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ABSTRACT
Inverse probability of treatment weighting (IPTW) using the propensity score allows estimation of the effect of treatment in
observational studies. We had three objectives: first, to describe methods for using IPTW to estimate the effects of treatments
in settings with competing risks; second, to illustrate the application of these methods using empirical analyses; and third, to con-
duct Monte Carlo simulations to evaluate the relative performance of three methods for estimating time-specific risk differences
and time-specific relative risks in settings with competing risks. In doing so, we provide guidance to applied biostatisticians and
clinical investigators on the use of IPTW in settings with competing risks. We examined three estimators of time-specific risk dif-
ferences and relative risks: the weighted Aalen–Johansen estimator, an estimator that combines IPTW with inverse probability of
censoring weights (IPTW-IPCWs), and a double-robust augmented IPTW estimator combined with IPCW (AIPTW-IPCW). The
design of our simulations reflected clinically realistic scenarios. Our simulations found that all three estimators tended to result
in unbiased estimations of time-specific risk differences and time-specific relative risks. However, the weighted Aalen–Johansen
estimator and the AIPTW-IPCW estimator tended to result in estimates with greater precision compared to the IPTW-IPCW esti-
mator. In our empirical analyses, we illustrated the application of these methods by estimating the effect of statin prescribing on the
risk of subsequent cardiovascular death in patients discharged from the hospital with a diagnosis of acute myocardial infarction.

1 | Background

Investigators are increasingly using observational studies to esti-
mate the effects of treatments, exposures, and interventions.
However, a consequence of the lack of random treatment assign-
ment is that treated subjects often differ systematically at baseline
from control subjects. Because of the confounding that occurs
when the distribution of baseline characteristics differs between
treated and control subjects, outcomes cannot be compared
directly between treated and control subjects. Instead, statistical
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methods must be used to remove the effects of the confounding
due to measured variables. Statistical methods based on the
propensity score are being used with increasing frequency in
observational studies examining the effect of treatments. The
propensity score is defined as a subject’s probability of receiv-
ing the treatment of interest conditional on measured baseline
covariates [1, 2]. There are four ways of using the propensity
score: matching on the propensity score, inverse probability of
treatment weighting (IPTW) using the propensity score, stratifi-
cation on the propensity score, and covariate adjustment using
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the propensity score. Of these four approaches, matching and
IPTW tend to have superior performance compared to the other
two approaches [3, 4].

Survival or time-to-event outcomes occur frequently in biomedi-
cal and epidemiological research [5]. Several papers have exam-
ined the use of propensity score methods with time-to-event out-
comes [4, 6–9]. The focus of these papers was on the application
of propensity score methods in settings with a single cause of
failure (e.g., all-cause mortality). Competing risks are events
whose occurrence precludes the occurrence of the primary
event of interest [10–13]. If the primary event of interest is
time to death due to cardiovascular causes, then death due to
non-cardiovascular causes would serve as a competing risk, as
subjects who die of non-cardiovascular causes are no longer at
risk of death due to cardiovascular causes. In general, all nonfatal
outcomes and all cause-specific mortality outcomes are subject
to competing risks. Despite the frequency with which competing
risks are present in medical and epidemiological research, only
one paper has systematically examined the use of matching on
the propensity score in the presence of competing risks [14].

Despite the relative popularity of IPTW and its good perfor-
mance in settings without competing risks, only a few papers
have described methods for using IPTW in settings with compet-
ing risks. Cole and colleagues used inverse probability weights
with the Aalen–Johansen estimator of the cumulative incidence
function (CIF) [15, 16]. By comparing the weighted CIFs for
treated and control subjects at specific time points, they esti-
mated the difference in the risk of the outcome or the relative
risk of the outcome at these specific times. We will subsequently
refer to this method as a weighted Aalen–Johansen estimator
of the risk difference or relative risk. Ozenne and colleagues
developed two estimators for time-specific risk differences in
settings with competing risks [17]. The first combined IPTW
with inverse probability of censoring weights (IPCWs), while the
second was a doubly robust estimator that used both IPTW and
IPCW. Both these methods require specifying a distribution for
censoring times. A doubly robust estimator is an estimator that
combines both an adjusted regression model for the outcome
and a regression model for treatment selection. The estimate
will be unbiased if at least one of these two regression models is
specified correctly. We refer to these two methods as IPTW-IPCW
and AIPTW-IPCW, where AIPTW refers to augmented inverse
probability of treatment weighting.

The objective of the paper was three-fold: first, to describe meth-
ods for using IPTW to estimate the effects of treatments in set-
tings with competing risks. These methods are based on esti-
mating the CIF within each treatment group and then obtaining
time-specific estimates of risk in treated and control subjects sep-
arately. Using these estimates, one can obtain time-specific esti-
mates of risk differences and relative risks. Second, to illustrate
the application of these methods using empirical analyses. Third,
to conduct Monte Carlo simulations to evaluate the relative per-
formance of different methods for estimating time-specific risk
differences and relative risks in settings with competing risks. In
doing so, we aim to provide guidance to applied biostatisticians
and clinical investigators on the use of IPTW using the propen-
sity score in settings in which competing risks are present. We
restrict our attention in the setting of a binary point exposure

that is applied at baseline. We do not consider scenarios in which
covariates and treatment vary over time.

The paper is structured as follows: in Section 2, we provide a brief
discussion of target estimands in the setting of competing risks. In
Section 3, we describe statistical methods for estimating the effect
of treatment in settings with competing risks when using IPTW.
In Section 4, we present a case study to illustrate the application of
these methods. In Section 5, we describe the design of a series of
Monte Carlo simulations that were used to compare the relative
performance of methods for estimating risk differences and rela-
tive risks at specific time points when using IPTW. In Section 6,
we report the results of these simulations. Finally, in Section 7,
we summarize our findings and discuss them in the context of
the existing literature.

2 | Target Estimands in Settings With
Competing Risks

We summarize the target estimands proposed by Cole and
colleagues for settings with competing risks [15]. Their frame-
work for defining target estimands uses the potential outcomes
framework, which was initially introduced by Rubin [18]. We
assume a primary outcome of interest (e.g., death due to car-
diovascular causes) and a single competing event (e.g., death
due to non-cardiovascular causes). The cumulative incidence
of the primary outcome is defined as: F1(t) = Pr

(
Ti < t,Di = 1

)
,

where Ti denotes the time to either cardiovascular death or
non-cardiovascular death for the ith subject, and Di is an event
type indicator denoting the type of event that occurred: Di = 1
for cardiovascular death and Di = 2 for non-cardiovascular
death. Let Z be a binary variable denoting treatment status:
Z = 0 for control and Z = 1 for the treatment of interest. Let
Ti(0) and Ti(1) denote the potential times to cardiovascular death
or non-cardiovascular death for the ith subject under control and
treatment, respectively. Similarly, let Di(0) and Di(1) denote the
potential event type indicators for this subject under control and
treatment, respectively.

The potential cumulative incidences of cardiovascular death
at time t under control and treatment are defined as: F0

1(t) =
Pr
(
Ti(0) < t,Di(0) = 1

)
and F1

1(t) = Pr
(
Ti(1) < t,Di(1) = 1

)
, respe-

ctively. The two estimands proposed by Cole and colleagues are
the cardiovascular death risk difference at time t: RD(t) = F1

1(t) −
F0

1(t), and the cardiovascular death risk ratio (or relative risk):
RR(t) = F1

1(t)∕F0
1(t). These estimands can be estimated at clinically

meaningful times t.

