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N-3 polyunsaturated fatty acids (PUFAs) may prevent retinal vascular

abnormalities observed in oxygen-induced retinopathy, a model of

retinopathy of prematurity (ROP). In the OmegaROP prospective cohort

study, we showed that preterm infants who will develop ROP accumulate

the n-6 PUFA arachidonic acid (ARA) at the expense of the n-3 PUFA

docosahexaenoic acid (DHA) in erythrocytes with advancing gestational age

(GA). As mice lacking plasmalogens ―That are specific phospholipids

considered as reservoirs of n-6 and n-3 PUFAs― Display a ROP-like

phenotype, the aim of this study was to determine whether plasmalogens

are responsible for the changes observed in subjects from the OmegaROP

study. Accordingly, preterm infants aged less than 29 weeks GA were recruited

at birth in the Neonatal Intensive Care Unit of University Hospital Dijon, France.

Blood was sampled very early after birth to avoid any nutritional influence on its

lipid composition. The lipid composition of erythrocytes and the structure of

phospholipids including plasmalogens were determined by global lipidomics

using liquid chromatography coupled to high-resolution mass spectrometry

(LC-HRMS). LC-HRMS data confirmed our previous observations by showing a

negative association between the erythrocyte content in phospholipid

esterified to n-6 PUFAs and GA in infants without ROP (rho = −0.485, p =

0.013 and rho = −0.477, p = 0.015 for ethanolamine and choline total

phospholipids, respectively). Phosphatidylcholine (PtdCho) and

phosphatidylethanolamine (PtdEtn) species with ARA, namely PtdCho16:0/

20:4 (rho = −0.511, p < 0.01) and PtdEtn18:1/20:4 (rho = −0.479, p = 0.015),
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were the major contributors to the relationship observed. On the contrary,

preterm infants developing ROP displayed negative association between PtdEtn

species with n-3 PUFAs and GA (rho = −0.380, p = 0.034). They were also

characterized by a positive association between GA and the ratio of

ethanolamine plasmalogens (PlsEtn) with n-6 PUFA to PlsEtn with n-3 PUFAs

(rho = 0.420, p = 0.029), as well as the ratio of PlsEtn with ARA to PlsEtn with

DHA (rho = 0.843, p = 0.011). Altogether, these data confirm the potential

accumulation of n-6 PUFAs with advancing GA in erythrocytes of infants

developing ROP. These changes may be partly due to plasmalogens.

KEYWORDS

polyunsaturated (essential) fatty acids, plasmalogens, phospholipids, erythrocyte,
retinopathy of prematurity

Introduction

Retinopathy of prematurity (ROP) is the leading cause of

childhood blindness with an estimated incidence ranging from

6 to 34% in developed countries (Good & Hardy, 2001; Jordan,

2014). ROP is characterized by a first phase of vaso-obliteration

in the central retina (phase 1), followed by the overexpression of

pro-angiogenic growth factors such angiopoietins and VEGF

(Sonmez, Drenser, Capone, & Trese, 2008; Sato, Shima, &

Kusaka, 2011; Rivera et al., 2017) associated to neovascular

events in the retina (phase 2) (Hellstrom, Smith, &

Dammann, 2013). As a result, mature retinal vessels exhibit

several major abnormalities, such as increased dilatation and

tortuosity, as well as vascular leakage (Hellstrom et al., 2013).

Previous studies have reported that the polyunsaturated fatty

acids (PUFAs) such as arachidonic acid (ARA, C20:4 n-6) and

docosahexaenoic acid (DHA, C22:6 n-3) influence retinal

vascularization processes in mouse models of oxygen-induced

retinopathy, a mouse model of ROP (Connor et al., 2007; Sapieha

et al., 2011). Moreover, human studies revealed alterations in

blood levels of PUFAs in preterm newborns developing ROP

(Martin et al., 2011; Lofqvist et al., 2018; Pallot et al., 2019).

Particularly in the OmegaROP study, we have shown an

accumulation of ARA at the expense of DHA in erythrocytes

of preterm infants that will develop ROP. In cell membranes,

PUFAs such as ARA and DHA are esterified on membrane

phospholipids, from which they can be released by

phospholipases for further intracellular metabolization and/or

signaling. Within these phospholipids, plasmalogens represent a

particular sub-class characterized by the presence of a vinyl-ether

bond at sn-1 position of glycerol instead of an ester bond.

Plasmalogens are considered as “reservoirs” for PUFAs such

as ARA and DHA (Nagan & Zoeller, 2001) and are abundant in

the human retina (Bretillon et al., 2008; Berdeaux et al., 2010;

Acar et al., 2012). Interestingly, we have shown that plasmalogen-

deficient mice exhibit retinal vascular abnormalities resembling

to those observed in ROP (Saab-Aoude, Bron, Creuzot-Garcher,

Bretillon, & Acar, 2013; Saab et al., 2014). Indeed, retinal vascular

development in these mice was characterized by a delayed

outgrowth followed by increased angiogenesis associated to

the overexpression of pro-angiogenic factors such as

angiopoietins (Saab et al., 2014).

