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Abstract: Rubia yunnanensis Diels (R. yunnanensis), a Chinese perennial plant, is well-known for its
medicinal values such as rheumatism, contusion, and anemia. It is rich in bioactive anthraquinones,
but the biosynthetic pathways of anthraquinones in R. yunnanensis remain unknown. To inves-
tigate genes involved in anthraquinone biosynthesis in R. yunnanensis, we generated a de novo
transcriptome of R. yunnanensis using the Illumina HiSeq 2500 sequencing platform. A total of
636,198 transcripts were obtained, in which 140,078 transcripts were successfully annotated. A
differential gene expression analysis identified 15 putative genes involved in anthraquinone biosyn-
thesis. Additionally, the hairy roots of R. yunnanensis were treated with 200 µM Methyl Jasmonate
(MeJA). The contents of six bioactive anthraquinones and gene expression levels of 15 putative genes
were measured using ultra performance liquid chromatography coupled with mass spectrometry
(UPLC-MS/MS) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. The
results showed that the expressions levels for 11 of the 15 genes and the contents of two of six
anthraquinones significantly increased by MeJA treatment. Pearson’s correlation analyses indicated
that the expressions of 4 of the 15 putative genes were positively correlated with the contents of
rubiquinone (Q3) and rubiquinone-3-O-β-D-xylopranosyl-(1→6)-β-D-glucopyranoside (Q20). This
study reported the first de novo transcriptome of R. yunnanensis and shed light on the anthraquinone
biosynthesis and genetic information for R. yunnanensis.

Keywords: Rubia yunnanensis Diels; RNA-sequencing; transcriptome; anthraquinone biosynthesis;
gene expression

1. Introduction

Rubia yunnanensis Diels, a perennial herb in the family of Rubiaceae, distributes
at 1700–2500 m altitude in Yunnan and Sichuan provinces, Southwest China [1]. Its
roots and rhizomes, known as “XiaoHongShen”, have been used as one of Chinese tradi-
tional medicines (TCMs) for treating rheumatism, contusion, menoxenia, tuberculosis, and
anemia [2]. This species is used as a local alternative of the TCMs Rubia cordifolia [3]. Recent
studies showed that R. yunnanensis has a wide range of bioactivities, such as antihyperlipi-
demic [4], antitumor [5], antiplatelet aggregation [6], antibacterial, and antifungal [7] proper-
ties. These properties could be attributed to these active quinones including anthraquinones
and naphthoquinones derivatives, i.e., rubiquinone (Q3), 3-hydroxy-2-hydroxymethyl-
9,10-anthraquinone (Q4), rubiquinone-3-O-(4′-O-acetyl)-α-L-rhamnopyranosyl-(1→2)-β-D-
glucopyranoside (Q19), rubiquinone-3-O-β-D-xylopranosyl-(1→6)-β-D-glucopyranoside
(Q20), mollugin (Q17), and 1′–methoxy-2′–hydroxy-9,10-dihydromullugin (Q18) (Supple-
mentary Figure S1) [8,9]. Due to its medicinal values, the demand for R. yunnanensis keeps
increasing. However, knowledge about the genetics of R. yunnanensis is limited, which has
hindered the investigation of metabolites synthesis.
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Anthraquinones, constituting a class of the parent structure 9,10-dioxoanthracene,
are synthesized by bacteria [10], fungi [11], insects [12], and plants [13]. Natural an-
thraquinones not only possess medicinal benefits but also possess values in pigments,
foods, and cosmetics [14,15]. For instance, the roots and rhizomes of Rubia, which are gener-
ally rich in anthraquinones, are used as natural dyestuffs for clothes and foods in industry.
Two main biosynthesis pathways for the skeleton of anthraquinones have been reported:
(1) the polyketide pathway in Leguminosae, Rhamnaceae, and Caesalpiniaceae and (2) a
combination of the shikimate, mevalonic acid (MVA), and 2-methyl-erythritol 4-phosphate
(MEP) pathways in Rubiaceae [16,17]. The latter pathways comprise three benzene rings,
A, B, and C. The rings A and B are derived from 1,4-dihydroxy-2-naphthoic acid via the
shikimate pathway [18], and the ring C is derived from isopentenyl diphosphate (IPP)/3,
3-dimethylallyl diphosphate (DMAPP) via the MVA/MEP pathway [19]. Although we
identified four glycosyltransferase genes involved in the biosynthesis of anthraquinone gly-
cosides in R. yunnanensis [20], no other enzymes in anthraquinone biosynthesis have been
fully identified. Moreover, the biosynthesis pathway of anthraquinones in R. yunnanensis
remains unknown.