Young and colleagues [19] describe different estimands in set-
tings with competing risks. For a given treatment or interven-
tion, they contrast the total effect with the direct effect. The total
effect is the estimand proposed by Cole and colleagues, as defined
above. In contrast, the direct effect is the effect of the treatment
in a hypothetical setting in which competing events have been
eliminated. Thus, the direct effect represents the effect of treat-
ment on the outcome of interest that is not mediated by com-
peting events. They also briefly describe another estimand, the
survivor average causal effect, which is defined as the average
effect of the treatment on the outcome of interest in those sub-
jects who would never experience the competing event. Stensrud
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and colleagues decompose the total effect into the sum of the
separable direct effect and the separate indirect effect [20, 21].
The separable direct effect is equivalent to Young’s direct effect,
whereas the separable indirect effect is the effect of the treatment
on the primary event of interest that is mediated through its effect
on the competing event.

Young and colleagues suggest that another estimand in settings
with competing risks is the effect of treatment on a composite out-
come consisting of all the event types. Although this approach
simplifies both the conceptual framework and the subsequent
analyses, it shifts the scientific question from the effect of treat-
ment on a specific outcome to its effect on a different outcome, of
which the given outcome is just one component.

Finally, hazard ratios are a common measure of association in
clinical and epidemiological research. There is a lack of consen-
sus in the methodological literature regarding the appropriate-
ness of using hazard ratios as causal measures of effect. Young
and colleagues suggested that, in general, comparisons of haz-
ard rates between treatment groups do not have a causal inter-
pretation [19]. This view contrasts with that of Fay and Li, who
suggest that the population-level hazard ratio (also known as the
population-averaged hazard ratio or the marginal hazard ratio)
has a causal interpretation [22]. Fay and Li note that one must
distinguish between population-level and individual-level inter-
pretation of hazard ratios (due to the non-collapsibility of the
hazard ratio, these two quantities will not, in general, coincide
[23]). They suggest that the population-level hazard ratio is a use-
ful estimand but it must be interpreted appropriately.

In what follows we focus on two estimands: the total effect
(i.e., the estimand described by Cole and colleagues) and the
population-average hazard ratio. We focus on the total effect for
two reasons: (i) it appears to be used more frequently than the
direct effect and the survivor average causal effect; (ii) it does
not require making assumptions that the competing risk can be
eliminated for all individuals or for some individuals. We focus
on the population-averaged hazard ratio because of the pervasive
use of hazard ratios in clinical and epidemiological settings with
competing risks.

3 | Statistical Methods for IPTW Using
the Propensity Score in the Presence of Competing
Risks

Several studies have examined the application of propensity score
methods to settings with time-to-event or survival outcomes [4,
6–8, 24]. One study examined the performance of propensity
score matching when competing risks are present [14]. Cole and
colleagues suggested that, when competing risks are present, the
weighted Aalen–Johansen estimator can be used to estimate risk
differences and relative risks at specific times t [15, 16]. Ozenne
developed two estimators for the risk difference when competing
risks are present, both of which use IPTW and require specifying
a model for the censoring distribution [17].

Dorn suggested that, when designing and analyzing a ret-
rospective study, one asks the question “How would the
study be conducted if it were possible to do it by controlled
experimentation” [25]. This suggests that the analyses conducted

when using propensity score weighting should mirror the
analyses that would be done in an RCT with the same interven-
tion and outcome. Several clinical commentators have suggested
that medical decision-making is better informed by absolute
measures of effect than by relative measures of effect [26–28],
whereas others have suggested that the reporting of relative
measures of effect should be complemented by the reporting of
absolute measures of effect [29, 30]. The BMJ requires that the
absolute risk reduction and the number needed to treat (NNT,
computed as the reciprocal of the absolute risk difference) be
reported for any RCT with a binary outcome [31]. This suggests
that, in studies with randomized trials with time-to-event out-
comes, investigators should report both absolute and relative
effects. Absolute effects can be estimated by comparing survival
curves between treatment groups. From these, the NNT can
be computed at any duration of follow-up [32]. The relative
effect of treatment can be determined from a Cox proportional
hazards model in which the hazard of the event is regressed on
treatment status. The resultant measure of effect is the hazard
ratio, which quantifies the relative change in the hazard of the
event due to treatment. Alternatively, one can estimate relative
risks at specific durations of follow-up, keeping in mind that
hazard ratios and relative risk do not, in general, coincide [33].
Furthermore, even when the hazard ratio is constant over time,
the time-specific relative risks can differ across time points.

In this section, we describe how IPTW using the propensity score
can be used in settings with competing risks. In particular, we
describe how both absolute and relative measures of effect can
be estimated when using IPTW in settings with competing risks.

3.1 | Background and Notation

Let Z be a binary variable denoting treatment status (Z = 0
for control vs. Z = 1 for treated), and let X denote a vector
of observed baseline covariates. Then, the propensity score
is defined as: 𝑒(X) = Pr(𝑍 = 1|X) [1]. The propensity score is
typically estimated using a logistic regression model in which
treatment status is regressed on the vector of observed covariates.
Previous research has demonstrated that, in practice, variables
that either confound the treatment–outcome relationship or are
prognostic of the outcome should be included in the propensity
score model [34].

Inverse probability of treatment weights are defined as: 𝑤 =
𝑍

𝑒(X)
+ 1−𝑍

1−𝑒(X)
[35]. One can also define stabilized inverse probabil-

ity of treatment weights as: 𝑤 = Pr(𝑍 = 1) 𝑍

𝑒(X)
+ Pr(𝑍 = 0) 1−𝑍

1−𝑒(X)
[36, 37]. Stabilized weights are intended to improve performance.
Their use results in narrower confidence intervals compared to
the variance inflation that occurs due to treated subjects having
very low propensity scores or control subjects having very high
propensity scores.

3.2 | Estimating the Effect of Treatment
on Cause-Specific Risk of the Outcome Within
Specified Duration of Time When Using IPTW:
Absolute and Relative Measures of Effect

As noted in Section 3.1, the absolute risk difference and the
corresponding NNT are key quantities when reporting the
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results of RCTs. Cole and colleagues suggested using a weighted
Aalen–Johansen estimator to estimate CIFs under treatment and
control [15, 16]. They proposed using inverse probability weights,
which are the product of inverse probability of treatment weights
(to account for nonrandom treatment assignment) and IPCWs (to
account for nonrandom censoring) From the weighted CIFs, one
can extract the risk of the outcome of interest under treatment
and control at a specified time t, and compute the corresponding
risk difference. They proposed using bootstrapping to compute
confidence intervals for the risk difference.

Ozenne and colleagues developed an estimator for the risk dif-
ference and its standard error obtained from an inverse proba-
bility weighted estimator of the CIF, which requires specifying a
model for the censoring distribution [17]. They also developed a
doubly robust estimator for the risk difference when the ATE is
the target estimand, along with a variance estimator. This esti-
mator requires specifying three regression models: (i) an out-
come regression model relating the cause-specific hazard of the
outcomes to a set of subject characteristics, including treatment
status; (ii) a treatment regression model relating the log-odds
of treatment status to a set of subject characteristics; and (iii) a
model for the censoring distribution (which can be a null Cox
proportional hazards model). Once the risk difference and its
associated confidence interval have been constructed, the asso-
ciated NNT and its confidence interval can be computed by tak-
ing the reciprocals of the corresponding quantities for the risk
difference.