In this work, we aimed to assess whether the differential

accumulation of ARA and DHA in preterm infants of the

OmegaROP study is associated to plasmalogens. By using

high-resolution mass spectrometry (HRMS), we evaluated the

concentrations of individual phospholipids species in

erythrocytes of preterm infants that will or not develop ROP.

In this study, blood was collected immediately after birth, in

order to limit the interference with lipid nutritional intakes.

Materials and methods

Ethics statement

This study was conducted in accordance with the guidelines

of the Declaration of Helsinki. The experimental procedures were

approved by local ethics committee (CPP Est III, School of

Medicine, Dijon, France) that waived the obtainment of a

written consent as our study did not generate additional

procedure to those of standard care. Instead of, an

information note was given to parents and/or legal guardians.

In accordance with “ethical considerations for clinical trials on

medicinal products conducted with the pediatric population”, the

volume of blood collected in preterm infants was limited to

0.5 mL (European Union. 2008).

Selection of the patients

As described previously (Pallot et al., 2019), all preterm

infants born before 29 weeks GA and hospitalized in the

neonatal intensive care unit of the Dijon University Hospital,

Dijon, France, between 31 July 2015 and 31 January 2018 were

included in the study. A 0.5-mL blood sample was collected by

venipuncture in a heparinized tube within the first 48 h of life.

Red blood cells were immediately separated from plasma by
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centrifugation at 1860 × g at 4°C. The red blood cell pellet was

then washed three times with an isotonic saline solution. Samples

were stored at −80°C until lipidomic analyses.

ROP screening was performed with the wide-field RETCAM II®

camera (Clarity Medical Systems; Pleasanton, CA, United States)

using a lid speculum after topical anesthesia by chlorhydrate

oxybuprocaine, 1.6 mg/0.4 mL (Théa, Clermont-Ferrand, France).

Pupillary dilation was previously performed using one drop of

tropicamide, 2 mg/0.4 mL, Théa, Clermont-Ferrand, France). The

procedure was completed by a trained nurse and all fundus

photographs were analyzed by two trained pediatrics-specialized

ophthalmologists. Screening began at 4–6 weeks of life but never

before 31 weeks of postconceptional age (PCA). Fundus imaging

was repeated every other week until 39 weeks PCA if no ROP was

detected, and every week or up to twice a week in case of ROP. ROP

staging was determined according to the International Classification

of ROP (International Committee for the Classification of

Retinopathy of, 2005). Subjects were classified in the group

suffering from ROP (ROP group) or in the group of unaffected

controls (no-ROP group). Within the ROP group, subjects were

classified into type 1 ROP and type 2 ROP. The major risks of

developing ROP, namely gestational age (GA), weight at birth,

duration of mechanical ventilation, sepsis, use of erythropoietin,

red blood cell transfusion and cerebral hemorrhage were

documented.

Characterization and quantification of
individual phospholipid species

Total lipids were extracted from red blood cells according to

Moilanen and Nikkari by using chloroform/methanol (1:1, v:v)

(Moilanen & Nikkari, 1981). The phosphorus content of the total

lipid extracts was determined according to the method developed

by Bartlett and Lewis (Bartlett & Lewis, 1970). The samples were

then diluted at a concentration of 500 μg/mL in chloroform/

methanol 1:1 (v/v). Quality control (QC) were prepared by

pooling 10 µL of each resuspended lipid extract. The

concentrations of individual phospholipids species of

erythrocytes total lipids were determined by Hydrophilic

Interaction Liquid Chromatography coupled to High

Resolution Mass Spectrometry (HILIC-HR-MS).

Liquid chromatography analyses were performed using a

Dionex UltiMate™ 3000 LC pump from Thermo Scientific (San

Jose, CA, United States) equipped with an autosampler. The

injection volume was 10 μL. Separation of lipid classes was

achieved under HILIC conditions using an Accucore HILIC

column (150 mm × 2.1 mm i. d., 2.6 µm, Thermo). The

column was maintained at 40°C. The mobile phases consisted

of (A) ACN/H2O (99:1, v/v) containing 10 mM ammonium

acetate and (B) ACN/H2O (50:50, v/v) containing 10 mM

ammonium acetate. The solvent-gradient system of the

analytical pump was as follows: 0 min 100% A, 10 min 92%

A, 40 min 50% A, 41–60 min 100% A. The flow rate was set to

500 μL.min−1. In order to guarantee analytical performance,

Quality QC were used every eight test sample. HR-MS

analyses of phospholipids were carried out using the Orbitrap

FusionTM (Thermo Scientific, United States) Mass Spectrometer

equipped with an EASY-MAX NGTM Ion Source (H-ESI).

H-ESI source parameters were optimized and set as follows:

Ion transfer tube temperature of 285°C, sheath gas flow rate of

35 au, auxiliary gas flow rate of 25 au, sweep gas of one au, and

vaporizer temperature of 370°C. Positive and negative ions were

monitored alternatively by switching polarity approach with a

spray voltage set to 3500 V in positive and negative ion modes.

