
Review

Transplanting Cells for Spinal Cord Repair:
Who, What, When, Where and Why?
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Abstract
Cellular transplantation for repair of the injured spinal cord has a rich history with strategies focused on neuroprotection,
immunomodulation, and neural reconstruction. The goal of the present review is to provide a concise overview and discussion
of five key themes that have become important considerations for rebuilding functional neural networks. The questions raised
include: (i) who are the donor cells selected for transplantation, (ii) what is the intended target for repair, (iii) when is the
optimal time for transplantation, (iv) where should the cells be delivered, and lastly (v) why does cell transplantation remain an
attractive candidate for promoting neural repair after injury? Recent developments in neurobiology and engineering now
enable us to start addressing these questions with multidisciplinary expertise and methods.
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Introduction

Advances in stem cell biology and cellular engineering have

paved the way to a new era of cell transplantation. Several

decades of pre-clinical and clinical research have shown that

developing neural tissues, or the neural precursor cells that

can be derived from them, can be transplanted into the

injured central nervous system, integrate with surrounding

host tissue, and promote both anatomical repair and func-

tional improvement. From this research, it has become clear

that donor tissues contain a highly heterogeneous population

of neural phenotypes. The focus of this discussion will be on

the use of neural cells for treatment of spinal cord injury

(SCI). Tissues isolated from the developing spinal cord are

inherently rich with the essential building blocks for repair:

neuronal precursors (predominantly spinal interneurons;

SpINs), glial precursors (astrocytic, oligodendroglial), vascu-

lar endothelial cells, microglia, and extracellular matrix1–4.

This is consistent among transplants of either tissue blocks5,6

or freshly prepared, mechanically dissociated cell suspen-

sions7,8. Chemically dissociating and culturing this develop-

ing tissue yields a more selected population of neuronal and

glial restricted progenitors (SpINs, astrocytes, and oligoden-

drocytes). Until recently, the ability to characterize the phe-

notype of these donor cells has been elusive. Yet identifying

and selecting specific donor cells is becoming crucial for

effective treatment of the injured nervous system. Rebuilding

functional neuronal networks within the injured spinal cord

with transplanted cells will require donor neuronal elements

that are capable of appropriate network formation and

function. This has led to the notion of Who, What, When,

Where and Why (Fig. 1)? Who are the donor cells being

used for transplantation (e.g., is the neuronal phenotype

defined), and are they used alone or in combination with

other cells (e.g., neurons with glia)? What is the target

organ (e.g., brain or spinal cord) and target network (e.g.,

hindlimb locomotor, respiratory, or sensory) for repair?

When are the donor cells being transplanted (e.g., acutely

vs. chronically) and what is the internal milieu of the

injured nervous system like at that time? Where should

donor cells be transplanted (e.g., at the lesion site or dis-

tant)? Why transplant cells for repair?
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Who are the Donor Cells that can be used to
Treat the Injured Spinal Cord?

The focus of the present review is on transplantation of

neural precursor cells (NPCs)—the cells within and cultured

from developing neural tissues. Our increasing understand-

ing of these spinal cord-derived neural elements and how

they can contribute to repair guides us toward tailoring cell

therapies for treating SCI. Some discussion will also include

stem cell-derived NPCs, studies with which have often been

built upon the knowledge gained from spinal cord-derived

cells. With a growing appreciation for the range of neuronal

and glial phenotypes that exist within the normal and devel-

oping spinal cord, those seeking to transplant NPCs have

begun assessing donor cell phenotype more rigorously.

These experiments began by using tissue obtained directly

from the developing embryonic spinal cord. While often

referred to as “fetal” tissue or cells, the term is typically used

to describe cells derived from developmental tissue beyond

the blastocyst stage (i.e., more mature than embryonic stem
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Fig. 1. Transplanting for spinal cord injury. (A) Various cellular phenotypes can be cultured for cell transplantation after spinal cord injury.
The cellular phenotype used will be dependent upon (B) what target system is being treated, as well as (C) when the cells are delivered,
whether acutely (left) or chronically (right) after injury. Timing of transplantation will also influence the location of the injection (D), where in
some cases, cells will be injected at the lesion epicenter (left) or distant from lesion site (right).
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cells) without distinction between embryonic and fetal

stages of development. This may be a misnomer, especially

when applied to rodent systems that have a relatively short

fetal stage (embryonic day (E) 17–21 in rats).