Both Cole and Ozenne focused on estimating the ATE of the
risk difference using CIFs. Both methods account for covari-
ates affecting both treatment selection and censoring, with the
possibility that the covariates affecting treatment selection may
differ from those affecting censoring. Both methods estimate
inverse probability weights separately for treatment and censor-
ing and incorporate these weights into the estimators of the risk
difference. The estimation of inverse probability of treatment
weights is similar between the two approaches. However, the two
approaches differ in estimation of the IPCWs. In Cole, the model
for dropout (i.e., right censoring) is based on grouping individuals
into discrete intervals of time based on the quintiles of censor-
ing times and then using a pooled logistic regression model to
estimate interval-specific IPCWs. It is worth noting that because
Cole’s estimator is based on the Aalen–Johansen estimator, it is
valid even without the inclusion of censoring weights if censoring
is noninformative, that is, independent of the covariates. In con-
trast, Ozenne’s estimator is developed using a different approach
that requires censoring weights even when censoring is nonin-
formative. Furthermore, unlike Cole’s discretization of time for
estimating censoring weights, Ozenne’s approach uses continu-
ous time for estimating the censoring model. In the absence of the
weights and without censoring, both approaches would reduce to
the difference in the Aalen–Johansen estimator for the two treat-
ment groups (without censoring) and would be identical.

The reporting of absolute measures of effect can be comple-
mented by reporting relative measures of effect. The methods
described above can be used to estimate the absolute risk of the
outcome under treatment and control. Then, the corresponding
relative risk can be computed as the ratio of these two risks.
Either weighted Aalen–Johansen estimates of the CIF under

treatment and control or Ozenne’s estimates of the absolute risk
under treatment and control can be used. As an appropriate
variance estimator for the relative risk has not been described,
one can use the bootstrap, as suggested by Cole and colleagues
[15]. Alternatively, as Ozenne and colleagues developed an esti-
mate of the standard error of the risk of the outcome under
treatment and control, one can use the delta method to approx-
imate the standard error for the relative risk when it is com-
puted using Ozenne’s estimators. Using the delta method, an
estimate of the standard error of the log-relative risk would be√(

se(p̂0)
p̂0

)2
+
(

se(p̂1)
p̂1

)2
− 2 Cov(p0 ,p1)

p̂0p̂1
, where p̂0 and p̂1 denote the

mean estimated risk under control and treatment, respectively,
se
(
p̂0
)

and se
(
p̂1
)

denote the estimated standard errors of the
estimated risk under control and treatment, respectively, while
Cov(p0,p1) denotes the covariance between the estimated risk
under control and treatment, respectively.

3.3 | Estimating the Relative Effect
of Treatment on the Cause-Specific Hazard
Function When Using IPTW

In the beginning of Section 3, we highlighted Dorn’s dictum that
the analysis of observational studies should reflect what would
be done in a corresponding RCT. RCTs in clinical medicine with
time-to-event outcomes, with or without competing risks, fre-
quently report a hazard ratio, which denotes the relative change
in the hazard of the outcome under treatment.

In the setting with time-to-event outcomes and competing
risks, the cause-specific hazard function for the kth event
type is a function of time (t) that is defined as 𝜆cs

𝑘
(𝑡) =

limΔ𝑡→0
Prob(𝑡≤𝑇<𝑡+Δ𝑡,𝐷=𝑘|𝑇≥𝑡)

Δ𝑡
, where T is the time at which an

event occurred and D is a variable denoting the type of event
that occurred (with D= k denoting that the kth event type has
occurred). The cause-specific hazard function for the kth event
type can be interpreted as the instantaneous rate of occurrence of
the kth event type in subjects who are currently event-free (e.g.,
subjects for whom no event of any type has occurred).

A proportional cause-specific hazard model for the kth event
type allows one to estimate the association of covariates with the
cause-specific hazard function for the kth event type: 𝜆cs

𝑘
(𝑡|X) =

𝜆cs
0𝑘(𝑡) exp(𝛽X), where 𝜆cs

0𝑘(𝑡) denotes the baseline cause-specific
hazard function for the kth event type, and X denotes a vector of
covariates. In practice, the cause-specific hazard model can be fit
using standard statistical software for fitting the Cox proportional
hazards model. To do so, one censors subjects who experience a
competing event at the time the competing event occurs (e.g., a
subject who experiences a competing event at time tce is treated as
censored at time tce and is no longer under observation from that
time onwards). The estimated regression coefficients can be inter-
preted as denoting the association of the covariate with the rate at
which the event of interest occurs in subjects who are currently
event-free.

When using IPTW using the propensity score, the relative effect
of treatment on the hazard of the outcome of interest can be
estimated using a cause-specific hazard model, in which the
cause-specific hazard of the outcome of interest is regressed
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on an indicator variable denoting treatment status. A weighted
regression model is used that incorporates the inverse probability
of treatment weights. As weighting has balanced the distribution
of observed covariates between treatment groups, it is not nec-
essary to adjust for other baseline covariates. Previous research
has demonstrated that one should use either a robust variance
estimator or the bootstrap, with the latter being preferable [4,
38]. The use of the weighted cause-specific hazard model allows
investigators to test whether the rate of the occurrence of the
outcome in subjects who are currently event-free is the same
between treated and control subjects.

Two earlier articles examined the performance of IPTW using
the propensity score to estimate marginal hazard ratios in
the absence of competing risks [4, 38]. Given the equivalence
between cause-specific hazard models and Cox proportional haz-
ards model in which one censors on competing risks, we do not
examine further the performance of IPTW to estimate marginal
cause-specific hazard ratios in the current study.

4 | Case Study

We provide a case study to illustrate the application of IPTW
using the propensity score in the presence of competing risks. The
exposure of interest is statin prescribing at hospital discharge,
while the outcome is death within 5 years of follow-up. Death was
classified as due to cardiovascular causes or non-cardiovascular
causes. The primary outcome of interest is cardiovascular death.

4.1 | Data Sources

We used data from the first phase of the Enhanced Feedback for
Effective Cardiac Treatment (EFFECT) Study, which collected
detailed clinical data on patients hospitalized with acute myocar-
dial infarction (AMI) between April 1, 1999 and March 31, 2001
at 103 hospitals in Ontario, Canada [39]. Data were obtained on
patient demographics, vital signs, and physical examination at
presentation, medical history, and results of laboratory tests. For
the following analyses, we restricted the study sample to 10 063
patients who were discharged alive from the hospital.

Subjects were linked to the Vital Statistics database maintained
by the Ontario Office of the Registrar General. This database con-
tains information on the date of death and cause of death (based
on ICD-9 codes) for residents of Ontario. Each subject was fol-
lowed for 5 years from the date of hospital discharge for the occur-
rence of death. The primary outcome was death due to major
cardiovascular disease (subsequently referred to as cardiovascu-
lar death) [40], whereas death due to other causes was treated as
a competing risk (subsequently referred to as non-cardiovascular
death). A total of 2966 (29.5%) patients died during the 5 years
of follow-up. Of these, 1818 (61%) died of cardiovascular causes,
while 1148 (39%) died of non-cardiovascular causes. No individ-
uals were censored prior to 5 years, and all individuals who were
event-free at 5 years were censored at that time.