The Orbitrap mass analyzer was employed to obtain all mass

spectra in full scan mode with a mass range of 200–2000 Da, and

a target resolution of 120,000 (FWHM at m/z 200). All MS data

were recorded using a max injection time of 50 ms, automated

gain control (AGC) at 4.105 and one microscan. An Intensity

Threshold filter of 1.103 counts was applied. For MS/MS

analyses, High-energy Collisional Dissociation (HCD) was

employed for the fragmentation of PL species with optimized

stepped collision energy of 30% (±5%). The linear ion trap (LIT)

was used to acquire spectra for fragment ions in data-dependent

mode. The AGC target was set to 2.104 with a max injection time

of 50 ms. All MS and MS/MS data were acquired in the profile

mode. The Orbitrap Fusion was controlled by XcaliburTM

4.1 software. The identification of PL species was performed,

using the data of high accuracy and the information collected

from fragmentation spectra (tolerance 5 ppm for MS1 and

20 ppm for MS2), with the help of the LipidSearchTM

software and the LIPID MAPS® database (https://www.

lipidmaps.org/).

Relative quantification of the abundances of choline

glycerophospholipids (ChoGpl) [including phosphatidyl

cholines (PtdCho) and plasmenyl cholines (choline plasmalo

gens or PlsCho)] and ethanolamine glycerophospholipids

(EtnGpl) [including phosphatidylethanolamines (PtdEtn) and

plasmenylethanolamines (ethanolamine plasmalogens or

PlsEtn)] molecular species between samples was performed in

the high resolution MS1 mode (positive for ChoGpl, negative for

EtnGpl) by normalization of targeted phospholipid ion peak

areas to the PtdCho14:0/14:0 or PtdEtn14:0/14:0 internal

standards, respectively. Due to the lack of available lipid

standards representing individual molecular species of EtnGpl

and ChoGpl, the abundances of ChoGpl and EtnGpl molecular

species was reported as the percentage of the total ChoGpl or

EtnGpl ion abundance, respectively (after normalization on the

PtdCho14:0/14:0 and PtdEtn14:0/14:0 internal standards).

Statistical analyses

Statistical analysis was performed using GraphPad Prism

v6.05 (GraphPad Software, San Diego, CA, United States),
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XLSTAT v2018.02.50494 (Addinsoft, Paris, France), and R

Project v4.0.2 (Revolutions). Quantitative data were expressed

as median and interquartile range [IQR]. The groups were

compared using the nonparametric Mann-Whitney test for

quantitative variables and the Chi-2 test or Fisher exact test

for qualitative variables. The Benjamini-Hochberg false discovery

adjusted p-value was applied to correct for multiple testing.

Linear regression analyses were used to determine the

R-squared (R2) correlation coefficient values. Spearman

correlations were carried out to compare the levels of

individual or total levels of phospholipids and ratios as a

function of GA. A p-value lower than 0.05 was considered as

statistically significant and the tests were two-tailed.

Results

Characteristics of the population

The characteristics of the population are presented in

Table 1. As described before (Pallot et al., 2019), fifty-eight

preterm infants born before 29 weeks of GA were included in

the study. Six infants died and the mortality rate was 11.5%.

The final population included five sets of heterozygote twins.

Blood samples were obtained from 52 infants at a median time

of 12 h and a maximum time of 48 h after birth. No difference

was observed between the ROP and the no-ROP groups for

sampling time, gender, use of erythropoietin (EPO) and

cerebral hemorrhage. ROP was associated with significantly

higher sepsis and red blood cell transfusion (p = 0.023 and p =

0.025, respectively), lower GA and birth weight (p < 0.001 and

p = 0.001, respectively) and higher duration of mechanical

ventilation (p < 0.001). The mean follow-up for ROP

screening was 11.3 ± 4.5 weeks of life.

The mean number of screening examinations was 3.6 ±

2.0 per infant. The incidence of ROP was 51.9%, including

three cases of type 1 ROP (11.1%) and 24 cases of type 2 ROP

(88.9%). Subjects with type 1 ROP underwent laser therapy

on both eyes. No intravitreal injection of bevacizumab was

performed. Twenty-six ROP cases were observed in zone 2

(96.3%) and one ROP case was observed in zone 3 (3.7%). We

did not observe any ROP in zone 1. One case of ROP was

stage 1 (3.7%), 19 cases were stage 2 (70.4%) and seven

cases were stage 3 (25.9%). Four subjects were classified

as a “plus” stage and three of them underwent laser

treatment.

Individual phospholipid species
distribution in erythrocytes

No significant difference was observed between groups in the

proportions of individual EtnGpl and ChoGpl species as well as

in total levels of PtdCho, PlsCho, PtdEtn, and PlsEtn (Figure 1

and Supplementary Table S1). The predominant species were

PtdCho16:0/18:1, PtdCho16:0/16:0 and PtdCho16:0/20:4 +

PtdCho16:1/20:3 for ChoGpl and PtdEtn16:0/18:1, PtdEtn16:

0/20:4 + PtdEtn16:1/20:3, and PtdEtn18:0/20:4 + 16:0/22:4 for

EtnGpl. The most represented plasmalogen species were

PlsCho16:0/16:1, PlsCho18:0/16:0 and PlsCho18:1/18:2 for the

choline subgroup and PlsEtn18:1/22:4 and PlsEtn18:0/22:4 the

ethanolamine subgroup. The wide interquartile ranges confirmed

the high interindividual variability previously observed for the

fatty acid concentrations (Pallot et al., 2019).

