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Abstract

Motivation: Recognition of biomedical entities from scientific text is a critical component of natural

language processing and automated information extraction platforms. Modern named entity rec-

ognition approaches rely heavily on supervised machine learning techniques, which are critically

dependent on annotated training corpora. These approaches have been shown to perform well

when trained and tested on the same source. However, in such scenario, the performance and

evaluation of these models may be optimistic, as such models may not necessarily generalize to in-

dependent corpora, resulting in potential non-optimal entity recognition for large-scale tagging of

widely diverse articles in databases such as PubMed.

Results: Here we aggregated published corpora for the recognition of biomolecular entities (such

as genes, RNA, proteins, variants, drugs and metabolites), identified entity class overlap and per-

formed leave-corpus-out cross validation strategy to test the efficiency of existing models. We

demonstrate that accuracies of models trained on individual corpora decrease substantially for rec-

ognition of the same biomolecular entity classes in independent corpora. This behavior is possibly

due to limited generalizability of entity-class-related features captured by individual corpora (model

‘overtraining’) which we investigated further at the orthographic level, as well as potential annota-

tion standard differences. We show that the combined use of multi-source training corpora results

in overall more generalizable models for named entity recognition, while achieving comparable in-

dividual performance. By performing learning-curve-based power analysis we further identified

that performance is often not limited by the quantity of the annotated data.

Availability and implementation: Compiled primary and secondary sources of the aggregated cor-

pora are available on: https://github.com/dterg/biomedical_corpora/wiki and https://bitbucket.org/

iAnalytica/bioner.

Contact: kirill.veselkov04@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Publications in the biomedical field have increased considerably

over the years, with over 27 million total publications contained on

the PubMed repository alone. With increasing information re-

sources, searching and extracting valuable information has become

more challenging using traditional methods. This has led to an

increased interest and need of text mining systems that automate

information extraction. Named entity recognition (NER) is a critical

step in such workflow, classifying sequences of words to specific

classes. In biomedical named entity recognition, this involves identi-

fication of biological/chemical entities such as genes, proteins, chem-

icals, cells and organs from unstructured text.

Several approaches have been developed and employed through-

out the years to perform this task. Dictionary lookup is the simplest
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approach and is used by literature mining tools such as PolySearch

(Liu et al., 2015). While the advantage of this is that annotated data

is not required for training (although required for evaluation), this

approach often suffers from low accuracy due to its inability to dis-

ambiguate words based on context or semantics. This requires fur-

ther pre- and post-processing steps, which are often hand-crafted

rules. Furthermore, such approaches are limited by the availability

of a ‘complete’ dictionary, therefore are unable to adapt and identify

new or unseen entities.

The GENIA project (Kim et al., 2003) was amongst the first

major efforts for the development and optimization of machine

learning-based named entity recognition systems for bioentities, cre-

ating the GENIA corpus and initiating the ’Joint Workshop on

Natural Language Processing in Biomedicine and its Applications’

(JNLPBA-2004) (Kim et al., 2003). DNA, RNA, cell line and cell

types were recognized in this project with a maximum F-score of

72.55% utilizing hidden Markov models (HMM) and support vec-

tor machines (SVM) (GuoDong and Jian, 2004a). Other participat-

ing systems utilized maximum entropy Markov models (MEMM)

and conditional random fields (CRF).

The BioCreAtIvE challenges have also been playing a role in this

development, with the first challenge focusing on gene recognition

utilizing the GENETAG corpus, reporting a maximum F-score of

83.2% (Yeh et al., 2005). Similar to the GENIA project, Markov

models, SVMs, manually generated rules or a combination therefore

were utilized. Since then, several publications have reported equiva-

lent or improved performance, and several NER tools are currently

available (Campos et al., 2013a; Finkel et al., 2005; McCallum,

2002; Settles, 2005).