The following nine predictor variables were used as baseline
covariates: age, heart rate at hospital admission, systolic blood
pressure at admission, initial serum creatinine, history of AMI,

history of heart failure, ST-depression myocardial infarction,
elevated cardiac enzymes, and in-hospital percutaneous coronary
intervention (PCI). These variables were selected because they
are components of the GRACE risk score for predicting mortal-
ity in patients with acute coronary syndromes [41]. The first four
variables are continuous variables, while the last five are dichoto-
mous risk factors. We standardized the four continuous variables
so that they had a mean of zero and unit variance. The preva-
lences of the five binary variables were: history of AMI (22.5%),
history of heart failure (4.1%), ST-depression myocardial infarc-
tion (48.0%), elevated cardiac enzymes (94.1%), and in-hospital
PCI (1.1%).

We used discharge prescribing of a statin lipid-lowering agent as
the exposure of interest. Of the 10 063 patients discharged alive
from the hospital, 3359 (33.4%) received a prescription for a statin
medication at hospital discharge.

4.2 | Statistical Analyses

We estimated the propensity score using a logistic regression
model to regress statin prescribing at hospital discharge on the
nine baseline covariates described above. The logistic regression
model only included main effects for the nine covariates. Con-
tinuous variables were assumed to have a smooth nonlinear rela-
tionship with the log-odds of treatment, modeled using restricted
cubic splines with five knots, using the knot locations suggested
by Harrell [42]. From the fitted model we extracted the fitted
propensity scores and computed inverse probability of treatment
weights. We used weighted standardized differences to assess the
balance in the nine baseline covariates between treated and con-
trol subjects in the weighted sample [43].

We used the methods described above to estimate absolute risk
differences and relative risks for cardiovascular death due to
statin prescribing at discharge. When using Cole’s method, we
did not incorporate censoring weights, since the only censoring
that occurred was at 5 years (at the end of follow-up). When using
doubly robust methods, the outcomes model was a cause-specific
hazard model that included the nine baseline covariates and a
binary variable denoting treatment status. As with the propen-
sity score model above, the relationship between each of the
continuous covariates and the cause-specific hazard of the out-
come was modeled using restricted cubic splines with five knots.
For both the IPTW-IPCW estimator and the AIPTW-IPCW esti-
mator, the censoring distribution was modeled using a null
Cox model (we also repeated the AIPTW-IPCW analysis using
a Cox model that contained all the predictor variables in the
treatment-selection model). The standard errors of the estimated
risk differences were estimated using the variance estimator
proposed by Ozenne and colleagues. For the IPTW-IPCW and
AIPTW-IPCW estimators, we used the delta method to compute
standard errors of the log-relative risk and constructed 95% con-
fidence intervals using standard normal-theory methods. For the
weighted Aalen–Johansen method, 95% confidence intervals for
the time-specific relative risks were estimated using percentile
bootstrap confidence intervals with 2000 bootstrap samples.

We fit a cause-specific hazard model in the weighted sample in
which we regressed the cause-specific hazard of cardiovascular

5 of 21



death on an indicator variable denoting treatment status. We
fit a marginal model with a robust variance estimator to
account for within-subject homogeneity induced by nonuniform
weighting [4].

We used the prodlim() function in the prodlim package (Version
2019.11.13) to obtain the weighted Aalen–Johansen estimate of
the risk difference and the relative risk. We used the ate() func-
tion in the riskRegression package (Version 2020.12.08) for esti-
mating risk differences using the IPTW-IPCW and AIPTW-IPCW
estimators. The relative risks were computed using information
extracted from the ate() function. The weighted cause-specific
hazard model was estimated using the coxph function in the sur-
vival package (Version 3.2-11).

4.3 | Results of Empirical Analyses

Prior to weighting, the standardized differences for the nine
covariates ranged from 0.03 to 0.37, with a median of 0.09.
Unweighted standardized differences exceeded 0.10 for four of
the baseline covariates (it has been suggested that standardized
differences that are less than 0.10 denote negligible imbalance
[44]). Thus, there is evidence of confounding, with the distri-
bution of prognostically important baseline covariates differing
between treated and control subjects. Excellent balance of base-
line covariates between treated and control subjects was observed
after the application of the inverse probability of treatment

weights, with the absolute value of the standardized difference
ranging from 0 to 0.02, with a median of 0.

The function for computing the AIPTW-IPCW estimates did not
work. Accordingly, we only report the weighted Aalen–Johansen
and IPTW-IPCW estimates of the risk difference and relative risk.

The estimated crude and weighted CIFs in treated and con-
trol subjects are shown in Figure 1. Post-discharge incidence
of cardiovascular death was lower in treated subjects than in
control subjects. After weighting, differences in the incidence
of cardiovascular death were attenuated compared to the crude
or unadjusted differences. The weighted Aalen–Johansen and
IPTW-IPCW estimates of the CIF were essentially identical.

The crude differences in the risk of cardiovascular death due
to discharge prescribing of statins were −0.046, −0.063, −0.073,
−0.081, and−0.088 at 1, 2, 3, 4, and 5 years post-discharge, respec-
tively. The weighted Aalen–Johansen estimates of the differences
in the risk of cardiovascular death due to discharge prescrib-
ing of statins, along with associated 95% confidence intervals,
were −0.021 (−0.033, −0.009), −0.028 (−0.041, −0.013), −0.033
(−0.047, −0.017), −0.037 (−0.052, −0.020), and −0.035 (−0.052,
−0.019) at 1, 2, 3, 4, and 5 years post-discharge, respectively. The
NNTs to avoid one death due to cardiovascular causes at 1, 2, 3,
4, and 5 years post-discharge were 48, 36, 30, 27, and 29, respec-
tively. The IPTW-IPCW estimates of the differences in the risk
of cardiovascular death due to discharge prescribing of statins,

FIGURE 1 | Cumulative incidence of cardiovascular death in treated and control subjects: Case study.
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along with associated 95% confidence intervals, were −0.022
(−0.034, −0.010), −0.029 (−0.042, −0.015), −0.034 (−0.048,
−0.019), −0.038 (−0.053, −0.022), and −0.037 (−0.053, −0.020)
at 1, 2, 3, 4, and 5 years post-discharge, respectively. The NNTs
to avoid one death due to cardiovascular causes at 1, 2, 3, 4, and
5 years post-discharge were 45, 34, 29, 26, and 27, respectively.

The crude relative risks were 0.531, 0.540, 0.556, 0.569, and 0.579
at 1 through 5 years post-discharge respectively. The weighted
Aalen–Johansen estimates of the relative risks were 0.759 (0.634,
0.898), 0.770 (0.669, 0.887), 0.778 (0.688, 0.880), 0.783 (0.700,
0.876), and 0.814 (0.734, 0.901) at 1 through 5 years, respec-
tively. The IPTW-IPCW estimates of the relative risks were 0.753
(0.634, 0.894), 0.764 (0.664, 0.880), 0.772 (0.682, 0.873), 0.777
(0.695, 0.868), and 0.807 (0.729, 0.894) at 1 through 5 years
post-discharge, respectively. Recall that 95% confidence intervals
for the weighted Aalen–Johansen estimates of the relative risk
were constructed using a bootstrap procedure while those for the
IPTW-IPCW estimates were constructed using the delta method.
When we used a bootstrap procedure for the IPTW-IPCW esti-
mate of relative risk, we obtained very similar confidence inter-
vals to those constructed using the delta method (the largest abso-
lute difference between the endpoints of the eight 95% confidence
intervals was 0.004).