With advances in sequencing technologies, the Illumina HiSeq as a cost-efficient RNA-
sequencing (RNA-seq) has become an effective tool to obtain candidate genes involved in
the biosynthesis of active substances in non-model plants [21], such as tanshinones and sal-
vianolic acids (Salvia miltiorrhiza) [22], C19-diterpenoid alkaloids (Aconitum carmichaelii) [23],
anthraquinones (Aloe vera) [24], and flavonoids (Gentiana straminea) [25]. The MeJA in-
duction has been established as an ideal model in plants for studying biosynthetic path-
ways of various classes of active secondary metabolites [26], such as ginsenoside [27],
tanshinone [28], abietane diterpenes [29], and so on. After MeJA treatment, candidate
genes that are essential for the secondary metabolite synthetic pathways can be easily cap-
tured by sequencing technologies and metabolic analysis. Combined with MeJA treatment,
the RNA-seq technology can be used to study the molecular mechanism of anthraquinone
biosynthesis in R. yunnanensis [30].

To investigate the genes involved in anthraquinones synthesis, we here generated a de
novo transcriptome of R. yunnanensis using the Illumina HiSeq platform. The assembled
transcripts were functionally annotated, and the genes related to anthraquinone biosyn-
thesis were analyzed by differential gene expression analyses. The hairy root culture of
R. yunnanensis with high production of quinones [31] was treated with MeJA for correlation
analysis between the expressions of the putative genes and anthraquinone contents.

2. Materials and Methods
2.1. Sample Preparation

The seeds of R.yunnanensis were collected from Kunming, Yunnan Province, China in
October 2016. Seeds were grown in 25 × 20 cm pots in a greenhouse with a condition of
25 ◦C, light for 16 h (intensity of illumination at a constant 30,000 Lu×), and dark for 8 h.
The roots and a mixture of stems and leaves of one-year-old R. yunnanensis were collected
and immediately frozen at −80 ◦C.

Hairy roots of R. yunnanensis established by our previous work [31] were cultured in
250 mL of 1/2MS liquid medium at pH 5.8, 25 ◦C, and in dark. After 30 days of cultivation,
200 µM MeJA dissolved in ethanol was added as the elicitation. The hairy roots were
harvested at 0, 1, 6, 12, and 24 h after treatment. For the control groups, the elicitation was
replaced by ethanol at the same volume. All the treatments were performed with three
biological replicates.

2.2. RNA Isolation and cDNA Library Preparation for Illumina Sequencing

Total RNA was separately isolated from R. yunnanensis roots and a mixture of stems
and leaves using EASY spin Plus Complex Plant RNA kit (RN53, Aidlab Biotechnologies
Co., Ltd., Beijing, China) according to the manufacturer’s instructions. Each sample
has three replicates. RNA quality was evaluated using a Nanodrop 2000 and Agilent
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2100 (Supplementary Table S1). After treating with RNase-free DNase I (Katara, Dalian,
China) for 30 min at 37 ◦C to remove the residual DNA, mRNA was enriched using
mRNA Capture Beads. The fragmentation buffer was added to interrupt the mRNA to
short fragments. SMARTTM cDNA Synthesis Kit (Clontech, Mountain View, CA, USA)
was used to synthesize the single-stranded cDNA with the short fragments as templates.
Subsequently, double-stranded cDNA was synthesized using the Advantage II Polymerase
Kit (Clontech, Mountain View, CA, USA) including RNase H, dNTPs, and DNA polymerase
I. The products were purified with EasyPure PCR Purification Kit (TransGen Biotech,
Beijing, China), followed by adding poly(A). Finally, the library was sequenced using
Illumina HiSeq™2500 with a paired-end (PE) sequencing strategy.

2.3. De Novo Assembly and Sequence Analysis

Raw reads were filtered by SOAPnuke (https://github.com/BGI-flexlab/SOAPnuke/,
accessed on 10 February 2018) [32]. De novo assembly was carried out using Trinity v2.40.
Assembled transcripts were then clustered to remove redundancies using the CDHIT
(http://weizhongli-lab.org/cd-hit/, accessed on 10 February 2018) [33].

