful brain network identification?

For task fMRI, data are typically aligned with respect to the stimulus timing. Additional 

synchronization across subjects or sessions is usually not performed. However, as discussed 

earlier, temporal synchronization may not be strictly satisfied across subjects even when an 

identical task design is used. Responses to tasks from individual subjects can differ in their 

latencies, especially for higher-level cognitive tasks. Further, any brain networks that are 

independent from the task designs cannot be found without temporal synchronization. To 

explore the additional benefit that might be gained from synchronizing time series across 

subjects using BrainSync, we repeated our experiments as described above on one session of 

the 40 subjects’ language task fMRI data, where identical task design was used to all 

subjects, with and without BrainSync.

Furthermore, to investigate the impact of using Nadam relative to ALS, we repeated the 

tensor-decomposition composition using our earlier SRSCPD framework (Li et al., 2018, 

2017) on the same language task fMRI data as describe above.

4. Results and discussion

4.1. Simulation

Fig. 2 (a) shows box plots of the ACP over 100 Monte Carlo trials as a function of the rank r 
using NASCAR (red) and SRSCPD (blue). When r is small, they perform approximately 

equally well. However, NASCAR outperforms SRSCPD by a margin that increases with r, 
indicating an improved robustness of NASCAR over SRSCPD.

Fig. 2 (b) shows box plots of the run time corresponding to the simulated trials in (a). The 

run time is substantially lower using NASCAR than that using SRSCPD and the difference 

becomes larger and larger as r increases, indicating a significant improvement of the 

scalability to large dataset and higher rank decomposition. The difference in run time is 

largely due to the substantially fewer total iterations through the data required with 

NASCAR relative to SRSCPD.

4.2. In-vivo language task fMRI data

Fifteen components were identified by the NASCAR method that could plausibly represent 

networks or other physiological components in the sense that the spatial maps are smooth 

and are found in most subjects. Of these, twelve appear consistent with known networks as 

shown in Fig. 3 (the remaining three are shown in Fig. S2 in supplementary materials). For 

each component, the left sub-figure shows the spatial map, the top right sub-figure shows the 

temporal dynamics overlaid with color-coded task design (math tasks shown in red and story 

Li et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tasks shown in blue) and the bottom right sub-figure shows the subject and session 

participation mode.

Recall that task-timing is different between the two sessions but the BrainSync transform 

brings them into alignment as we have shown previously (Joshi et al., 2018). Similarly, 

BrainSync should also align not only responses to the stimuli across subjects but also 

underlying brain activity independent of the stimulus. The results here are aligned to the 

timing for the first session and the first (reference) subject. Applying the appropriate inverse 

BrainSync transform we can obtain the corresponding network dynamics for each subject.

Fig. 3 (a) shows a classic language network where activity in Broca’s area, Wernicke’s area, 

and the anterior temporal lobe are strongly inter-correlated. The spatial map of this network 

is consistent with the result shown in Fig. 8 in (Barch et al., 2013), which is the spatial 

response to the Story-Math task contrast (St-Ma) obtained using a GLM from 77 subjects. 

Unlike in that case, here the component is obtained directly from the data without 

knowledge of the task. The associated temporal mode shows a strong correlation to the 

Story-Math contrast with a maximum lagged correlation of r = 0.77 (uncorrected p-value < 

10−60) at a lag of d = 3.6 s from the design to the response, consistent with the latency 

associated with the hemodynamic response function.

Fig. 3 (b) shows a clear auditory network in response to the auditory task stimuli (note again 

that both story and math descriptions in the first phase of the tasks were given as auditory 

presentations), where spatially bilateral auditory cortex was activated and temporally it is 

significantly correlated with the combined Presentation blocks from both story and math 

tasks, i.e. Present Story + Present Math (r = 0.43, p = 9 × 10−16, d = 5.8 s).