The estimated cause-specific hazard ratio for cardiovascular
death was 0.779 (95% confidence interval: 0.689, 0.880) (when
using the bootstrap with 2,000 bootstrap replicates, the corre-
sponding percentile-based 95% bootstrap confidence interval was
(0.698, 0.870)). Thus, statin prescribing at discharge decreased
the rate of cardiovascular death in subjects who were currently
alive by 22.1%.

Our reporting of the effect of statin prescribing at hospital dis-
charge on the incidence of cardiovascular death mirrored what
one would expect in the report of a comparable RCT: (i) the
reporting of the cumulative incidence of the outcome over time in
treated and control subjects; (ii) the absolute risk reduction due to
treatment at specific durations of time; (iii) the reporting of NNTs
at specific durations of time; and (iv) the effect of treatment on the
instantaneous cause-specific hazard of the outcome.

5 | Monte Carlo Simulations

In this section, we describe a set of complex Monte Carlo simu-
lations that were designed to assess the performance of different
methods for estimating risk differences and relative risks at spe-
cific durations of time in settings with competing risks.

The design of our simulations was informed by analyses con-
ducted on the data described in the case study above. In
Section 5.1, we describe the data and statistical analyses that were
used to estimate parameters for the subsequent data-generating
process. In Section 5.2, we describe the data-generating pro-
cess that was used to simulate survival data from a specified
subdistribution hazard model. In Section 5.3, we describe the
statistical analyses that were conducted on the simulated data.
In Section 5.4, we explain how the results of the analyses were
summarized across simulation replicates. Finally, in Section 5.5,
we describe the factors that were allowed to vary in the Monte
Carlo simulations. These simulations are similar in design to

previous simulations that we used to examine the effect of the
number of events per variable (EPVs) on the accuracy of estima-
tion of the regression coefficients if Fine–Gray subdistribution
hazard models and on the use of propensity score matching with
competing risks [14, 45].

5.1 | Data Sources and Empirical Statistical
Analyses

The design of the Monte Carlo simulations was informed by anal-
yses conducted on the data which were used in the case study
and which were described in Section 4.1. We used logistic regres-
sion to regress statin prescribing at hospital discharge on the nine
covariates described above. The vector of regression coefficients
for this logistic regression model is denoted by𝛂. These estimated
regression coefficients will be used in the treatment-selection
model in our data-generating process.

We used a Fine–Gray subdistribution hazard regression model to
regress the subdistribution hazard of cardiovascular death on the
nine baseline covariates described above and an indicator vari-
able denoting statin prescribing at hospital discharge. The vec-
tor of regression coefficients for the Fine–Gray subdistribution
hazard model for cardiovascular death is denoted by 𝛃. We fit-
ted a second Fine–Gray subdistribution hazard model to regress
the subdistribution hazard of non-cardiovascular death on the
nine baseline covariates described above. The vector of regression
coefficients from this model is denoted by 𝛄. These two vectors of
regression coefficients will be used in generating outcomes in our
data-generating process.

5.2 | Data-Generation Process

We simulated data for a large super-population of 1 000 000 sub-
jects. Using a data-generating process whose parameters were
obtained by analyses conducted in the EFFECT sample resulted
in the structure of this super-population reflecting that of the
EFFECT sample.

5.2.1 | Simulation of Baseline Covariates

For each subject in the super-population, we simulated nine base-
line covariates, such that the distribution of the baseline covari-
ates would be similar to that of the nine baseline covariates
described above. Four of the simulated covariates were continu-
ous and were drawn from independent standard normal distribu-
tions (since the four continuous covariates had been standardized
to have a mean of zero and unit variance in the empirical analy-
ses described above). Five of the simulated covariates were binary
and were drawn from independent Bernoulli distributions with
parameters equal to the five prevalences described in Section 5.1.
Let 𝑋1, . . . , 𝑋9 denote the nine simulated baseline covariates,
where the first four are continuous and the last five are binary.

5.2.2 | Simulation of Treatment Status

We simulated a treatment status (Zi) for each subject from
a Bernoulli distribution: 𝑍𝑖 ∼ Be

(
𝑝treat

)
,where logit

(
𝑝treat

)
=
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𝛼0 + 𝛼1𝑋1 + · · · + 𝛼9𝑋9. The nine regression coefficients(
𝛼1, . . . , 𝛼9

)
for the nine baseline covariates in the

treatment-selection model were equal to the regression coef-
ficients estimated in the empirical analyses described above.
A bisection approach was used to determine the intercept for
the treatment-selection model (𝛼0) so as to induce a desired
prevalence of treatment in the large super-population (see below
for the target prevalences of treatment) [46]. We thus simulated
a treatment status for each subject such that the relationship
between the nine baseline covariates and the odds of treatment
reflected what was observed in the EFFECT data. The only
difference was that we modified the prevalence of treatment in
the simulated data. This allowed us to examine the effect of the
prevalence of treatment on the performance of IPTW using the
propensity score.

5.2.3 | Generation of the Event Type That Occurred
(Type 1 vs. Type 2 Event) and the Event Time

Let the parameter p denote the proportion of subjects with covari-
ates equal to zero (i.e., the continuous variables are equal to zero
and binary covariates are set to the reference level) who expe-
rience the event of interest as 𝑡 → ∞. We generated event types
using a method described in detail previously [45]. In generating
event types, we used the vector 𝛃, obtained in Section 5.1, which
is equal to the effect of the nine covariates and treatment status
on the incidence of cardiovascular death. We allowed p to take on
a range of plausible values (see the section below describing the
design of the Monte Carlo simulations).

We simulated time-to-event outcomes conditional on the sim-
ulated failure type using a data-generating process described
in detail elsewhere [45]. This data-generating process is based
on a method of indirect simulation described by Beyersmann
et al. [47] (Section 5.3), which in turn is based on an approach
described by Fine and Gray [48]. This approach ensures that the
sum of the two CIFs equals exactly 1 as t goes to infinity. In doing
so, one needs only to specify the underlying subdistribution haz-
ard function for the event of interest and the hazard function
for the conditional distribution of the event time given failure
from a competing event, rather than the cause-specific hazard
functions for the two event types. In simulating event times, we
used the two vectors of regression parameters 𝛃 and 𝛄 that were
estimated in the empirical analyses above, where the parameter
𝛃 was used for the subdistribution for the event of interest and
the parameter 𝛄 was used for the conditional distribution for the
competing event. However, the vector 𝛃 was modified so that the
regression coefficient for treatment was replaced with the log-
arithm of the desired conditional subdistribution hazard ratio.
Thus, we were simulating data with a specified conditional sub-
distribution hazard ratio for treatment (see below for the different
values that this conditional subdistribution hazard ratio could
take). For each subject in the super-population, two potential out-
comes were simulated: the potential outcome under control and
the potential outcome under treatment [18] (this will allow cal-
culation of the true risk differences and relative risks at specified
durations of time—see the subsequent section for a description of
how this was accomplished). Each subject’s observed event time
was set to be equal to the potential outcome for the treatment that
the subject actually received (i.e., if a subject was treated, then

the observed event time was set equal to the potential outcome
under treatment, while if a subject was a control subject, then
the observed event time was set equal to the potential outcome
under control). Note that this data-generating process ensures
that an event time will be generated for each subject and that
the event type will be either the primary event or the competing
event. We then generated a random censoring time for each sub-
ject from an exponential distribution. For each simulated subject,
the observed survival time was the minimum of the event time
and the censoring time. We used a bisection approach to deter-
mine the rate parameter for the exponential distribution so that
20% of subjects were censored.