Early studies by Reier et al.5 demonstrated that donor

cells harvested directly from the developing spinal cord (tis-

sue blocks or mechanically dissociated only) provided a

vastly heterogeneous population of cells for transplantation

into the injured adult spinal cord. This has since been repli-

cated independently by our research team8 and others4,9.

They also had the capacity to retain their long-term pheno-

type, yielding mature spinal cord morphology6,10,11, and

they become integrated with host neurons6,12–14. These cells

were also capable of modifying the internal milieu of the

surrounding injured spinal cord, making it more permissive

for repair15–17. So, who are each of the donor cells that

contribute to this repair?

Neuronal precursors. Neuronal precursors can be identified by

molecular markers such as cadherins (ENCAM), neurofila-

ments, and microtubules (beta-3 tubulin, microtubule asso-

ciated proteins). A vast range of transcription factors have

also been characterized, enabling the histological identifica-

tion of specific neuronal subtypes18. Advances in molecular

genetics and developmental biology have elucidated specific

SpIN subtypes via their transcriptional factor profiles18,19,

which are present at the age identified to result in optimal

cell survival after transplantation (E13.5–14 in rat5, E12.5 in

mouse). As a result, we have a better understanding of the

development of specific SpIN precursors and their roles in

motor and sensory neural circuits. These circuits contain an

intricate balance of excitatory, inhibitory, and neuromodu-

latory SpINs. Understanding this balance in the normal

spinal cord, and how neuroplasticity after injury may change

this balance, will help predict which donor cell populations

should be used for repair. It should be noted that spinal

tissues dissected at this developmental stage (equivalent to

E13–14 in rat) cut the axons of spinal (lower) motoneurons

that have developed already, resulting in retrograde cell

death. Accordingly, examples of spinal motoneurons within

tissues isolated at this time are rare20.

While ventrally derived tissues comprise primarily glial

progenitors and motor or pre-motor interneuronal precur-

sors, dorsally derived tissues comprise mostly interneuronal

precursors with sensory functions18,19. White et al.6 demon-

strated differences between transplantation of dorsally and

ventrally derived developing spinal cord tissues, when trans-

planted to repair phrenic (diaphragm) motor networks after

cervical SCI. This study revealed that while ventrally

derived tissue can be functionally beneficial, dorsally

derived tissues may in fact limit the potential for motor

recovery. With this in mind, recent studies have begun to

focus on subsets of these SpINs for transplantation21, to

assess which cells may be most effective for repair. The

V2a SpINs have been a strong candidate for repair of motor

networks21–24. In the uninjured spinal cord, it is a pre-motor,

excitatory SpIN that projects ipsilaterally. Thus, if trans-

planted on the side of the injury, they should increase activ-

ity within otherwise denervated motor neurons ipsilateral to

injury. The V2a SpINs have also been associated with spon-

taneous neuroplasticity, further supporting their potential as

a therapeutic target25,26. In contrast, quite different cell types

may be more effective at treating hyperreflexia, spasticity,

and/or pain27,28. With advances in cellular engineering, work

is underway to purify several populations of distinct SpINs

for transplantation29–32.

Studies initiated three decades ago by the Rao1–3,33–35 and

Fischer4,36–43 teams have revealed a great deal about the

effects of culturing E13.5–14 spinal cord tissue prior to

transplantation, and the refined the populations of neuronal

and glial restricted progenitors (NRPs and GRPs, respec-

tively) that result from the process. For example, the E14

rat spinal cord comprises approximately 5–10% of multipo-

tent neuroepithelial cells (NEPs), 30% GRPs, and 60%
NRPs1. Isolation and culture of these cells refines the donor

populations to neuronal and glial progenitors (40%:60%,

respectively)1 that have a capacity for self-renewal but

restricted differentiation fate (i.e., only become neurons or

glial cells)4,38. However, less is known about the neuronal

subtype of these cell populations with culture and how this

may change over time.