The temporal dynamics of Fig. 3 (c), (d), (e), (f), and (g) show significant correlations with 

the combined Response blocks from both story and math tasks, i.e. Respond Story + 

Respond Math, with a short but variable delay, suggesting that they correspond to brain 

activity during the Response period of the tasks. Indeed, the spatial pattern of these 

components indicates a frontoparietal attentional control network (FPACN) (Hopfinger et 

al., 2000; Marek and Dosenbach, 2018) (r = 0.26, p = 1.5 × 10−6, d = 7.2 s) for (c), a visual 

network (VN) (r = 0.29, p = 1.3 × 10−7, d = 2.9 s) for (d), an extended language network or 

reading network (LN) (Dehaene et al., 2010; Fedorenko and Thompson-Schill, 2014) (r = 

0.28, p = 3.3 × 10−7, d = 1.4 s) for (e), a right-hand-visual co-activation (RH-V) (r = 0.36, p 
= 1.7 × 10−11, d = 2.2 s) for (f), and a cingulo-opercular network (CON) (Sylvester et al., 

2012) (r = 0.28, p = 2.4 × 10−7, d = 5 s) for (g), all reflecting the subjects’ response or brain 

networks activated in order to answer the task questions.

The spatial maps for Fig. 3 (h) and (i) show two sub-components of a typical default mode 

network (DMN) with classic areas, such as medial prefrontal cortex, precuneus and posterior 

cingulate cortex, temporalparietal junction, highly activated (Raichle, 2015; Simony et al., 

2016). The DMN was first known as a task-negative network (Fox et al., 2005; Raichle et 

al., 2001) and in fact a strong negative correlation between the temporal mode of (h) and (i) 

and the task blocks can be clearly observed both visually (dips during tasks and peaks 
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between tasks) and quantitatively (r = −0.3, p = 3.5 × 10−8, d = 4.3 s for (h) and r = −0.22, p 
= 4.2 × 10−5, d = 7.9 s for (i)).

Fig. 3 (j) shows a spatially global, oscillatory (~0.3 Hz) and non-task-related activity, 

suggesting that it may represent a residual respiration effect (Resp) common across subjects. 

Further investigation shows that this component, as shown in Fig. 4, is strongly correlated (r 
= 0.67) with the actual abdominal respiratory measure (also provided as part of the 

physiological data in the HCP dataset). To obtain the average abdominal respiratory signal, 

we applied the BrainSync transformation matrices obtained from the fMRI data from each 

subject to that subject’s respiratory data and then averaged across subjects. The resulting 

time series, overlaid with the temporal mode from Fig. 3 (j), is shown in Fig. 4.

Fig. 3 (k) shows a sensorimotor network (SMN) around the tongue area. Fig. 3 (l) shows a 

brain network potentially related to memory retrieval (Mem), although it is not well reported 

in the literature (Power et al., 2011). Both of these two networks are non-task-related as they 

do not correlate with any of the tasks or sub-tasks. Note that the synchronization of non-

task-related activity across subjects using BrainSync allows us to identify components (j), 

(k), and (l) from the third-order tensor in addition to task-related networks.

All twelve identified networks show strong subject modes in almost all 40 subjects, 

indicating that these networks are indeed common across subjects. However, considerable 

differences in the subject mode among these subjects are also observed. For example, in the 

extended language network shown in Fig. 3 (e), the values of the subject mode span the 

range from 0.04 to 0.174. Similarly, the counterpart for the DMN shown in Fig. 3 (h) has a 

range from 0.065 to 0.166. These differences in the subject mode are presumably indicative 

of the degree of activity in that particular network for each subject, so that they could be 

used as features to study inter-subject variability of participation of networks in specific 

tasks or to study how the participation level of networks are altered during development and 

aging, or by neurological disease (Li et al., 2020).