TABLE 1 Main characteristics of the OmegaROP population.

ROP n = 27 No-ROP n = 25 p-value

Sampling time (h) 12 [12–21] 12 [12–30] 0.056

Male 14 (51.8) 12 (48.0) 0.781

Gestational age (weeks) 26.5 [25.5–27.1] 27.6 [27.1–28.4] <0.001
Birth weight (g) 815 [735–967] 1020 [870–1160] 0.001

ROP 27 (100) – –

ROP treated 3 (11.1) – –

ROP detection (weeks) 8.2 [6.6–9.5] – –

Mechanical ventilation (days) 11.0 [5.5–16.5] 2.0 [1.0–7.0] <0.001
Sepsis 16 (59.2) 7 (28.0) 0.023

Erythropoietin use 18 (66.6) 15 (60.0) 0.617

RBC transfusion 17 (62.9) 8 (32.0) 0.025

Cerebral haemorrhage 13 (48.1) 12 (48.0) 0.991

Continuous variables are expressed as median [IQR], categorical variables are expressed as No (%).

ROP: Retinopathy of prematurity; RBC: Red blood cells.

p-values in bold indicate a statistically significant difference (p < 0.05).
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Associations between gestational age and
erythrocyte phospholipid species

As in our previous work on the OmegaROP cohort and

considering the results of the principal component analysis

showing an interaction between GA and lipid data (Pallot

et al., 2019), we checked for Spearman correlations between

GA and individual phospholipid species (Table 2). In order to

identify the phospholipid origin of the differential accumulation

of ARA and/or DHA in subjects with or without ROP, we focused

our attention on phospholipids carrying n-6 and n-3 PUFAs.

Even if the correlations are weak, total ChoGpl and EtnGpl

carrying n-6 PUFAs were negatively associated with GA in the

no-ROP group (rho = −0.485, p = 0.013 and rho = −0.477, p =

0.015 for PtdCho + PlsCho and PtdEtn + PlsEtn, respectively).

Within the choline subgroup, this negative association was weak

but significant only for total PtdCho species esterified with n-6

PUFAs (rho = −0.509, p = 0.009), but not for PlsCho. PtdCho

species carrying ARA are likely to contribute to this finding since

total PtdCho species carrying ARA were also negatively

associated with GA in the no-ROP group (rho = −0.495, p =

0.011, Panel B Figure 2), and particularly the individual

PtdCho16:0/20:4, PtdCho18:1/20:4, and PtdCho18:0/20:

4 species (Table 3). PC carrying ARA represented 28.8% of

total PtdCho species (Panel A on Figure 2). Within EtnGpl,

only PlsEtn carrying n-6 PUFAs were negatively associated with

GA (rho = −0.587, p = 0.002). Although the correlation is not

strong, PlsEtn18:1/20:4 may be a significant contributor to this

observation (rho = −0.395, p = 0.049). No significant association

with GA was observed for PtdEtn species.

In the no-ROP group, no significant association between GA

and phospholipids carrying n-6 PUFAs was observed (Tables 2

and 3). Only a weak significant negative association was observed

between GA and total EtnGpl esterified with n-3 PUFAs

(rho = −0.380, p = 0.034). Probably as a consequence, the

ratios of total PtdEtn with n-6 PUFAs to total PtdEtn with n-

3 PUFAs, total PlsEtn with n-6 PUFAs to total PlsEtn with n-3

PUFAs, and total PtdEtn with ARA to total PtdEtn with DHA

were impacted and positively associated with GA in the ROP

group (rho = 0.420, 0.886, and 0.843, p = 0.029, 0.006, and 0.011,

respectively; Table 2).

Discussion

This study characterizes the phospholipid composition of

erythrocytes in preterm infants born before 29 weeks GA. The

clinical characteristics of our population were comparable to

those of several studies. Indeed, the incidence of ROP was high

(51.9%) and in agreement with other very-low-GA populations

(Austeng, Kallen, Ewald, Jakobsson, & Holmstrom, 2009).

Our data show a weak but negative association between

ChoGpl and EtnGpl carrying n-6 PUFAs with GA in the no-

ROP group, while no significant association was observed in the

ROP group. These findings are in the line with our previous

reports related to the OmegaROP study (Pallot et al., 2019).