While this discussion has centered on transplantation of

spinal neuron progenitors, brain and brainstem neurons have

also been tested for repair of the injured spinal cord44. While

early tissue transplant studies used developing brain and

spinal cord sources, the latter was found to be most effective

for spinal cord repair. However, brainstem-derived neurons

with modulatory functions have been shown to be effective

for improving function after SCI27,45–47. Transplanting

embryonically derived neuromodulators (e.g., serotonergic

cells derived from the developing brainstem45–47) at the lum-

bar level may facilitate recovery of locomotor circuits by

activating preserved components of the central pattern gen-

erator. Brain-derived neural stem cell populations have also

been used to treat the injured spinal cord48–52. These studies

also confirmed that the surrounding host environment influ-

ences the fate of transplanted stem cells, which become both

neuronal and glial populations.

While spinal motoneurons are not often identified in

transplants of embryonically derived spinal tissues, it is pos-

sible to attain large diameter, cholinergic, putative moto-

neurons from spinal tissues obtained earlier53,54, or derived

from stem cells. Donor motoneuron candidates survive

transplantation into the adult spinal cord, and retain neuronal

morphology, but growth and connectivity to peripheral tar-

gets seems to be a much greater challenge. In contrast, donor

motoneuron candidates transplanted into peripheral nerve

survived and served as a relay between surviving host moto-

neurons and their peripheral targets55–57. Ongoing work in

this area will better ascertain how to work with this popula-

tion of donor cells.
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At present, there is a general understanding of the types of

precursors that exist within the developing nervous system at

ages used to source donor tissue. However, the effects of

isolation and cell culture on these phenotypes, and how they

may be affected by the injured adult spinal cord once trans-

planted, is less clearly defined. We recently showed that just

two days of 2D or 3D-cell culture altered transcription factor

expression22. Alternatively, stem cell-derived neuronal

populations can be driven toward specific phenotypic fates,

but whether these fates are retained after transplantation, or

whether they achieve the appropriate long-term function, is a

subject of ongoing investigation. With a growing use of

biomaterials to support transplanted cells, another consider-

ation is how the biomaterial may affect which neuronal phe-

notypes survive pre- or post-transplantation into the injured

spinal cord. These considerations are not unique to donor

neurons, as they may also influence survival and differentia-

tion of transplanted glia.

Glial precursors. Glial precursors and subtypes can be identi-

fied by molecular markers such as surface gangliosides and

receptors (i.e., A2B5, platelet-derived growth factor receptor

alpha), intermediate filaments and cytoskeletal proteins (i.e.,

vimentin, glial fibrillary acidic protein), transcriptional mar-

kers (oligodendrocyte lineage transcription factors), and

other binding proteins (i.e., ionized calcium binding adaptor

molecule 1, Iba1). The developing rat spinal cord at E13–14

comprises astrocytes, oligodendrocytes (and their precur-

sors), and microglia. Astrocytes during these development

stages are supportive of neural growth and development, and

can facilitate endogenous axonal regeneration58–60. How-

ever, transplantation of GRPs cultured from E13–14 rat

spinal cord, into the injured adult spinal cord, has been

shown to attenuate inhibitory aspects of the injury environ-

ment and enhance host axon growth17,37,61–63. Immunohis-

tochemistry of transplanted GRPs in vivo suggests that most

donor cells become both astrocytes and oligodendrocytes62.