The remaining three plausible but un-recognized components also exhibit smooth spatial 

maps as shown in Fig. S2 (a)–(c) in the supplementary materials. For example, Fig. S2 (a) 

shows bilateral activations in the sensorimotor foot area. As with the components in Fig. 3, 

the subject mode shows participation across all subjects, which is consistent with these 

networks being common to all 40 subjects. Inspection of the remaining five components of 

the rank-20 decomposition reveals that their subject modes have a large value for a single 

subject, indicating that these are likely artifacts originating from that subject. Fig. S2 (d) 

shows one such component out of the five as an example. Further exploration of components 

with higher rank (R > 20) on this dataset only revealed additional subject-specific or noisy 

components.

When applying group ICA to the same language fMRI dataset, we were able to identify 

seven components as shown in Fig. S3 in the supplementary materials. Of the seven 

components, (a) VN and (b) AN can be clearly recognized. Another five networks exhibit 

spatial maps similar to those identified by the NASCAR method in Fig. 3, suggesting a 

FPACN for (c), a DMN for (d), a RH-V for (e), a SMN for (f), and a Mem for (g). The other 
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components found using the NASCAR method, such as St-Ma, LN, and Resp, were not 

obviously identifiable in the ICA results, as shown in Fig. S4 for the remaining 13 

components. When using CanICA, we also identified seven components, which were almost 

identical to those using group ICA as described above.

4.3. Reproducibility analysis

Fig. 5 shows the averaged reproducibility metric tr between two sessions as a function of r. 
Overall, for all three methods, the top few components are fairly consistent across sessions 

with high reproducibility values (> 0.75). As r increases, tr exhibits a decreasing trend 

indicating that more inconsistent subject-specific or noisy components were discovered 

during the decomposition.

The results for group ICA and CanICA are comparable and a slightly higher correlation was 

observed in CanICA than group ICA in higher ranks. In contrast, NASCAR outperforms 

both group ICA and CanICA by a large margin through the entire range of r.

We also observed a similar trend in reproducibility of the subject mode from the NASCAR 

results, as shown in Fig. S5.

4.4. Stability analysis

Fig. 6 (a)–(c) show scatter plots of the projected spatial maps obtained using group ICA, 

CanICA and NASCAR, respectively, with different random initializations. Each dot 

represents a single component. The NASCAR results are color-coded to indicate the number 

of subjects that exhibit that component (session mode value >.05). Fig. 6 (d)–(f) show copies 

of (a)-(c), respectively, with the addition as gray stars of the components from the original 

decomposition (results in Fig. 3 and Figs. S1–S3), which we used to identify the brain 

networks described above. We also annotate each of these components (7 for ICA and 12 for 

NASCAR).

In these results, tight clusters indicate a strong similarity in components for different 

initializations, and hence less dependence of decomposition method on initialization. While 

all three methods clearly exhibit clustering behavior (Fig. 6 (a)–(c)), the NASCAR clusters 

are consistently tighter than those for ICA and CanICA. By overlaying the results from Fig. 

3 and Figs. S1–S2, we see how these clusters map to identified networks (Fig. 6 (d)–(f)). As 

shown in Fig. 6 (f), the color of the components in the clusters that contain the 12 

recognized brain networks found using NASCAR indicate a strong participation in each 

network across subjects. Direct examination of the subject modes for each run and network 

revealed that all 12 networks were found for all subjects in each of the 100 runs using 

NASCAR. Of the three plausible but un-recognized components, P2 is found consistently 

across subjects and runs with little variability. P1 and P3 are also found consistently across 

subjects but are more sensitive to initialization leading to more spread in the clusters. 

Finally, the subject-specific components, N1, N3, N4 and N5, are also found consistently 

across runs, with the blue coloring indicating that they are unique to a single subject. The 

ICA and CanICA results also show clear clustering behavior for each of the identified 

networks, Fig. 6 (d) and (e), but with an increased sensitivity to initialization compared to 

NASCAR.
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Quantitatively, Fig. 7 shows the pair-wise consistency measures tr as a function of r. Similar 

to Fig. 5, the correlation between pairs of runs decreases as r increases for all three methods. 