5.3 | Statistical Analyses in Simulated Dataset

5.3.1 | Determination of the True Risk Differences
and Relative Risks in the Super-Population

The process for generating time-to-event outcomes used a model
conditional on both treatment and other covariates. We com-
puted the true marginal risk differences and relative risks at speci-
fied times in the super-population. We determined the 20th, 40th,
60th, and 80th percentiles of observed event times (i.e., time to
either the primary event type or the time to the competing risk)
for subjects in the super-population. We refer to these four times
as T20, T40, T60, and T80. These will be the four times at which we
will estimate risk differences and relative risks.

For each of the 1 000 000 subjects in the super-population, we
used the simulated potential outcome under control and obtained
the Aalen–Johansen estimate of the CIF. Using the estimated
CIF, we obtained the estimate of the risk of the primary outcome
at T20, T40, T60, and T80. We denote these four estimates of risk as
R(0,T20), R(0,T40), R(0,T60), and R(0,T80). We then repeated the
process using the 1 000 000 values of the simulated potential out-
come under treatment to obtain R(1,T20), R(1,T40), R(1,T60), and
R(1,T80). The true values of the risk difference at the four times
are defined as R(1,Tj)–R(0,Tj), for j= 20, 40, 60, and 80. Similarly,
the true values of the relative risk at the four times are defined as
R(1,Tj) /(0,Tj).

5.3.2 | Estimation of Treatment Effects Using Inverse
Probability of Treatment Weighting

From the super-population we drew a random sample of size N
without replacement (see below for the values of N that were
used). In this random sample, we estimated the propensity score
using logistic regression to regress the binary treatment variable
on the nine baseline covariates. We then computed the inverse
probability of treatment weights.

We estimated risk differences and relative risks at the four time
points determined above. We compared three methods of esti-
mating the risk difference and relative risk: (1) using a weighted
Aalen–Johansen estimate of the CIF under treatment and control
(i.e., the method proposed by Cole and colleagues); (2) using the
IPTW-IPCW estimator proposed by Ozenne and colleagues [17];
and (3) using the AIPTW-IPCW estimator proposed by Ozenne
and colleagues. When using the weighted Aalen–Johansen
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method, we did not incorporate IPCWs since the simulation
process induced random censoring. As noted above, when cen-
soring is random, the IPCWs can be excluded. When using the
doubly robust estimator, the outcomes model was a Cox model in
which the hazard of the outcome was regressed on the nine sim-
ulated baseline covariates and the binary treatment variable. For
both the IPTW-IPCW and AIPTW-IPCW estimators, the censor-
ing distribution was modeled using a null Cox model. When esti-
mating the risk difference using IPTW-IPCW and AIPTW-IPCW,
we used the variance estimators proposed by Ozenne and col-
leagues. When using the weighted Aalen–Johansen estimator for
the risk difference or the relative risk, we obtained only the point
estimate and did not obtain an estimate of its standard error. The
variance estimator proposed by Ozenne and colleagues is very
computationally intensive. Thus, we only used this variance esti-
mator when the sample size was 1000 (see below for values of the
sample size that were used).

For those methods and scenarios in which we estimated standard
errors, we also computed 95% confidence intervals for the risk
difference using standard normal-theory methods in each of the
random samples.

This process was repeated 1000 times for each scenario.
Thus, 1000 random samples of size N were drawn from the
super-population, and these statistical analyses were conducted
in each of the 1000 random samples.

5.4 | Summarizing the Results of the
Simulations

The risk difference and the relative risk are the target estimands.
The relative bias of the estimated risk difference and relative
risk was defined as: 100 ×

1
1000

∑1000
𝑖=1 𝜙𝑖−𝜙
𝜙

, where 𝜙 denotes the true
value of the estimand determined during the data-generating pro-
cess, and 𝜙i denotes the value of the estimate in the ith random
sample.

The empirical standard error of the estimated treatment effect
was computed as the standard deviation of the estimated treat-
ment effect across the 1000 simulation replicates. We comple-
ment the empirical standard error by reporting the relative per-
cent increase in precision compared to a reference method. For a
given estimation method, denoted by “A,” the empirical standard
error was estimated as the standard deviation of the estimated
treatment effect across the 1000 simulation replicates: EmpSEA =
SD(𝜙). For each estimator, we computed the relative percent
increase in precision compared to the AIPTW-IPCW method.

This quantity was defined as: 100
((

EmpSEAIPTW-IPCW
EmpSEA

)2
− 1

)
, where

“A” denotes the method being compared to AIPTW-IPCW [49].
If this quantity is less than 0, then the AIPTW-IPCW method had
a smaller empirical standard error than method “A.” If this quan-
tity is greater than 0, then the AIPTW-IPCW method had a larger
empirical standard error than did method “A.”. Everything else
being equal, one would prefer a method with a smaller empirical
standard error. When estimating relative risks, we determined the
empirical standard error of the log-relative risk rather than of the
relative risk itself.

In those scenarios and for those methods in which standard
errors were estimated, the relative percent error in the estimated
standard error of the estimated risk difference (or log-relative

risk) was computed as: 100 ×

(
1

1000
∑1000

𝑖=1 se
(
𝜙𝑖

)
SD(𝜙)

− 1

)
, where se

(
𝜙𝑖

)
denotes the estimated standard error in the ith random sample
and SD(𝜙) denotes the standard deviation of the estimated risk
difference (or log-relative risk) across the 1000 random samples
[49]. If the relative error is equal to zero, then the estimated stan-
dard error is correctly estimating the standard deviation of the
sampling distribution of the estimated treatment effect. If the rel-
ative error is less than zero, then the estimated standard errors
are underestimating the standard deviation of the sampling dis-
tribution of the estimated treatment effect. If the relative error is
greater than zero, then the estimated standard errors are overesti-
mating the standard deviation of the sampling distribution of the
estimated treatment effect. Empirical coverage rates of estimated
95% confidence intervals were computed as the proportion of esti-
mated confidence intervals that contained the true value of the
treatment effect that was specified in the data-generating process.

5.5 | Design of the Monte Carlo Simulations

Our Monte Carlo simulations employed a full factorial design in
which four factors were allowed to vary: (i) the size of the random
samples from the super-population; (ii) the prevalence of treat-
ment in the super-population; (iii) p (the proportion of subjects
with covariates equal to zero who experience the primary event of
interest as 𝑡 → ∞); and (iv) the true conditional subdistribution
hazard ratio for treatment. The size of the random samples took
three values: 1000, 2000, and 5000. The prevalence of treatment
took five values: 0.1, 0.2, 0.3, 0.4, and 0.5. The parameter p was
allowed to take three values: 0.25, 0.50, and 0.75. In doing so, we
examined a range of plausible values for p, including a scenario
in which the primary event was experienced by a higher propor-
tion of subjects than the competing event, and a scenario in which
the converse was true. The true subdistribution hazard ratio took
three values: 1, 2, and 3. Thus, we examined 135 (3× 5× 3× 3)
different scenarios.