2.4. Functional Annotation of Transcripts

To obtain annotation, transcripts were compared with public databases using NCBI
BLASTX [34]. The public databases included NCBI nucleotide sequences (NT) (http:
//www.ncbi.nlm.nih.gov/, accessed on 10 February 2018), NCBI non-redundant protein
sequences (NR) (http://www.ncbi.nlm.nih.gov, accessed on 10 February 2018), Swiss-Prot
(http://www.ebi.ac.uk/uniprot/, accessed on 10 February 2018), Protein family (Pfam)
(http://www.ncbi.nlm.nih.gov/, accessed on 10 February 2018), euKaryotic Ortholog
Groups (KOG) (http://www.ncbi.nlm.nih.gov/, accessed on 10 February 2018), Kyoto
Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/, accessed
on 10 February 2018), and Gene Ontology (GO) (http://www.genome.jp/kegg, accessed
on 10 February 2018) databases.

2.5. Identification of Differentially Expressed Genes (DEGs)

Clean reads of each sample were mapped to the assembled transcripts with Bowtie2 [35].
Then, the FPKM (fragments per kilobase of per million mapped reads) for each transcript
was calculated using RSEM software [36]. The FPKM quantified the expression abundance
of transcripts in each sample. Last, edgeR software [37] was used to perform differential
gene expression analyses based on the FPKM. When false discovery rate (FDR) ≤0.05 and
an absolute value of the log2 ratio > 1.5, the transcripts were treated as DEGs.

2.6. Analysis of Putative Genes Involved in Anthraquinone Biosynthesis in the
R. yunnanensis Transcriptome

The DEGs found in the R. yunnanensis transcriptome were proceeded for GO and
KEGG annotation analyses. In combination with the biosynthetic pathways of higher
plant anthraquinones reported in the literatures [16–19,38], we identified 15 putative genes
involved in anthraquinone biosynthesis.

2.7. RT-qPCR Validation of the Gene Expression Level Quantified Using Illumina Sequencing

To validate the gene expression level quantified using RNA-seq, we selected six of
the 15 putative genes, viz., the gene of acetyl-CoA acetyltransferase (AACT), the gene of o-
succinylbenzoate-CoA ligase (OSBL), the gene of 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMGR), the gene of 1-deoxy-D-xylulose-5-phosphate synthase (DXS), the gene
of isochorismate synthase (ICS), and the gene of isopentenyl-diphosphate delta-isomerase
(IPPI), to analyze the expression levels at different tissues using RT-qPCR.

All RT-qPCR reactions were carried out on StepOnePlus™ Real-Time PCR System
using AceQ® qPCR SYBR® Green Master (Vazme, Nanjing, China). Each reaction contained
10 µL 2 × AceQ qPCR SYBR Green Master Mix, 0.4 µL of each primer (10 µM), 2 µL of
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http://weizhongli-lab.org/cd-hit/
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cDNA, and 7.2 µL of ddH2O. The RT-qPCR was performed according to the following
conditions: denaturation at 95 ◦C for 5 min, 40 cycles at 95 ◦C for 10 s, and 60 ◦C for 30 s.
To confirm the specificity of the primers, the melting curve was generated by heating the
amplicon from 60 to 95 ◦C. The products of all reactions were separated via electrophoresis
in 1.5% agarose gels. Each PCR reaction was repeated in three biological and technical
replicates. The relative quantification of gene expression was computed using the 2−∆∆Ct

method [39] and normalized to the expression of hnRNP and TBP, the two most stable
genes in R. yunnanensis at the different treatments [40].

2.8. RT-qPCR Analysis for 15 Genes Involved in Anthraquinone Biosynthesis

Total RNA was isolated from hairy roots of R. yunnanensis using the RNAiso Plus
reagent (Takara, Tokyo, Japan), following the manufacturer’s instructions. RNA quality
was tested by measuring the A260/280 ratios, and the integrity was accessed by elec-
trophoresis on 1.5% (w/v) agarose gels. Only RNA samples with an A260/A280 ratio of
1.9–2.2 were considered as high quality for further analysis. Total RNA samples were
reversely transcribed into cDNA with HiScript® II Reverse Transcriptase (Vazyme, Nanjing,
China). The cDNA was stored at −80 ◦C until PCR-based analyses. All RT-qPCR reactions
were the same as 2.7. The relative quantification of gene expression was normalized to the
expression of hnRNP. The sequences of the primers for 15 genes involved in anthraquinone
biosynthesis were shown in Supplementary Table S2.