The results using NASCAR confirmed our observation in Fig. 6 that the identified 12 

common networks (r = 1, …, 12) are highly consistent (tr ≈ 1) across runs and that tr starts 

decreasing only as more subject-specific components are identified. The correlation values 

are substantially higher in NASCAR than that in either CanICA or group ICA through the 

entire range of r, although CanICA exhibits an improved robustness over group ICA.

Results obtained by decomposing 100 different bootstrap resamples of the data together with 

randomized initialization are shown in Fig. 8. As might be expected, ICA, CanICA and 

NASCAR all show increased variability relative to the case where only the initialization is 

changed (Fig. 6). Visual inspection of Fig. 8 (a) reveals three or four clear clusters in the 

group ICA case (similarly in the CanICA case) whereas multiple clusters remain visible for 

NASCAR in Fig. 8 (c). There are exactly 12 clusters with dense centroids that correspond to 

the 12 recognized components in Fig. 3, indicating that they are robustly identified in each 

of the bootstrap runs as shown in Fig. 8 (f). Furthermore, the red or orange color of most 

points in these 12 clusters indicates that almost all subjects participate in these networks in 

each of the bootstrap runs. Conversely the blue clusters in the peripheral area correspond to 

networks that are specific to a single subject and reproduced for that subject in multiple 

bootstrap runs. The corresponding quantitative measures tr are shown in Fig. 9 where a 

similar trend is observed as Fig. 7 but with overall lower correlation values (note the 

difference in the scale of the y-axis).

4.5. The necessity of BrainSync and Nadam in brain network identification from 
asynchronous multi-subject fMRI data

Table 1 (3rd column, yellow) summarizes tensor decomposition results on the full BrainSync 

synchronized dataset using SRSCPD, our previously described method based on alternating 

least squares (ALS) in combination with a warm start (Li et al., 2018, 2017). This method 

performed similarly to NASCAR, which assumes an identical model but replaces the ALS 

approach with a full gradient-based method. Most of the networks found were visually 

equivalent to those found using NASCAR. However, as listed in Table 1 (2nd column, red), 

the FPACN, CON, DMN, and Mem components were not found using SRSCPD. Also, St-

Ma and VN were each split into two components during the decomposition. These results 

are indicative that NASCAR provides a more robust decomposition than SRSCPD.

We also examined what happens without synchronization. In this case we could only use one 

of the two sessions since timing is different for the tasks in the two sessions. As shown in 

Table 1 (4th column, blue), when using NASCAR on synchronized single-session dataset, we 

are still able to identify the 12 common brain networks, although those plausible but un-

recognized components (Fig. S2 (a)–(c)) are missing from the decomposition. However, 

when applying NASCAR to the unsynchronized dataset (Table 1, last column, green) only 

the St-Ma and AN were found using NASCAR, but even then, only in a subset of subjects. 

We believe the difference is due to the differing latencies of the subjects’ responses to the 

task. With the tensor representation, the time series are assumed to be approximately equal 

across subjects. Then temporal synchronization using BrainSync is a key factor in successful 
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identification of brain networks. Note that this is not the case in group ICA or CanICA 

where time series are concatenated across subjects so that we do not assume temporal 

synchrony in the ICA decomposition. For this reason, ICA-based methods are able to 

identify multiple networks without synchronization, while NASCAR requires 

synchronization to work. However, as shown in the earlier figures, with the inclusion of 

BrainSync synchronization, it appears that NASCAR can more reliably identify task-related 

network components that group ICA and CanICA. Moreover, components that are 

independent of the task, such as the respiratory and sensory motor components in Fig. 3, can 

also be identified as a result of synchronization.