The highest accuracies for open-source NER tools were reported

by Gimli (Campos et al., 2013a) at 72.23% overall F-score for

JNLPBA corpus and 87.17% for the GENETAG corpus, using CRF-

based models. This is comparable to the highest reported accuracies

for these corpora with closed source software, where NERBio (Tsai

et al., 2006) report 72.9% for the JNLPBA corpus while (Hsu et al.,

2008) report 88.30% for the GENETAG corpus. These results for

JNLPBA are also similar to others reported in literature (GuoDong

and Jian, 2004b; Rei et al., 2016). Genes and diseases were also re-

ported to be identified with over 90% F-score by the NER module

of DTMiner (Xu et al., 2016). However, training and evaluation of

the latter was performed on a custom corpus.

With the increase in popularity of neural networks, these have

also been increasingly applied for biomedical NER (Crichton et al.,

2017; Gridach, 2017; Zeng et al., 2017), improving on the state-of-

the-art of traditional machine learning methods.

Despite these highly promising score values, there are a number

of outstanding investigations and potential limitations which need

to be considered and addressed: i) are the trained models generaliz-

able and robust?; and therefore ii) is the high performance reported

translatable?; iii) is performance limited by the size of the training

data available?; and consequently, iv) would more annotated data

improve the results?

Irrespective of the model utilized, machine learning NER

approaches have often been trained and tested on a single corpus,

frequently GENETAG or GENIA. This results in corpus-specific

model optimizations, consequently introducing potential over-

fitting which reduces model generalizability and reliability when

applied to unseen text. This may be indicated from Campos et al.

(2013b), where training for genes and proteins on the GENETAG

corpus and testing on the CRAFT corpus achieved 45–55%

F-score—lower performance when compared to the GENETAG test

F-score of 87.17% by Gimli (Campos et al., 2013a). The quality and

different annotation standards of the different corpora may contrib-

ute to such a discrepancy in performance, however the variability in

the style of writing of unseen text is also likely to increase when

compared to the much smaller corpora, and thus the accuracy

quoted for the models may not be representative. The difference be-

tween gold-standard performance and translational performance

has indeed been previously shown for mutations (Caporaso et al.,

2008).

Several available corpora share the same/related entity classes:

OSIRIS (Furlong et al., 2008), SNPcorpus (Thomas et al., 2011),

BioInfer (Pyysalo et al., 2007), various BioNLP 2011 subsets

(Pyysalo et al., 2012a), CellFinder (Neves et al., 2012), GETM

(Gerner et al., 2010), IEPA (Ding et al., 2001), HPRD50 (Fundel

et al., 2007), GREC (Thompson et al., 2009) and GENIA

(Kim et al., 2003) all contain gene/protein-related entities; GENIA

(Kim et al., 2003), CellFinder (Neves et al., 2012) and AnEM

(Ohta et al., 2012) contain cell line/type and tissue information;

BioNLP2011 (Pyysalo et al., 2012b), DDI corpus (Herrero-Zazo

et al., 2013) and GENIA (Kim et al., 2003) share chemical/drug enti-

ties; and GENIA (Kim et al., 2003), GREC (Thompson et al., 2009),

CellFinder (Neves et al., 2012) and BioNLP2011 ID (Pyysalo et al.,

2012a) contain annotated species terms. Despite the common enti-

ties, availability of such data is very dispersed and formats and not

standardized, varying from CONLL, to BioC, leXML and several

others. Thus, here we collate a number of biomedically-related cor-

pora currently available, convert relevant corpora to a common

standard BioC format (Comeau et al., 2013), and utilize multiple

sources for training and testing of NER models to determine the ef-

fect of data size on evaluation and performance.

Performing this allows to generate corpus-independent models

and determine if the current quantity of data available is enough to

reach the maximum performance—a task commonly referred to as

power analysis. Power analysis has been performed limitedly on

NER systems, particularly biomedical NER, yet is a crucial part of

evaluation to determine whether a system is bottlenecked by the

data size, irrespective of algorithmic developments.