Considering that ChoGpl and EtnGpl species represent more

than 90% of total phospholipids in erythrocytes (Acar et al., 2007;

FIGURE 1
Concentrations of major individual ChoGpl species (A) and
major EtnGpl species (B) of red blood cells of preterm infants
without or with retinopathy of prematurity (% of total ChoGpl or %
of total EtnGpl). No significant difference was observed
between no-ROP and ROP groups for any specie. Abbreviations of
individual phospholipid species are as follows: Position on the
glycerol backbone as shown as sn-1/sn-2 of the fatty alcohol
radicals (abbreviated as number of carbons: Number of double
bonds). PtdCho: Phosphatidylcholine; PtdEtn:
Phosphatidylethanolamine; ROP: Retinopathy of prematurity.
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Acar et al., 2009; Acar et al., 2012), we assumed that the changes

observed in their concentrations would be a reliable indicator of

the whole phospholipid pool in erythrocytes. However, further

analyses on phosphatidylserines and phosphatidylinositols could

be of interest to draw a more complete picture of erythrocyte

phospholipidome alterations in ROP.

In preterm infants who will not develop ROP, erythrocyte

relative levels of phospholipids carrying ARA decrease as GA

increases, while no change was observed in preterm infants who

will develop ROP. This negative correlation mostly relies on

PtdCho species and more specifically on individual PtdCho16:0/

20:4, PtdCho18:1/20:4, and PtdCho18:0/20:4 species. This

finding suggests an in utero accumulation of ARA in

erythrocytes of preterm infants that will develop ROP

relatively to those that will not develop ROP. This GA-related

change is in line with the finding of Bernhard and collaborators

that revealed a remodeling in plasma PtdCho species esterified

with ARA in early preterm infants (Bernhard et al., 2016). They

showed that the plasma PtdCho ARA to DHA ratio in preterm

infants of less than 33 weeks GA largely exceeds that of term

infants, thus likely contributing to the prematurity-related

impaired overall health. The data we have obtained in 25- to

28-weeks GA newborns is then in agreement with this

observation. However, it is important to keep in mind that

TABLE 2 Spearman correlations between gestational age and erythrocyte ChoGpl and EtnGpl esterified with n-6 and/or n-3 PUFAs in preterm infants
with or without retinopathy of prematurity.

No-ROP n = 25 ROP n = 27

Median [IQR]a rho R2 p-value Median [IQR] rho R2 p-value

Total PtdCho and PlsCho with n-6 PUFAs 31.21 [9.27–43.84] −0.485 0.202 0.013 36.86 [7.09–45.82] 0.079 0.001 0.693

Total PtdCho and PlsCho with n-3 PUFAs 1.81 [0.55–4.46] −0.375 0.109 0.064 2.03 [0.58–4.50] −0.160 0.010 0.422

Total PtdEtn and PlsEtn with n-6 PUFAs 64.70 [28.52–70.89] −0.477 0.200 0.015 67.43 [25.10–69.83] 0.050 0.016 0.801

Total PtdEtn and PlsEtn with n-3 PUFAs 21.64 [15.28–24.81] −0.117 0.004 0.575 19.62 [13.88–24.64] −0.380 0.084 0.034

Total PtdCho with n-6 PUFAs 31.10 [9.27–42.67] −0.509 0.208 0.009 36.56 [6.72–43.73] 0.122 0.002 0.544

Total PlsCho with n-6 PUFAs 0.80 [0.19–2.18] −0.191 0.028 0.359 0.60 [0.05–2.07] −0.198 0.029 0.319

Total PtdCho with n-3 PUFAs 1.55 [<0.01–4.04] −0.391 0.126 0.052 2.03 [<0.01–3.89] −0.011 0.000 0.953

Total PlsCho with n-3 PUFAs 0.16 [<0.01–0.42] −0.093 0.000 0.657 0.28 [<0.01–0.83] −0.352 0.105 0.071

Total PtdEtn with n-6 PUFAs 53.05 [28.52–63.07] −0.311 0.123 0.129 45.36 [25.04–65.50] 0.211 0.050 0.288

Total PlsEtn with n-6 PUFAs 0.77 [0.33–12.68] −0.587 0.075 0.002 0.58 [0.13–18.47] 0.027 0.019 0.892

Total PtdEtn with n-3 PUFAs 18.25 [13.88–21.64] 0.025 0.000 0.904 17.32 [12.68–19.94] −0.260 0.063 0.189

Total PlsEtn with n-3 PUFAs <0.01 [<0.01–3.26] −0.326 0.062 0.111 <0.01 [<0.01–5.08] −0.215 0.035 0.281

Total PtdCho with ARA 19.00 [3.06–30.88] −0.495 0.204 0.011 26.57 [1.74–31.86] 0.062 0.000 0.756

Total PlsCho with ARA <0.01 [<0.01–1.01] −0.340 0.068 0.096 <0.01 [<0.01–1.04] −0.104 0.003 0.603

Total PtdEtn with ARA 38.24 [17.95–46.04] −0.319 0.130 0.119 32.92 [14.28–47.04] 0.243 0.039 0.221

Total PlsEtn with ARA <0.01 [<0.01–9.33] −0.286 0.066 0.164 <0.01 [<0.01–14.25] −0.110 0.020 0.583

Total PtdCho with DHA 1.55 [<0.01–3.14] −0.359 0.128 0.077 2.03 [<0.01–2.71] −0.016 0.000 0.936

Total PlsCho with DHA <0.01 [<0.01–0.16] −0.308 0.053 0.133 <0.01 [<0.01–0.17] −0.131 0.010 0.514