The simulations were conducted using the R statistical software
package [50] (Version 3.6.3). The prodlim() function in the
prodlim package (Version 2019.11.13) was used to obtain the
weighted Aalen–Johansen estimate of the risk difference and the
relative risk. The ate() function in the riskRegression package
(Version 2020.12.08) was used for estimating risk differences
and relative risks using the IPTW-IPCW and AIPTW-IPCW
estimators.

6 | Monte Carlo Simulations:Results

We present results separately for estimation of risk differences
and estimation of relative risks.

6.1 | Estimation of Risk Differences

6.1.1 | Relative Bias of Estimated Risk Differences

The distributions of the relative bias across the 135 scenarios
are described in the top row of panels in Figure 2. There is one
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FIGURE 2 | Distribution of performance metrics across simulation scenarios: Risk differences.

panel for each of the four times at which risk differences were
estimated. Each panel displays side-by-side boxplots describing
the distribution of relative bias for each of the three estima-
tion methods across the 135 scenarios. On average, each of the
three methods resulted in unbiased estimation of the true risk
difference.

Side-by-side boxplots allow a comparison of the distribution of a
performance metric between different estimation methods. How-
ever, they do not allow one to compare the relative performance
of the different methods in a specific scenario. To enable such a
comparison, Figure 3 presents nested loop plots, which compare
the relative bias between methods within each of the 135 scenar-
ios [51]. The nested loop plot has one loop for each of the four
factors in the design of the simulations (N: sample size; sd.hr.:
subdistribution hazard ratio; p: proportion of events that are the
primary event of interest; prop. treat: the prevalence of treatment
[see the description of the four factors in the design of the Monte
Carlo simulations]). The four factors that varied in the simula-
tions are denoted by the top four lines in each panel. The top
line, representing the outer loop, is a step function with three
steps, denoting the three values that sample size (N) can take:
1000, 2000, and 5000. The text above this step function identi-
fies the value of the factor associated with each step. Thus, the
first step denotes a sample size of 1000. The second line (i.e.,
the line below the step function for sample size) is a step func-
tion that repeats three times and represents the values of the

subdistribution hazard ratio for treatment (sd.hr). The number
of times that the step function repeats is equal to the number of
levels of the previous factor (sample size). The first step in each
step function denotes HRsd = 1, the second step in each step func-
tion denotes HRsd = 2, while the third step denotes HRsd = 3. The
third line (i.e., the line below the function for sd.hr) is a step func-
tion that repeats nine times (the number of combinations of the
levels for the two step functions above= 3× 3). The fourth line
(i.e., the line below the step function for the third factor) is a
step function that repeats 27 times (the number of combinations
of the levels for the three step functions above= 3× 3× 3). One
can draw 135 vertical lines on the figure, with each vertical line
intersecting the four step functions in a unique way (e.g., there is
one vertical line that intersects the first step function at N = 1000,
the second step function at sd.hr.= 1, the third step function at
p= 0.25, and the fourth step function at prop. treat= 0.1; this ver-
tical line would be the left-most of the 135 vertical lines). Below
these four step functions are three lines denoting the value of rel-
ative bias for the three estimation methods when the levels of
the four factors are as denoted by the four step functions directly
above. The 135 vertical lines described above would intersect
each of these three lines. The height at which they intersect each
of these lines denotes the value of the performance metric for the
scenario identified by the top four step functions. In general, all
three methods resulted in unbiased estimation of the true risk dif-
ference. Furthermore, differences between the methods tended to
be minimal.
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FIGURE 3 | Relative bias in estimated risk differences.

6.1.2 | Empirical Standard Errors and Estimation
of Standard Errors of Estimated Risk Differences

The distribution of the empirical standard errors for each method
across the 135 scenarios is reported in the middle row of panels
in Figure 2. On average, IPTW-IPCW tended to result in esti-
mates with slightly larger empirical standard errors compared
to the other two methods. The empirical standard error is com-
pared between methods across the 135 scenarios in Figure 4
using nested loop plots. Across many scenarios, the IPTW-IPCW
method tended to result in estimates with marginally larger
empirical standard errors compared to the other two methods.

The relative precision of the weighted Aalen–Johansen method
and the IPTW-IPCW method compared to AIPTW-IPCW is
reported in the lower row of panels in Figure 2 and using nested
loop plots in Figure 5. These analyses confirm those in the preced-
ing paragraph. When making predictions at the 20th percentile of
event time, AIPTW-IPCW tended to result in estimates with the
smallest empirical standard error. When making predictions at
the 40th, 60th, and 80th percentiles of event time, the weighted
Aalen–Johansen estimator tended to result in estimates with the
smallest empirical standard error.

Standard errors were estimated using the IPTW-IPCW and
AIPTW-IPCW methods, and, due to computational reasons, only
in those scenarios in which the sample size was 1000. The dis-
tribution of the relative percent error in the estimated stan-
dard errors for each of these two methods and at each of the

four times at which predictions were made is described in
the four side-by-side boxplots in the upper row of panels in
Figure 6. While differences between the two methods were minor,
IPTW-IPCW tended to result in estimates with slightly less error.
In general, both methods resulted in very minor underestima-
tion of the standard deviation of the sampling distribution of the
estimated relative risk. Nested loop plots comparing the relative
percent error in the estimated standard errors are reported in
Figure 7. Differences between the two methods were negligible.

6.1.3 | Coverage of 95% Confidence Intervals for Risk
Differences

Empirical coverage rates of 95% confidence intervals were only
assessed for the IPTW-IPCW and AIPTW-IPCW methods and for
those scenarios in which the sample size was 1000. The distribu-
tion of empirical coverage rates across the simulation scenarios
is reported using side-by-side boxplots in the lower row of pan-
els in Figure 6. Due to our use of 1000 simulation replicates,
any empirical coverage rate that is less than 0.9365 or greater
than 0.9635 would be statistically significantly different from the
advertised rate of 0.95, based on a standard normal theory test.
We have added horizontal lines denoting these thresholds to the
panels. In general, both methods tended to result in estimated
confidence intervals whose empirical coverage rates did not dif-
fer from the advertised rate. When estimating risk differences at
the 80th percentile of event times, IPTW-IPCW tended to have
marginally better performance than AIPTW-IPCW. Nested loop
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FIGURE 4 | Empirical standard error of estimated risk differences.

FIGURE 5 | Relative precision of estimated risk differences.
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FIGURE 6 | Distribution of performance metrics for estimation of standard errors of risk differences.

FIGURE 7 | Relative error in estimated standard error of the estimated risk difference.
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plots comparing the performance of the two methods at each sim-
ulation scenario are reported in Figure 8.

6.2 | Estimation of Relative Risks

6.2.1 | Relative Bias of Estimated Relative Risks

The relative bias of estimated risk differences is reported in the
top row of panels in Figure 9 (side-by-side boxplots) and in
Figure 10 (nested loop plots). All three methods resulted in essen-
tially unbiased estimation of the true relative risk.

6.2.2 | Empirical Standard Errors and Estimation
of Standard Errors of Estimated Log-Relative Risks

The empirical standard errors of the estimated log-relative risks
are reported in the middle row of panels in Figure 9 (side-by-side
boxplots) and in Figure 11 (nested loop plots). The relative pre-
cision of each method compared to the AIPTW-IPCW method
is reported in the bottom row of Figure 9 (side-by-side box-
plots) and Figure 12 (nested loop plots). The IPTW-IPCW method
tended to result in slightly larger empirical standard errors com-
pared to the other two methods. The relative performance of
the AIPTW-IPCW method and the weighted Aalen–Johansen
method varied according to the time at which relative risk was
estimated. However, on average, differences between these two
methods were minimal.