5. Conclusion

Using NASCAR with BrainSync, we identified and recognized twelve spatially overlapped 

and temporally correlated common networks across multiple subjects: seven task-related 

networks, two sub-components of the default mode network, respiratory effect, a 

sensorimotor activity, and a memory-retrieval-related network in the language task fMRI 

data. Although we did not use any prior information regarding the task designs, our results 

not only replicated the task timing, but also showed expected differences in the temporal 

dynamics of those networks. These networks were not all found using the group ICA and 

CanICA method or when BrainSync synchronization or Nadam was not used. The 

bootstrapping results show that NASCAR is potentially robust in identifying the spatial, 

temporal and subject-dependent behavior of brain networks that compares favorably with 

ICA-based approach. Furthermore, synchronization of time-series across subjects prior to 

decomposition can allow identification of components independent of task.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Brain network identification pipeline: (a) multi-subject fMRI data: the spatial maps show 

single-time brain activity at all vertices on a surface representation and the time courses 

show single-vertex brain activity through the entire fMRI recording; (b) The counterpart to 

(a) but after synchronization using BrainSync; (c) Tensor formation by arranging the 

subjects along the third dimension; (d) Tensor decomposition into R rank-1 components. (e) 

Each rank-1 component represents a brain network (or response to tasks) with a spatial map 

(ai), a temporal dynamic (bi), and a subject participation level (ci).
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Fig. 2. 
Simulation results. (a) Box plots of ACP as a function of r for NASCAR in red and SRSCPD 

in blue; (b) box plots of the run time corresponding to the experiments in (a). The bottom 

part is magnified and shown on the top left corner for easy visualization.
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Fig. 3. 
Identified and recognized components using NASCAR on language task fMRI data. (a) 

Classic language network in response to Story-Math contrast (St-Ma); (b) Auditory network 

(AN); (c) Frontoparietal attentional control network (FPACN); (d) Visual network (VN); (e) 

Extended language network (LN); (f) Right-hand-visual co-activation (RH-V); (g) Cingulo-

opericular network (CON); (h) First sub-component of the default mode network (DMN); (i) 

Second sub-component of the DMN; (j) Respiratory effect (Resp); (k) Sensorimotor network 

(SMN) near the tongue area; (l) Memory-retrieval-related network (Mem). In each 
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component, the left sub-figure shows the spatial map, the top right sub-figure shows the 

temporal dynamics overlaid with color-coded task designs, and the bottom right sub-figure 

shows the subject/session participation mode.
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Fig. 4. 
Plot of the respiratory component (red) obtained from the tensor decomposition (temporal 

mode of Fig. 3 (j)) and the averaged abdominal respiratory measure across subjects (blue). 

Only the first 100 seconds are plotted and both signals were normalized to have zero mean 

and unit norm for easy visualization and comparison.
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Fig. 5. 
Averaged inter-session correlation tr as a function of r.
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Fig. 6. 
Stability analysis results with different random initializations. (a) Scatter plot of the 

projected spatial maps obtained using group ICA; (b) The counterpart to (a) when using 

CanICA; (c) The counterpart to (a) when using NASCAR; (d) Same as (a) but with single 

run results (Fig. 3 and Figs. S1–S3) plotted as stars and annotated; (e) The counterpart to (d) 

when using CanICA with single run results; (f) The counterpart to (d) when using NASCAR 

with single run results. For (c) and (f), the color of each dot (component) represents the 

number of subjects participating in that component. Acronyms and abbreviations of the 

identified components are given in the caption of Fig. 3. P1-P3: three plausible but un-

recognized components (Fig. S2 (a)–(c)); N1-N5: five subject-specific components (Fig. S2 

(d)). The color bar indicates the number of subjects that participate in each of the 

components found and is used to color code the points (components) in (c) and (f).
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Fig. 7. 
Pair-wise correlations over 1000 randomly selected pairs of solutions in Fig. 6 as a function 

of r.
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Fig. 8. 
Stability analysis results using bootstrapped data with different random initializations for 

each run; (a) and (d): Group ICA; (b) and (e) CanICA; (c) and (f) NASCAR. See caption for 

Fig. 6.
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Fig. 9. 
Pair-wise correlations over 1000 randomly selected pairs of solutions in Fig. 8 as a function 

of r.
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