2 Materials and methods

2.1 Compiling and filtering corpora
Seventy-five biomedically-related corpora were compiled from pri-

mary or secondary sources. Annotation formats varied from stand-

off (.ann), IOB, BioC (Comeau et al., 2013) or otherwise. Where

multiple formats were available for the same corpus, all were com-

piled for cross-reference. The list of corpora compiled, the formats

available and additional information such as year of publication

and number of documents in corpus are listed in Supplementary

Table S1. A similar table with the download links from the original

or secondary host(s) is also provided on: https://github.com/dterg/

biomedical_corpora/wiki.

Corpora which provide annotations of biomedical entities were

considered for further processing. Corpora labeling entity relation-

ships such as drug–drug interactions or protein–protein interactions

were also considered relevant as long as the entities were explicitly

annotated individually. Corpora with no annotation term indices

provided, or with multiple nested entities were excluded, along

with corpora annotating abbreviations. Subset corpora were also

excluded when the superset corpus was available. For example:

MLEE (Pyysalo et al., 2012a) and AnEM (Ohta et al., 2012) are

subsets of the bigger AnatEM corpus (Pyysalo and Ananiadou,

2014), thus were excluded.
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Details on subsequent format ’standardization’, processing and

correction for annotation indexing mismatches are provided in

Supplementary Methods.

2.2 Defining and remapping entity classes/ontologies
Different corpora annotate entities into different classes/labels. In

order to merge different corpora with related entity classes, we

devised and assessed eight initial super-classes based on ontologies:

(i) ChemicalDrug; (ii) GeneProteinVariant; (iii) Cell; (iv) Anatomy;

(v) Organism; (vi) Tissue; (vii) RNA; and (viii) Disease. Anatomy,

tissue, cells, organisms and diseases are well-described, and their no-

menclature is relatively static and consistent. In the case of organ-

isms/species, their discovery requires mandatory registration, while

for diseases these are documented in registers. Therefore, these enti-

ties are predicted to be well-recognized using dictionary matching

approaches. Due to this, as well as the limited availability of unique

training data other than the AnaTEM corpus, these classes will not

be considered further here for machine learning training.

On the other hand, chemicals and drugs (particularly when men-

tioned using the IUPAC nomenclature), genes, proteins, RNA and

especially mutations, are highly variable entities, with a greater pos-

sibility of mentioning non-previously-documented variants. These

have thus been considered here for machine learning recognition.

Based on preliminary results, some classes were further stratified.

The original entity classes, the remapped classes and the number of

entities for each corpus entity class are provided in Supplementary

Table S2.

Different copies of the remapped corpora were devised, with one

entity class per corpus copy. This was performed in order to allow

for training and prediction of one entity class at a time. A single en-

tity class classification was chosen over a multi-class classification

for several reasons:

1. Scalability: with the availability of new corpora annotating new

entity classes, recognizing the new entity class would require re-

training the whole model in the case of an existing multi-class

model. However with multiple single class models for each class,

recognizing a new entity class would only require to train a new

model for the new class and integrating with the existing

models.

2. Multiple acyclic inheritance: An entity is not exclusive to one

class and may thus belong to multiple classes. Classification and

prediction in a multi-class model would not be straightforward

with the current implementation. For example, on a single level,

proteins are (a subset of) chemicals but not all chemicals are pro-

teins, thus a protein entity belongs to both the class ‘proteins’ as

well as ‘chemicals’ if these are considered separate.

3. Corpora available: training corpora available are highly varied;

from specific corpora such as DDI (drug–drug interaction) cor-

pus to broader chemical classes such as CHEMDNER which an-

notate chemicals including drugs and proteins into a single class.