2.9. Quantitative Analysis of Six Anthraquinones and Two Naphthoquinones in the Hairy Roots of
R. yunnanensis

The quantification of Q3, Q4, Q11, Q12, Q17, Q18, Q19, and Q20 was carried out using
UPLC-MS/MS. The analyses were performed using a Waters ACQUITY®UPLC H Class
system (Waters, Milford, MA, USA) fitted with a Waters XEVO®TQD system (Milford,
MA, USA) equipped with electrospray ionization (ESI). The conditions for UPLC and MS
analyses were performed according to our previous method [8]. The eight compounds in
the samples were identified by comparing their retention time and mass spectra with the
standards, which were isolated from Rubia species in our laboratory. The quantitative data
were calculated based on the calibration curves of the individual standards through plotting
the MS peak areas versus the corresponding concentrations of each representative standard.

2.10. Statistical Analysis

The data in the Tables and Figures were represented as the means ± standard de-
viations. Statistical analysis was performed through a one-way analysis of variance
(ANOVA). Pearson’s correlation coefficients were computed between quantitative vari-
ables using SPSS software (version 23.0). Heatmaps were produced in Heatmapper
(http://www.heatmapper.ca/expression/, accessed on 25 May 2021).

3. Results
3.1. Illumina Sequencing and De Novo Sequence Assembly

Total RNA was extracted from roots (R) and a mixture of stems and leaves (SL) (each
three replicates), respectively. Sequencing was separately carried out for six samples using
the Illumina HiSeq-2500 platform. A total of 34,612,412–41,363,450 clean reads for each
sample were obtained from 36,888,628–43,747,160 raw reads by filtering and removing
adapters, low quality reads, and unknown nucleotides (N > 10%) (Supplementary Table S3).
All these data were characterized by Raw Q30 ≥86.46% and Raw GC contents ≥48.18%,
respectively. The de novo transcriptome was assembled using Trinity [41] with all the six
samples, which generated 636,198 transcripts belonging to 554,646 genes (Supplementary
Table S4). These transcripts have a mean length of 300.64 bp and an N50 value of 390 bp.
The size distribution of transcripts was shown in Supplementary Figure S2.

http://www.heatmapper.ca/expression/


Genes 2022, 13, 521 5 of 15

3.2. Function Annotation Analysis

With the BLASTX, 17.09%, 15.45%, 16.27%, 13.71%, 6.11%, and 11.41% of the
636,198 transcripts were annotated using NR, SwissProt, KEGG, KOG, Pfam, and GO
databases, respectively (Table 1). In total, 22.02 percent of transcripts were annotated. The
high proportion of annotated transcripts could be attributed to lacking a reference genome
of R. yunnanensis and strict parameters used in BLASTX. NR annotation revealed that
Coffea canephora, Zea mays, Hordeum vulgare subsp. vulgare, and Sesamum indicum are the top
species, which accounted for 28.0%, 6.34%, 3.64%, and 2.72% of the matched transcripts,
respectively. We assigned the annotated transcripts to GO categories. GOs were divided
into three classes, viz. biological process, cellular component, and molecular function.
Within the biological process, metabolic processes were the most highly represented groups
(Supplementary Figure S3). According to the KEGG annotation, the three most abundant
pathways are signal transduction (7984), carbohydrate metabolism (6549), and global and
overview maps (5025) (Supplementary Figure S4).

Table 1. Statistical results of transcript annotation.