While both Type 1 (protoplasmic, A2B5-negative) and Type

2 (fibrous, A2B5-positive) astrocytes have been reported2,

additional studies are required to assess A1 versus A2 phe-

notype of these cells64. Transplantation of mature astrocytes

derived from GRPs in vitro also survive, migrate into the

injured spinal cord, and improve sensory function post-

SCI62. With a focus on respiratory networks after cervical

SCI, Li et al.65 demonstrated improved functional outcome

following transplantation of induced pluripotent stem cell

(iPSC)-derived astrocytes.

GRPs can also give rise to oligodendrocytes, but the

extent may be dependent on cell preparation. Jin et al.62

found that the majority of donor GRPs at the lesion and

transplantation site are astrocytic (*80%), while the num-

bers of astrocytes and oligodendrocytes more distant from

the lesion site become more even. The migration of oligo-

dendrocytes away from the lesion and toward host axons

could be an indication of these donor cells migrating to

myelinate axons. This regional difference in donor glia may

reflect important influences that the injured host spinal cord

has on differentiation and/or migration of donor cells, and

raises the importance of defining where cells should be

transplanted (see below). In contrast, Lu et al.9 found limited

migration of donor glia away from the transplant epicenter

when delivered with neuronal progenitors, and a larger pro-

portion of donor oligodendrocytes (27% oligodendrocytes,

16% astrocytes).

Another cell source that has been used both pre-clinically

and clinically is selected populations of oligodendrocyte pre-

cursor cells (OPCs). Using stem cell-derived OPCs, Keirst-

ead et al.66–70 and others71–74 found that donor cells promote

repair post-SCI, contribute to myelination, and improve

functional outcome. These initial experiments led to the

translational investigation of OPCs for treatment of SCI74,

with clinical trials initiated by Geron, and more recently by

Asterias.

While technically not of a neural lineage, donor microglia

are found in transplants of developing spinal cord tissue.

However, the contribution of these donor microglia to

inflammation, survival, or development within donor tissue

remains poorly defined. Chemically dissociating and cultur-

ing this donor tissue source, however, selects for astrocytic

and oligodendroglial precursors and removes microglia. This

is an example of the greater range of cell types that can be

present in non-cultured donor tissue.

Other cell types. While cultured donor neural precursors are

composed primarily of NRPs and GRPs (at a ratio of approx-

imately 2:11), developing neural tissues used for transplanta-

tion (not cultured) contain many other elements that may

also contribute to neural repair. In addition to microglia, this

donor tissue includes extracellular matrix and vascular

endothelial cells, which support cell survival and growth

through the expression of growth-supportive proteins (e.g.,

laminin, FGF, VEGF). Donor vascular cells may support

growth by recapitulating neural development and providing

a growth-supportive surface for axon growth cones. The

presence of these components may also contribute to

improved vascular repair seen with tissue transplantation,

restoring its metabolic capacity75. With only limited effort

made to assess their potential as donor substrates76, the focus

has remained on neuronal and glial elements.

We now have the tools to identify, screen, and enrich for

specific cell phenotypes destined for transplantation. With

this in mind, the question of what the target system is for

treatment becomes an important consideration (see below).

What is the Intended Target?

As the phenotype of donor cells becomes more clearly

defined, there is a need to reconsider what the intended

target for repair is. Within the injured spinal cord, which

neural network is the intended focus? While it would be ideal

to transplant cells that are effective at repairing all circuits,

donor neurons will have specific functions and may be
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effective for some circuits more than others (e.g., motor vs.

sensory). While lower (spinal) motoneurons clearly target

motor systems, there is a wide range of SpIN phenotypes

with equally variable contributions to motor and sensory

functions. As described above, White et al.6 reported differ-

ences when transplanting tissue derived from the dorsal ver-

sus ventral developing spinal cord (rich with unique

neuronal progenitor phenotypes). With some evidence for

cells of defined neuronal fate retaining the capacity to synap-

tically integrate with appropriate host circuitry77, a logical

goal for network repair will be to harness neuronal cells that

are not only found within the network being treated, but are

also capable of driving recovery (e.g., contribute to endo-

genous neuroplasticity). Thus, identifying the target network

and the normal components of that network are essential for

optimal treatment with transplanted cells.