Total PtdEtn with DHA 8.93 [7.43–11.97] 0.189 0.069 0.364 8.77 [5.97–10.48] −0.132 0.097 0.509

Total PlsEtn with DHA <0.01 [<0.01–1.32] −0.338 0.067 0.098 <0.01 [<0.01–2.04] −0.206 0.028 0.300

Total PtdCho with n-6 PUFAs/total PtdCho with
n-3 PUFAs

10.57 [<0.01–16.63] −0.286 0.039 0.165 10.96 [<0.01–16.79] 0.312 0.090 0.112

Total PtdCho with ARA/total PtdCho with DHA 10.27 [<0.01–11.06] −0.410 0.127 0.041 11.13 [<0.01–12.46] 0.242 0.052 0.222

Total PlsCho with n-6 PUFAs/total PlsCho with
n-3 PUFAs

<0.01 [<0.01–2.27] −0.355 0.062 0.081 <0.01 [<0.01–1.44] −0.063 0.001 0.752

Total PlsCho with ARA/total PlsCho with DHA <0.01 [<0.01–6.33] −0.390 0.106 0.053 <0.01 [<0.01–6.27] −0.088 0.001 0.661

Total PtdEtn with n-6 PUFAs/total PtdEtn with
n-3 PUFAs

2.99 [2.57–4.11] −0.072 0.027 0.731 3.19 [2.62–4.31] 0.420 0.032 0.029

Total PtdEtn with ARA/total PtdEtn with DHA 4.33 [3.88–5.15] −0.239 0.033 0.249 4.58 [3.84–4.91] 0.366 0.057 0.060

Total PlsEtn with n-6 PUFAs/total PlsEtn with n-
3 PUFAs

<0.01 [<0.01–2.71] −0.308 0.059 0.133 <0.01 [<0.01–2.83] 0.886 0.269 0.006

Total PlsEtn with ARA/total PlsEtn with DHA <0.01 [<0.01–5.70] −0.296 0.056 0.150 <0.01 [<0.01–5.79] 0.843 0.214 0.011

aIQR: Interquartile range; median and IQR, values are given as % of total choline phospholipids or % of total ethanolamine phospholipids. ARA: Arachidonic acid; DHA, docosahexaenoic

acid; PtdCho: Phosphatidylcholine; PlsCho: Plasmenylcholine; PtdEtn: Phosphatidylethanolamine; PlsEtn: Plasmenylethanolamine; ROP: Retinopathy of prematurity.
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the biological materials used in these two studies were different,

making that further analyses on plasma PtdCho of our subjects

would be of interest.

Whether the relative accumulation of ARA in erythrocytes is

associated to the onset of ROP remains to be further investigated.

Indeed, on one hand it is very clear that together with DHA, ARA is

essential during gestation and early postnatal life for an optimal

development of the infant (Tai,Wang, &Chen, 2013; Koletzko et al.,

2020; Bernhard, Poets, & Franz, 2021). On the other hand, ARA is

known to play a pivotal role in the promotion of inflammation,

especially through its eicosanoid derivatives such as prostaglandin

E2 (PGE2). PGE2 is known to be involved in abnormal angiogenesis

and in the pathogenesis of proliferative retinopathies such as ROP

(Yanni, Barnett, Clark, & Penn, 2009; Hartnett & Penn, 2012;

Schoenberger et al., 2012; Xie et al., 2021). Accordingly, other

studies have shown that inflammation is a significant risk factor

for developing ROP (Holm et al., 2017; Rivera et al., 2017). Finally, it

is recognized that ARA competes with DHA, the latter being known

to inhibit retinal neovascularization in a mouse model of ROP

(Connor et al., 2007). DHA andARA are the most prevalent PUFAs

in the human retina (Bretillon et al., 2008; Acar et al., 2012). As a

subtle equilibrium in their needs may exist within this tissue, we

cannot exclude that minor variations in the ARA to DHA ratio may

impact retinal physiology.

FIGURE 2
PtdChowith ARA are associatedwith GA in preterm infants without ROP. (A) PtdChowith ARA (20:4) accounted for 28.8% of total retinal PtdCho
species. (B) The sum of PtdCho species carrying ARA was negatively associated to GA in erythrocytes of preterm infants of the no-ROP group
(rho = −0.495, p = 0.011). Abbreviations of individual PtdCho species are as follows: Position on the glycerol backbone as shown as sn-1/sn-2 of the
fatty alcohol radicals (abbreviated as number of carbons: Number of double bonds). PtdCho: Phosphatidylcholine; ROP: Retinopathy of
prematurity.
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In accordance with our previous observation on the same

cohort (Pallot et al., 2019), our data display a high interindividual

variability. This is especially true for ARA whose levels in total

lipids were of 13.48 ± 7.29% and 13.86 ± 7.63% of total fatty acids

in the no-ROP and ROP groups, respectively (Pallot et al., 2019).

The present study shows that ARA levels were low especially in

PtdCho, and independently from the development of ROP.