Database Number of
Annotated Transcripts

Ratio of Annotated
Transcripts (%)

Number of
Annotated Genes

Ratio of Annotated
Genes (%)

All assembly transcripts 636,198 NA NA NA
All assembly genes 554,646 NA NA NA

NR 108,753 17.09 77,188 13.92
Swiss-Prot 98,311 15.45 76,703 13.83

KEGG 103,529 16.27 73,112 13.18
KOG 87,215 13.71 67,466 12.16
Pfam 38,877 6.11 29,369 5.30
GO 72,573 11.41 51,102 9.21

All annotated transcripts 140,078 22.02 107,631 19.41

3.3. Identification of Genes Involved in Anthraquinone Biosynthesis

According to our previous work, R. yunnanensis roots (R) have higher contents of
anthraquinones than that of a mixture of stems and leaves (SL) [8]. A heatmap was
constructed using a clustering analysis based on the FPKM values, which showed the
different gene expression patterns in R and SL samples (Figure 1). We also conducted
a differential gene expression analysis between roots and a mixture of stems and leaves
using edgeR with FPKM values [37]. A total of 8811 DEGs were identified based on the
criteria of FDR < 0.05 and |log2Fold change| > 1.5 (Supplementary Figure S5). Among the
8811 genes, 5372 were significantly up-regulated and 3439 were down-regulated in roots.
The KEGG enrichment analysis showed that 113 DEGs were involved in the ubiquinone
and other terpenoid-quinone pathways (Figure 2). According to the NR annotation and
literatures [16–19,38], 15 of 113 DEGs encoded anthraquinone biosynthetic enzymes, viz.,
isochorismate synthase (ICS), acetyl-CoA acetyltransferase (AACT), shikimate kinase (SK),
3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), o-succinylbenzoate synthase
(OSBS), o-succinylbenzoate-CoA ligase (OSBL), isopentenyl-diphosphate delta-isomerase
(IPPI), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-D-xylulose 5-phosphate
reductoisomerase (DXR), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR),
mevalonate kinase (MVK), shikimate dehydrogenase (SD), phosphomevalonate kinase
(PMVK), 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (ISPE), and 2-C-methyl-D-
erythritol 2,4-cyclodiphosphate synthase (ISPF) (Figure 3 and Supplementary Table S5).
Among the 15 genes, the expression of IPPI, ICS, SD, OSBL, HMGR, DXR, DXS, PMVK,
OSBS, and AACT was higher in roots, while the expression of SK, MVK, ISPF, ISPE, and
HMGS was the opposite.
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Figure 1. Heat map of gene expression level of the roots (R) samples and a mixture sample of stems
and leaves (SL) of R. yunnanensis.

3.4. Validation of the Gene Expression Level

To validate the gene expression level quantified by RNA-seq, the expressions of
ICS, AACT, DXS, IPPI, OSBL, and HMGR were quantified using RT-qPCR. The results
indicated that the expression level quantified using RT-qPCR was consistent with RNA-seq
(Supplementary Figure S6). Both of them showed that the expression levels of the six genes
in the roots (R) were higher than that in a mixture of stems and leaves (SL).

3.5. Gene Expressions Levels and Anthraquinone Contents in the Hairy Roots of R. yunnanensis
under MeJA Treatment

To gain further insights into anthraquinone biosynthesis, the hairy roots of R. yun-
nanensis were treated by MeJA for 1, 6, 12, and 24 h, respectively. Then, the expression
levels of the 15 putative genes involved in anthraquinone biosynthesis and the contents
of six anthraquinones and two naphthoquinones were measured using RT-qPCR and
UPLC-MS/MS, respectively. All treatments were compared with the control (0 h).

The results showed that the expressions for nine of these 15 genes was up-regulated
after 6 and 12 h of MeJA treatment but was down-regulated after 24 h. The expression
levels of HMGS, OSBS, OSBL, ISPE, ISPF, IPPI, SD, DXS, and DXR were up-regulated after
being treated for 6 or 12 h, with the fold changes of 2.45, 5.96, 2.56, 2.12, 5.12, 2.23, 2.22,
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2.55, and 5.12, respectively. The expression level of ICS increased 2.42 times after MeJA
treatment for 24 h. However, AACT, MVK, SK, HMGR, and PMVK significantly reduced by
64.0%, 50.2%, 16.1%, 73.8%, and 70.3% at 24 h, respectively (Figure 4).
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Figure 3. The expression levels of anthraquinone related genes in the hairy roots of R. yunnanensis.
The pathways were re-drawn refering to the literatures [16–19,38]. Subfigures: the hairy roots were
treated by MeJA. 0, 1, 6, 12, and 24 h and each x-axis represents the time points (hours) of each
sample; gene expression levels in y-axis were quantified using RT-qPCR; heatmaps were plotted in
Heatmapper (http://www.heatmapper.ca/expression/, accessed on 25 May 2021).