One cell that is of increasing interest as a target for SCI is

the SpIN19,78,79. SpINs are known to not only contribute to

control and modulation of function, but are also key neural

elements in plasticity after SCI79–81. Recent pre-clinical stud-

ies are beginning to identify specific subsets of SpINs that

play restorative roles after SCI. Within the phrenic motor

circuit—which controls the diaphragm—a subset of excita-

tory cells known as “V2a” INs have now been shown to

contribute to plasticity in pre-clinical models of amyotrophic

lateral sclerosis82 and SCI25. Capitalizing on this finding, we

recently demonstrated that transplantation of NPCs that were

enriched with V2a cells resulted in improved phrenic motor

recovery after cervical SCI83. In contrast, transplantation of

inhibitory neurons may be better suited for treating pain and

spasticity. Fandel et al.27 demonstrated improved recovery of

bladder function and neuropathic pain in a mouse model of

SCI, following transplantation of inhibitory neurons. Thus, it

is possible that each system being treated will benefit from

unique donor phenotype combinations.

However, these strategies assume that efficacy is best

achieved either via donor cell–host circuit integration, or that

donor cells can elicit necessary effects without synaptic inte-

gration (e.g., neurotransmitter release into transplanted

area). Thus, the intended goal is to either “replace” relevant

cells that are lost following injury, or provide new popula-

tions of cells that elicit pro-neuroplastic properties and

enhance recovery. Alternatively, “by-stander” effects of

donor cells (e.g., trophic factor or cytokine release) may be

sufficient to achieve some recovery, as evident in work

focused on transplanting donor cells that maintain their

stemness even after transplantation84. In either case, the sys-

tem being treated and the temporal, anatomical, biochem-

ical, and functional changes within the compromised

network, then raises the question: when is the optimal time

for cell transplantation?

When is the Optimal Time for Repair?

Timing of treatment following injury depends primarily on

treatment goal (treating the acute vs. chronic

pathophysiology), which also influences which donor cells

would be optimal for repair. It is also a crucial consideration

for cell transplantation strategies in general, as temporal

changes in the host environment may affect donor cell sur-

vival, proliferation, and differentiation7,85. Cell therapies

have been used to neuroprotect the injured nervous system

and limit tissue damage (e.g., transplanting immune regu-

latory cells such as glia), enhance spontaneous neuroplastic

mechanisms, restore tissue continuity and provide a growth

permissive substrate for axonal growth and repair, and

replace lost neurochemical input (e.g., transplanting neuro-

modulatory cells such as serotonergic neurons). In general

terms, treatments can be divided into those applied acutely,

sub-acutely, and chronically. As outlined in Table 1, the

cells used may change depending on timing post-injury,

with important considerations for each condition. It should

be noted that our current appreciation for these treatment

times comes primarily from pre-clinical studies, and how

these relate to treatment of human injuries remains less

clearly defined.

While many pre-clinical studies first test treatment effi-

cacy in acute or sub-acute models of SCI, there has been a

pre-clinical and clinical push toward developing treatments

for more chronic time-points, which will then benefit a much

larger population. Pre-clinical studies have even begun

assessing treatment efficacy in aged rats, more than a year

post-injury97.

Clinical trials using cell therapies are also expanding their

treatment window to target a wide population of people with

SCI. As our understanding of the temporal changes within

the injured spinal cord improves—at and distant from the

injury site—the question becomes: where donor cells can

and/or should be delivered to optimally improve outcome?

Where Should Donor Cells be Delivered?

When deciding where to transplant cells to treat the injured

spinal cord, one must consider the goal of transplantation

and accordingly also the cells being used. For example,

while oligodendrocytes might be transplanted into regions

of primary demyelination, or those containing newly grow-

ing (unmyelinated) fibers, donor neurons capable of repla-

cing damaged or dead neurons should be delivered into the

lesion cavity. In contrast, donor neurons intended to provide

neuromodulatory functions (e.g., serotonergic cells) may

need to be delivered to denervated networks distant from the

injury site. Once the location is established, the cytoarchi-

tecture at that site needs to be defined. The location where

donor cells are implanted can also affect their phenotype98,

which likely impacts functional outcomes.