Although extensive analyses, we were unable to connect these

very low ARA levels to any other variable, including GA, blood

sampling time after birth or any other parameter related to the

TABLE 3 Spearman correlations between gestational age and erythrocyte individual phospholipids species esterified with n-6 and/or n-3 PUFAs in
preterm infants with or without retinopathy of prematurity.

[M + H]+
or
[M-H]-a

No-ROP n = 25 ROP n = 27

rho R2 p-value rho R2 p-value

Phosphatidylcholine species

PtdCho16:0/20:4 + PtdCho16:1/20:3 782.5695 −0.511 0.225 0.009 0.013 0.001 0.945

PtdCho18:2/20:4 + PtdCho16:0/22:6 806.5695 −0.346 0.127 0.089 −0.016 0.000 0.936

PtdCho18:0/20:5 + PtdCho18:1/20:4 + PtdCho16:0/22:5 + PtdCho18:2/20:3 +
PtdCho20:3/18:2

808.5851 −0.479 0.165 0.015 −0.023 0.033 0.906

PtdCho18:0/20:4 810.6008 −0.517 0.199 0.008 0.183 0.003 0.360

PtdCho20:5/22:6 828.5538 −0.338 0.073 0.097 −0.123 0.008 0.538

PtdCho22:3/18:4 + PtdCho20:3/20:4 + PtdCho18:1/22:6 832.5851 −0.304 0.069 0.138 −0.58 0.003 0.772

PtdCho18:0/22:6 + PtdCho20:2/20:4 834.6008 −0.331 0.068 0.105 −0.088 0.005 0.660

PtdCho18:0/22:4 + PtdCho20:0/20:4 838.6321 −0.350 0.087 0.086 −0.045 0.002 0.822

Plasmenylcholine species

PlsCho18:1/20:4 + PlsCho16:1/22:4 792.5902 −0.352 0.057 0.083 −0.122 0.012 0.542

PlsCho18:0/20:4 + PlsCho16:0/22:4 794.6058 −0.336 0.070 0.100 −0.104 0.001 0.603

PlsCho18:0/22:6 818.6058 −0.308 0.053 0.133 −0.131 0.010 0.514

Phosphatidylethanolamine species

PtdEtn16:0/20:4 + PtdEtn16:1/20:3 738.5079 −0.298 0.111 0.147 0.196 0.071 0.327

PtdEtn16:0/22:6 + PtdEtn18:1/20:5 + PtdEtn18:2/20:4 762.5079 −0.213 0.115 0.306 0.188 0.035 0.347

PtdEtn18:1/20:4 + PtdEtn16:0/22:5 764.5236 −0.432 0.215 0.030 0.082 0.010 0.683

PtdEtn18:0/20:4 + PtdEtn16:0/22:4 766.5392 −0.344 0.130 0.091 0.200 0.065 0.315

PtdEtn20:4/20:4 + PtdEtn18:2/22:6 786.5079 0.001 0.056 0.992 −0.185 0.128 0.354

PtdEtn18:1/22:6 + PtdEtn20:3/20:4 788.5236 −0.259 0.051 0.210 0.106 0.004 0.596

PtdEtn18:0/22:6 790.5392 −0.306 0.106 0.136 0.083 0.005 0.678

PtdEtn18:0/22:4 + PtdEtn20:0/20:4 794.5705 −0.282 0.148 0.171 0.314 0.062 0.110

PtdEtn20:4/22:6 810.5079 −0.047 0.002 0.821 −0.285 0.103 0.148

PtdEtn22:6/22:6 834.5079 0.439 0.168 0.027 −0.011 0.113 0.954

Plasmenylethanolamine species

PlsEtn16:0/20:4 722.5130 −0.376 0.069 0.063 −0.179 0.018 0.369

PlsEtn16:0/22:6 746.5130 −0.343 0.070 0.092 −0.193 0.022 0.333

PlsEtn18:1/20:4 748.5287 −0.395 0.065 0.049 −0.214 0.019 0.283

PlsEtn18:0/20:4 + PlsEtn16:0/22:4 750.5443 −0.298 0.066 0.146 −0.117 0.021 0.560

PlsEtn18:1/22:6 772.5287 −0.326 0.064 0.111 −0.223 0.033 0.262

PlsEtn18:0/22:6 + PlsEtn18:1/22:5 774.5443 −0.326 0.059 0.111 −0.216 0.040 0.277

a[M + H]+ for PtdCho and PlsCho, and [M + H]+ for PtdEtn and PlsEtn species. PtdCho: Phosphatidylcholine; PlsCho: Plasmenylcholine; PtdEtn: Phosphatidylethanolamine; PlsEtn:

Plasmenylethanolamine; ROP: Retinopathy of prematurity. abrAbbreviationsof individual PtdCho, PlsCho, PtdEtn, and PlsEtn species are as follows: Position on the glycerol backbone as

shown as sn-1/sn-2 of the fatty acid and fatty alcohol radicals (abbreviated as number of carbons: Number of double bonds).
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infants’ health. Since we have used analytical QCs and as we have

repeated our analyses several times, we believe that these changes

are of physiologic origin and not the result of analytical bias. The

probable physiological origin of these changes is reinforced by

similar observations showing very-low levels of ARA (Glen et al.,

1994; Khan et al., 2002) or even ARA levels close to zero (Li et al.,

2022) in erythrocytes of human subjects with neurologic

disorders or of infants with severe malnutrition (Smit et al.,

1997). Such data may suggest a marked dysregulation of

erythrocyte membrane fatty acids in some infants. It can be

the result of either increased phospholipase A2 activity and/or

enhanced lipid peroxidation. Free radical oxidation during

technical steps of sample handling and lipid analysis can also

be at the origin of the degradation of PUFAs such as AA, but also

that of plasmalogens. To avoid such biases in our study, we took

care to take a number of precautions starting from immediate

processing of the blood sample after venipuncture, to the

isolation and washing of red cells at a temperature of 4°C,

their immediate storage at −80°C, and the use of the Moilanen

& Nikkari procedure for lipid extraction. This last methodology

doesn’t use acidic conditions that are known to be deleterious for

plasmalogens. Another hypothesis to explain the low levels of

ARA would rely on a reduced bioavailability of ARA in maternal

blood and/or its abnormal placental transfer. Further

investigation is needed to better understand the origin of

these modifications.

Circulating lipids are also subject to a postnatal

remodeling. Indeed, several studies documented an increase

in the plasma and erythrocyte levels of linoleic acid (the

dietary precursor of ARA) and a decrease in the levels of

ARA during the first weeks of life as a consequence of a LA-

rich nutrition (Bernhard et al., 2014; Bockmann et al., 2021).

Considering that the birth to blood sampling delay in our

study exceeded 24 h in some cases, we cannot exclude the

influence of the source of lipid (parenteral versus enteral

nutrition) on the lipid data, especially in infants with lower

GA for which the parenteral lipid supply is higher.

Nevertheless, we did not find any association between

erythrocyte lipids (and especially PtdCho16:0/20:4) and the

sampling time in the subjects of our cohort (data not shown).

Interestingly, the n-6 to n-3 PUFA ratio in erythrocytes

seems to display a similar pattern in the no-ROP group when

considering PlsEtn species, as PlsEtn carrying n-6 PUFAs were

negatively associated with GA (rho = −0.587, p = 0.002), with

PlsEtn18:1/20:4 being the most significant contributor to this

observation (rho = −0.395, p = 0.049). Considering that

erythrocyte lipid composition could represent a reliable

indicator of the lipid composition of the retina in newborns

(Carlson, Carver, & House, 1986; Makrides, Neumann, Byard,

Simmer, & Gibson, 1994; Sarkadi-Nagy et al., 2004), we may

speculate that retinal lipids display similar modifications in

ARA, DHA and plasmalogen levels of newborns developing

ROP. On the contrary, infants that will develop ROP seem to

accumulate n-6 PUFAs in their plasmalogens as the ratio of

PlsEtn carrying n-6 PUFAs to PlsEtn carrying n-3 PUFAs is

strongly positively associated to GA (rho = 0.886, p = 0.006),

ARA and DHA being the major contributors to this

observation (rho = 0.843, p = 0.011). These data are in line

with the ROP-like phenotype observed in plasmalogen-

deficient mice (Saab et al., 2014) and then reinforce the

idea that plasmalogens may participate to the

pathophysiology of this disease. It would be however

interesting to check whether these mice display changes in

the levels of PUFAs such as ARA and/or DHA in their

erythrocytes in order to strengthen the conclusions of the

present paper. While PUFAs status of the newborn correlates

with maternal status (Bernhard et al., 2016), and as it can be

influenced by dietary supplementation after birth (Schulzke,

Patole, & Simmer, 2011), plasmalogen content of tissues only

relies on fetal de novo synthesis as no materno-fetal transfer of

ether-lipids has been demonstrated so far (Das, Holmes,

Wilson, & Hajra, 1992). In our study, blood samples were

collected within the first 48 h of life. Considering that the

erythrocyte life-span ranges from 35 to 50 days in preterm

infants (Pearson, 1967), the modifications observed in the

present study might be assigned to differences in situ lipid

metabolisms even if, again, a nutritional influence cannot be

excluded for PUFAs.

Several limitations must be acknowledged in our study. First,

the correlation coefficients found in this study are weak and

deserve more investigations. Second, our population included a

limited number of patients and subjects. Third, our population

only included three preterm infants with severe ROP, while this

population was specifically concerned by treatments targeting

vascular events. Furthermore, while ChoGpl and EtnGpl species

are the main contributors to erythrocytes phospholipidome,

further lipidomic analyses including phosphatidylserine and

phosphatidylinositol individual phospholipid species could

provide useful complementary information.

Taken together, our results seem to confirm the alterations of

erythrocyte PUFA profile in preterm infants developing ROP and

suggest that plasmalogens may contribute to them. Considering

the importance of plasmalogens in the cellular bioavailability of

PUFAs and their involvement in the vascular development of the

retina, our study suggests that investigating the relationships

between plasmalogenmetabolism and ROP could be of particular

interest to decipher the pathophysiological mechanisms

driving ROP.
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