Standard errors of the log-relative risk were estimated using the
IPTW-IPCW and AIPTW-IPCW methods and, due to computa-
tional reasons, only in those scenarios in which the sample size
was 1000. The distribution of the relative percent error in the esti-
mated standard errors for each of these two methods and at each
of the four times at which predictions were made is described
in the four side-by-side boxplots in the upper row of panels in
Figure 13. Although differences between the two methods were
minor, IPTW-IPCW tended to result in estimated standard errors
with slightly less error. In general, both methods resulted in
minor underestimation of the standard deviation of the sampling
distribution of the estimated relative risk. Nested loop plots com-
paring the relative percent error in the estimated standard errors
are reported in Figure 14. Differences between the two methods
were negligible.

6.2.3 | Coverage of 95% Confidence Intervals
for Relative Risks

Empirical coverage rates of 95% confidence intervals were only
assessed for the IPTW-IPCW and AIPTW-IPCW methods and for
those scenarios in which the sample size was 1000. The distribu-
tion of empirical coverage rates across the simulation scenarios
is reported using side-by-side boxplots in the lower row of pan-
els in Figure 13. Due to our use of 1000 simulation replicates,
any empirical coverage rate that is less than 0.9365 or greater
than 0.9635 would be statistically significantly different from the
advertised rate of 0.95 using a standard normal theory test. We

FIGURE 8 | Empirical coverage rates of 95% confidence intervals for estimated risk differences.
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FIGURE 9 | Distribution of performance metrics across simulation scenarios: Relative risks.

FIGURE 10 | Relative bias in estimated relative risk.
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FIGURE 11 | Empirical standard error of estimated log-relative risk.

FIGURE 12 | Relative precision of estimated log−relative risk.
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FIGURE 13 | Distribution of performance metrics for estimation of standard errors of relative risks.

FIGURE 14 | Relative error in estimated standard error of estimated relative risk.
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FIGURE 15 | Empirical coverage rates of 95% confidence intervals for estimated relative risks.

have added horizontal lines denoting these thresholds to the pan-
els. In general, both methods tended to result in estimated confi-
dence intervals whose empirical coverage rates did not differ from
the advertised rate. When estimating relative risks at the 80th per-
centile of event times, IPTW-IPCW tended to have marginally
better performance than AIPTW-IPCW. Nested loop plots com-
paring the performance of the two methods at each simulation
scenario are reported in Figure 15.

7 | Discussion

The objective of the paper was three-fold: first, to describe meth-
ods to use IPTW to estimate the effects of treatments in settings
with competing risks; second, to conduct empirical analyses illus-
trating the application of these methods; and third, to conduct
Monte Carlo simulations to evaluate the relative performance
of different methods for estimating time-specific risk differences
and relative risks in settings with competing risks.

We suggest that applied researchers estimate both absolute and
relative measures of effect. Absolute measures of treatment effect
involve comparison in the differences in the probability of the
occurrence of outcomes within specified durations of follow-up
time. Absolute measures of effect can be complemented by
the reporting of the NNT to avoid the occurrence of one out-
come within a specified duration of time. Relative measures
of effect can be either time-specific relative risks or marginal
cause-specific hazard ratios. The recommendation to estimate the

effect of treatment on both the cause-specific hazard and the CIF
echoes the suggestion by Latouche et al. that “both hazards and
cumulative incidence be analyzed side by side, and that this is
generally the most rigorous scientific approach to analyzing com-
peting risks data” [52].

In the current study, we have focused on estimating the effect
of treatment on the primary outcome of interest. These analy-
ses could be complemented by estimating the effect of treatment
on the competing events. Estimating the effect of treatment on
competing events may be helpful for identifying adverse conse-
quences of the treatment. As noted above, there are alternative
estimands, including the direct effect and the separable direct
and indirect effects, that allow the analyst to address related
questions.

We compared the performance of three estimators for
time-specific risk differences and relative risks: the weighted
Aalen–Johansen estimator, the IPTW-IPCW estimator, and
the AIPTW-IPCW estimator. In the empirical analyses, the
AIPTW-IPCW estimator failed to produce an estimate. In the
simulations, we found that, while all three estimators tended
to result in unbiased estimation of risk differences and rela-
tive risks, the IPTW-IPCW tended to result in estimates that
were slightly less precise (i.e., had larger empirical standard
errors) than the other two estimators. While the weighted
Aalen–Johansen and AIPTW-IPCW estimators tended to have
similar performance, there is an advantage to the weighted
Aalen–Johansen estimator. The AIPTW-IPCW estimator, as
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described by Ozenne and colleagues and as implemented in
the ate() function in the riskRegression package for R, allows
estimation of the ATE. Alternative sets of weights have been
proposed that have different target estimands. These alternative
sets of weights include average treatment effect in the treated
(ATT) weights, matching weights, overlap weights, and entropy
weights [53, 54]. An advantage of the weighted Aalen–Johansen
estimator is that it can be easily modified to use any of these
sets of weights. An advantage of the AIPTW-IPCW estimator
is that it is doubly robust, meaning that the estimator will
be consistent if at least one of the treatment-selection regres-
sion model and the outcomes regression model is specified
correctly.

Throughout this study, we have assumed the use of paramet-
ric statistical models (e.g., logistic regression models) to esti-
mate the treatment-selection model when computing the inverse
probability of treatment weights. However, all the estimators
that we considered can incorporate inverse probability of treat-
ment weights derived using methods from the machine learn-
ing literature (e.g., random forests or stochastic gradient boosting
machines). Similarly, we have focused on using nonparametric
(e.g., Kaplan–Meier survival functions) or semi-parametric (e.g.,
Cox regression models) methods to model the censoring distribu-
tion when computing IPCWs. An alternative approach could be
to use random survival forests to estimate these weights. Future
research is warranted to examine the relative performance of dif-
ferent statistical and machine learning methods for estimating
the different sets of weights.

In a previous study, we described how to use matching on the
propensity score in the presence of competing risks [14]. Similarly
to the current study, we recommended that analysts estimate both
absolute and relative effects of treatment. In a propensity-score
matched sample, CIFs can be estimated in treated and control
subjects separately, allowing for the estimation of risk differences
and relative risks at specified durations of time. This can be com-
plemented by estimating a cause-specific hazard ratio by fitting
a univariate cause-specific hazard model in the matched sam-
ple and using a robust variance estimator to account for the
matched nature of the sample [4]. Matching on the propensity
score has the ATT as the target estimand, while the weighting
methods we have discussed have the ATE as the target estimand.
Consequently, matching and weighting should not be seen as
interchangeable.

The primary limitation of the current study is that our conclu-
sions were based on Monte Carlo simulations. The design of these
simulations was based on an analysis of empirical data, so that the
simulations would reflect what was observed in a specific clinical
setting. However, it is possible that different conclusions would
be observed under a different data-generating process. The cur-
rent study reflects much of the current research on the propensity
score methods, in which simulations, rather than mathematical
derivations, are employed [4, 6, 8, 9, 34, 55–68].

In conclusion, IPTW using the propensity score allows estima-
tion of both the absolute and relative effects of treatments on
outcomes in the presence of competing risks. Absolute treatment
effects can be time-specific risk differences and the associated

NNT. Relative effects of treatment can be cause-specific hazard
ratios or time-specific relative risks.
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