While cell transplantation by its very nature is invasive,

the goal remains to be minimally invasive. Thus, delivery of

cells to distant locations must take into account that the

tissue—while perhaps denervated—is relatively intact. In

contrast, delivery to the lesion epicenter is easier to justify,

but then has different caveats. Yet, with most cell transplants
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designed to promote neural repair, the lesion site and/or the

peri-lesional area is the most commonly used site for

transplantation.

Transplanting into or below the injury site. If the lesion is pene-

trating (or a pre-clinical model of partial or complete section

injury), there must be a mechanism to keep transplanted cells

at the lesion site. Use of either donor tissue pieces, or com-

bined delivery with a biomaterial99–101, has addressed this

issue. Closed lesion sites associated with contusion or com-

pression injuries result in cavitation in most species,

providing an enclosed site for transplantation. However, the

second issue associated with transplants into the lesion site is

that it represents both a molecular and physical barrier to

repair. Wound-healing processes post-injury result in scar

formation that can prevent donor cell integration to some

extent. Despite this, transplantation of neuronal and glial

progenitors into the lesion epicenter has been shown to alle-

viate this, restoring tissue continuity and providing a bridge

for axonal repair. There has been some suggestion that it is

the donor glial progenitors that provide this modulatory

effect on the scar15,17.

Table 1. These Categories are Defined by Our Own Pre-Clinical Studies, and Others51,90,92–96. While There is Some Variability in These
Defined Time-Windows (Likely Differences in Animal and Injury Models), the Characteristics Used to Define Them are Comparable (e.g.
Chronic Injury is Typically When the Lesion Epicenter and Peri-Lesional Areas are Stable).

Acute <48hrs
Goal: Transplantation within the early stages post-injury (e.g. 24-48 hours) to target inflammation and promote

neuroprotection, limit axonal retraction, and reduce secondary tissue damage.
Cells used: Growth-supportive/permissive, anti-inflammatory, and pro-vascular cells. In addition, donor cells may be able to

restore metabolic homeostasis, thus enhancing neuroprotection. Usually delivered to the lesion epi-center or peri-
lesional area.

Considerations and barriers to cell therapy: Donor cell survival may be limited as the pro-inflammatory internal milieu of the
lesion epicenter is not conducive for survival at such early time post-injury. This may not be a concern, provided donor
cells survive long enough acutely to exhibit the necessary effects (e.g. cells are transplanted with the intended purpose of
secreting anti-inflammatory and/or neuroprotective factors).

References: 4,6,11,84–89

Sub-acute* 48 h–4wks
Goal: Facilitate repair during ongoing neuroplasticity and anatomical reorganization within the injured host spinal cord.
Cells used: Growth-supportive/permissive (may modify the glial scar) cells, pro-vascular cells, and neurons capable of forming

networks and integrating with host neurons—delivered to lesion epicenter or peri-lesion area. Also, neuromodulatory
cells (e.g., serotonergic) which can be delivered distant to injury near denervated cells (e.g., lumbar spinal cord).

Considerations and barriers to cell therapy: With ongoing anatomical and biochemical changes during this stage, care needs
to be taken to not disrupt otherwise beneficial neuroplastic mechanisms. Potential disruption and/or inhibition of adaptive
plasticity is the greatest barrier to cell transplantation at this time point injury. However, treatment during this stage when
plasticity is ongoing may enable better, if not most optimal, growth and integration between donor and host.

References: 8,9,22,43,75,88,90

Chronic >4–12 weeks
Goal: Cells that may facilitate delayed repair and contribute to additional plasticity. Modify the existing glial scar at the lesion

site, and promote vascularization. While there has been some concern that the capacity for repair may be reduced at very
late chronic stages, following a longer period of wound healing/scarring, there is mounting evidence to suggest that this
“window” for treatment can be reopened to facilitate repair at even very late stages.