Eight quinones were found in R. yunnanensis, including two anthraquinones agly-
cones (Q3 and Q4), four anthraquinones glycosides (Q12, Q20, Q19, and Q11), and two
naphthoquinones (Q17 and Q18). The contents of these anthraquinones were determined
by UPLC-MS/MS analysis. The results showed the contents of Q4 increased by 28.01%
after MeJA treatment for 24 h. The contents of Q3 increased by 23.05% at 6 h. However, the
contents of Q11, Q20, Q19, and Q12 significantly decreased by 16.23%, 54.33%, 33.01%, and
33.30% for 6, 24, 12, and 24 h. The contents of Q17 and Q18 contents showed no significant
difference at 0 or 24 h (Supplementary Figure S7).

http://www.heatmapper.ca/expression/
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Figure 4. The gene expression in the hairy roots of R. yunnanensis after MeJA treatment for 1, 6,
12, and 24 h. hnRNP was used as the reference gene. The vertical axis represents the relative gene
expression level. Different lowercase letters for the same metabolite indicate significant differences
(p < 0.05) between the samples.

3.6. Correlation Analysis between the Expression Levels of Genes Involved in Anthraquinone
Biosynthesis and Anthraquinone Contents

We treated the hairy roots of R. yunnanensis with MeJA and compared the expression
levels of 15 genes (ICS, AACT, SK, HMGS, OSBS, OSBL, IPPI, DXS, DXR, HMGR, MVK,
SD, PMVK, ISPE, and ISPF), the contents of six anthraquinone (Q3, Q4, Q12, Q20, Q19,
and Q11), and two naphthoquinones (Q17 and Q18). Our results revealed that ten genes
were upregulated and five were downregulated (Figure 4). Two anthraquinones were
significantly increased. Four anthraquinones and two naphthoquinones were decreased
after MeJA treatment (Supplementary Figure S7). To study the expression pattern of these
15 putative genes, we performed a correlation analysis between the gene expression levels
and anthraquinone contents. As shown in Figure 5, 15 genes were grouped into two
clusters based on the correlation values. The the contents of Q20, Q19, and Q12 were
positively correlated with the expression of genes involved in the MVA pathways, which
were positioned in Cluster I, including MVK, AACT, PMVK, and HMGR.

We used a |correlation coefficient| > 0.5 and p < 0.05 as the cutoff for a significant
correlation (Supplementary Table S6). The results showed a significant correlation between
three anthraquinones and six genes. The expressions of HMGR, MVK, and PMVK were
positively correlated with the Q20 contents, with the correlation coefficients of 0.648, 0.694,
and 0.797, respectively. The expression of SD was positively correlated with the Q3 contents.
There was a negative correlation between the expression levels of ISPE and ISPF genes
and the Q19 contents, with the correlation coefficients of −0.671 and −0.721, respectively
(Figure 6).
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Due to its significant efficacy, R. yunnanensis is commonly used in promoting blood
circulation, stretching tendons, and eliminating blood stasis. R. yunnanensis is rich in
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anthraquinones with some pharmacological effects [4–7]. Abiotic stress could promote the
accumulation of anthraquinones in hairy roots [42–44]. For instance, elicitation with 200 µM
MeJA increased the anthraquinones in hairy roots of Oplopanax elatus by 2.0-fold [45].
These findings indicated that MeJA can be used in hairy culture systems to increase
metabolites production. In this study, when using a concentration of 200 µM MeJA, the
anthraquinone contents increased 35.11%. It supported the opinion that effective elicitors,
such as MeJA, were able to improve the accumulation of anthraquinones in the hairy roots
of R. yunnanensis [31].