Cells used: As described for the sub-acute stage.
Considerations and barriers to cell therapy: Perhaps one of the most important considerations here is what defines the

treatment time as “chronic”. “Early” chronic stages (about 4–12 weeks) have been described as “sub-chronic” or
intermediate, with “chronic” referring to even later stages (>12 weeks). Anatomical and biochemical changes become
more stable at around 4–6 weeks, with less spontaneous axonal sprouting and plasticity during this stage. Immunological
events may still be ongoing within the injured spinal cord at this time, but become more stable 8–12 weeks post-injury. If
transplantation requires axonal growth, the donor cells need to stimulate it, or an additional treatment may be required
to do so. Directing host and donor growth may require activity-based therapies or neural stimulation (e.g.,91).

The greatest barrier to cell therapy at the chronic timepoint is the state of the lesion itself. It is unknown if the potential for
repair is reduced, whether the chronic state of the scar is no longer receptive for growth of donor or host cells and
whether the benefits and effects of transplantation will be comparable to what has been shown at more acute stages.
Clinically and logistically, transplantation at the acute stage post-injury can be performed in combination with other
necessary surgeries (e.g., decompression). In contrast, surgery at the chronic stage may be more difficult once more
extensive scarring has occurred and the chronically injured patient may not recover from a surgery as quickly.

References: 7,51,90,92

*Despite being misleading (sub-acute would typically refer to events pre-acutely), this is a commonly used term in the field to refer to times soon after the
early acute stages of injury.
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While many studies are focused on transplantation at the

injury site, therapeutic effects can be achieved away from

the injury site as well, especially if the intended goal is “by-

stander” effects (trophic support, immunomodulation).

Accordingly, donor cells can be transplanted wherever such

effects are more warranted. Neuromodulation of motor out-

put (e.g., serotonergic or catecholaminergic) can also be

achieved with transplantation of these neuron types in the

vicinity of target lower motoneurons that may be several

spinal segments away from the injury. For example, the

delivery of cells below the level of injury after a cervical

or thoracic injury can still modulate function of the target

cells for locomotion45,46,102 and respiration47. Intravenous

injection of other donor cell populations (e.g. mesenchymal

stem cells) has also been used to elicit by-stander effects that

promote some functional improvement.

Intrathecal delivery of cells. While the vast majority of neural

cell transplantation strategies (e.g., transplantation of neural

progenitor cells) have utilized intraparenchymal injection of

cells directly into the lesion site or immediately surrounding

spared tissue, there are studies that have employed less inva-

sive approaches such as intrathecal delivery of donor cells.

Parenchymal injection of donor cells, albeit an efficient

delivery method, is considered to be an invasive technique

risking further damage to the injured spinal cord. Delivery of

donor cells into the cerebrospinal fluid is a potential alter-

native and has been demonstrated as a feasible technique in

pre-clinical studies using neural progenitors103 as well as

bone marrow stromal cells104–107. In fact, previous work has

demonstrated that both endogenous108 and transplanted

NPCs103,109 can migrate to sites of pathology and contribute

to anatomical repair of nervous tissue. The chemotaxis driv-

ing this migration can also be engineered. For instance, viral

vectors can be used to induce trophic factor expression and

promote migration of donor cells to relevant targets, as has

been done with directing growth of donor axons87.

Why Transplant Cells for Treatment of
Spinal Cord Injury?

With an ever-expanding number of approaches being devel-

oped for treatment of the injured spinal cord, what is the

benefit of using cell transplantation? First, most cell thera-

pies in testing are a natural mix of cell types. For example,

those derived from neural precursors contain neuronal and

glial progenitors (at the very least). In that way, they can be

seen as an endogenous (and biologically relevant) combina-

torial strategy.

Second, cells are capable of a vast range of functions.

Cells are biological elements capable of sensing, adapting,

integrating with—and even modifying—their surrounding

environment. Transplanted donor neurons are capable of

synaptically integrating with host circuitry, and functionally

contribute to restoring the communication once broken by a

SCI. Donor glia (e.g., astrocytes) respond to the surrounding

environment, but unlike host astrocytes, donor astrocytes

appear to maintain a growth-supportive phenotype. These

donor astrocytes not only modify the existing glial scar at

an injury site, they also appear to guide host axons into the

injury site and transplant. Like the endogenously proliferat-

ing host oligodendrocytes, donor oligodendrocytes not only

support neurite myelination, but there is some suggestion

that they also regulate inflammatory cascades. Lastly, donor

endothelial cells serve as self-assembling biological scaf-

folds, coming together with host endothelial cells to restore

tissue vascularity, while also supporting neurite outgrowth

as seen in the developing nervous system.

While we begin to appreciate the vast capacity of cells

available for transplantation and repair of the injured ner-

vous system, the optimal approach will most likely be built

on multidisciplinary strategies. For example, expertise in

genetic, anatomical and molecular neural development, and

neural network electrophysiology are crucial in identifying

optimal cellular components for repair. Cellular engineering

is critical to the generation of specific cell subtypes tailored

for repair. Pre-clinical and clinical expertise in activity-

based therapies (e.g., rehabilitation) and neuromodulation

(neural interfacing) are essential in designing combinatorial

strategies to help optimize transplant integration with host

injured circuitry. Finally, communication between scientists,

clinicians and patients/patient advocates is important for

translational success: (i) therapies need to be developed to

best meet medical needs, (ii) pre-clinical studies need to be

conducted under consultation with neurosurgeons and clin-

icians that will eventually coordinate clinical trials, (iii)

ongoing trials need to be conducted in parallel with pre-

clinical research to continually refine and improve treat-

ments, and (iv) translated treatments need to be reverse

translated to re-assess treatment goals and ensure they con-

tinue to meet the needs of a changing patient population.

Closing Remarks

Cells are likely capable of far more than we currently

appreciate. Tailoring cell therapies for individuals is becom-

ing a commonly sought goal. Once we establish the patient

and neural network to be treated, and the intended post-

injury time for treatment, then the appropriate donor cell can

be engineered and transplanted into the injured spinal cord.

One of the biggest limitations we currently face is that we are

still trying to understand (i) who are the ideal cells for trans-

plantation and what is the target for repair, (ii) what are the

strengths and weaknesses of these cells for the target, (iii)

how and when best to harness their strengths, and (iv) when

and where to use them. Yet pre-clinical studies are now

becoming more focused on these issues.

As appropriate donor cells are identified, logistical and

ethical considerations become critical in then translating cell

therapies. What is the original source of donor cell types

used? Have they been obtained, prepared, and preserved

adhering to established guidelines and legislature for global
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safety and ethics? Even if the optimal donor cell type(s) are

identified, and are obtained safely and ethically, how are

clinical trials conducted (e.g., blinded trials, controlled vs.

open clinical trials)? For that matter, how often are cell

therapies used to treat patients without rigorous pre-

clinical and clinical testing (e.g., “investigational

treatments” not yet approved, “compassionate use” of unap-

proved treatments in the critically ill, or “stem cell

tourism”)? As new strategies develop for designing novel

donor cell types, the regulations on clinical translation must

be routinely re-evaluated to promote the safe and ethical use

of these break-through technologies.

With an improved understanding of cell biology and

neural development, neural phenotypes are becoming better

classified and studies have begun focusing on use of more

specific cell types for transplantation. Existing cellular engi-

neering and stem cell biology methods now enable the devel-

opment of purified populations of donor cells that can be

genetically modified to alter phenotype and function. As

we better understand the neural repair process, the temporal

use of cell therapies will become more refined, and new cell

types may be included in donor populations. As the tech-

niques available to us improve and we better understand the

donor cell populations, the coming years will bring exciting

advances in cell therapies for spinal cord repair.
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