Anthraquinones in Rubia could be biosynthesized through the combination of shiki-
mate and MVA/MEP pathways. Several genes in biosynthetic pathways of anthraquinones
have been identified from the genus Rubia, including DXS, DXR, ICS, OSBS, OSBL, and
IPPI [46–48]. Here, we reported the first de novo transcriptome of R. yunnanensis using
the Illumina HiSeq platform. Most of the genes encoding enzymes, which have been re-
ported to be involved in the biosynthesis of the anthraquinones [17–19], were present in the
transcriptome of R. yunnanensis. Fifteen transcripts were found in the MEP pathway (DXS,
DXR, ISPF, ISPF, and IPPI), MVA pathway (HMGR, AACT, HMGS, MVK, and PMVK), and
shikimate pathway (SD, SK, ICS, OSBS, and OSBL), respectively. In addition, the correlation
analysis in Figure 6, showed that the expressions of HMGR, MVK, PMVK, and SD were
positively correlated with the anthraquinone contents. These genes were involved in the
MVA (HMGR, MVK, and PMVK) and shikimate (SD) pathways. HMGR and MVK are
rate-limiting enzyme genes [49,50] and participate in a series of biochemical reactions, such
as anthraquinones, triterpenes, and phytosterols synthesis. PMVK is found to catalyze a
key step in isoprenoid biosynthesis, converting mevalonate 5-phosphate to mevalonate
5-diphosphate in the MVA pathway [51,52]. SD was found to catalyze shikimate synthesis,
representing the fourth step of the shikimate pathway, a conserved biosynthetic route
commonly in plants, fungi, and bacteria [53,54]. It was also reported that the expressions
of shikimate pathway genes responded to various types of elicitors [55]. Our results also
showed that the expression level of SD was up-regulated at 6 h, possibly responding to the
MeJA elicitor.

In addition, we found the contents of anthraquinones were increased after MeJA treat-
ment, while two naphthoquinones (Q17 and Q18) showed no significant difference. These
results were consistent with the cell suspension of Rubia cordifolia [56]. The biosynthetic
pathways of anthraquinones and naphthoquinones are both derived from 1, 4-dihydroxy-
2-naphthoic acid (DHNA) synthesized in the shikimate pathway, but branching occurs
after the prenylation with an isopentenyl moiety IPP [18] (Figure 3). The IPP origin was
synthesized from the MVA and MEP pathways. In our study, the genes in the MVA (HMGR,
MVK, and PMVK) positively correlated with the anthraquinone contents, which may imply
that MeJA mainly regulated the MVA pathway through these three genes to synthesize IPP
for the accumulation of anthraquinones. However, the synthesis of IPP of naphthoquinone
(Q17) appeared to be mainly from the MEP pathway [56]. Moreover, the function of the
genes of the MEP pathway is influenced by the light [57,58], while the MVA pathway is
negatively regulated by light [59]. In our study, the hairy root culture of R. yunnanensis was
in darkness, which may promote the regulation of the MVA pathway leading to the increase
of anthraquinones. These findings implied MVA pathway may play an important role in the
biosynthesis of anthraquinones in R. yunnanensis, especially the four genes HMGR, MVK,
PMVK, and SD, which could contribute to the production of anthraquinones. However, the
integration and regulation of four targeted genes may need further investigation by using
CRISPR activation/interference [60,61].

In the late stage of anthraquinone biosynthesis, the backbone of anthraquinones experi-
ences various modifications, such as SAM-dependent methyltransferases [62], Cytochrome
P450 (CYPs) [63], and UDP-glucose glucosyltransferases (UDPGs). These modification
enzymes play different roles in anthraquinones’ metabolism. For example, CYPs could
catalyze most of the oxidative reactions, including epoxidation, dealkylation, dehydration,
and carbon–carbon bond cleavage of anthraquinones [64]. UDPGs catalyzed glycosylation



Genes 2022, 13, 521 12 of 15

at the site of the hydroxyl group to produce glycosylated anthraquinones [20]. In this study,
18 and 2 transcripts were identified for the first time as CYPs and UDPGs, respectively,
from the R. yunnanensis transcriptome, which could contribute to a better understanding of
the anthraquinone biosynthesis.

5. Conclusions

R. yunnanensis is rich in bioactive anthraquinones, while little is known regarding
its genes in the anthraquinone biosynthesis. In this study, we reported the first de novo
assembled transcriptome and identified 15 putative genes involved in the anthraquinone
biosynthesis pathway in R. yunnanensis. Four of these genes (HMGR, MVK, PMVK, and
SD) exhibited a high positive correlation in the anthraquinone contents. This study has
a potential to discover putative genes in anthraquinone biosynthesis pathways in the
Rubia plants.
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