4. Frontend: with the ultimate aim of providing a realistic evalu-

ation and training of machine learning-based NER models for

deployment in a scalable end-to-end tool, applications were con-

sidered. With single class classification models, an entity may

have multiple annotations. This is favorable over a single anno-

tation as if an entity such as ‘interleukin’ is listed and classified

as only a chemical, a user will not recall it if querying proteins.

Having it labeled as both a chemical and protein will allow for

such entity to be recalled in both instances.

2.3 Model training and prediction
Several existing and stable NER packages utilize CRF-based models.

Tools such as GIMLI (Campos et al., 2013a), MALLET

(McCallum, 2002) and Stanford NER (Finkel et al., 2005) have

been used widely and are commonly employed in end-to-end infor-

mation extraction workflows such as the recent DTMiner (Xu et al.,

2016). Here we train and predict using the Stanford NER CRF algo-

rithm based in Java (Finkel et al., 2005).

To allow for an as fair as possible of a comparison with other

tools, feature extraction methods were based on previous reports as-

sessing the effect of features on performance by backward elimin-

ation. GIMLI (Campos et al., 2013a) report that features such as:

capitalization and symbols have a positive effect on performance

(for the majority of entity classes), while Stanford report the increase

in performance by disjunction and word tag features. The use and

importance of character-level features, especially in the biomedical

domain, has also been reported in neural network architectures

(Gridach, 2017). These features were thus included as part of the

feature extraction step. Additional sequence-related features were

tested however these were determined to have no overall perform-

ance improvements. Details and commands used to perform model

training and prediction are provided in the ‘model training and pre-

diction’ section of the Supplementary Methods.

2.4 Power analyses
To determine the effect of training size on prediction performance,

we performed power analyses to generate learning curves. Each cor-

pus was split into 80% training and 20% test sets. Where applicable

and possible, to avoid model bias, documents from the same manu-

script were considered as either training or test. Prediction perform-

ance was measured by the F-score (Equation 1). The F-score was

computed for each corpus rather than calculating an overall average.

This provides an indication of which corpus is predicted the best

and the worst and indicates any variation. To provide a single over-

all metric, two statistics were computed: (i) a document-weighted

average was also calculated, where the F-score from each corpus is

weighted by the number of documents it contains to compute an

overall average; and (ii) an equally-weighted mean where corpora

contributed equally to the overall average.

Fscore ¼ 2 � Precision � Recall

Precisionþ Recall
(1)

The learning curve was represented by an inverse power law func-

tion, previously reported (Figueroa et al., 2012). Briefly, the predic-

tion F-score (Yfs) is defined as a function of the product of training

sample size and minimum achievable error (a), learning rate (b) and

decay rate (c) (Equation 2). An initial decay rate of -0.1 and learning

rate of 0.2 were used. Error was defined as the root mean squared

error (RMSE).

Yfs xð Þ ¼ f X; a; b; cð Þ ¼ 1� að Þ � b � xc (2)

Learning curves were generated using three approaches:

• Corpus-specific training: To determine the model generalizabil-

ity, we trained a model for each corpus and used this to predict

the test data of other corpora;
• Merged corpora training: To determine the added value of

increasing training size by integrating training data from multiple

corpora, we merged/stacked the training data of all corpora and

incrementally added the training data while predicting the same

fixed test set;
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• Leave-corpus-out training: To determine the generalizability of

the merged-corpora-trained model, we trained a model using all

training data of all corpora except one corpus, and tested the

model by predicting the left-out corpus test data.

The addition of corpora was done using two approaches. In the

first approach, when performing leave-corpus out, all corpora ex-

cept one corpus were used for model training while the left-out cor-

pus was used as ‘fixed’ test data. The ‘fixed’ test data was a random

subset of all documents from each left-out corpus. For unbiased

learning curve analysis, the data from the same corpus was excluded

for model building. As for the training set, documents were ran-

domly re-shuffled between corpora and added incrementally to the

training data to obtain the learning curve. The leave-one-out cor-

pora were predicted one at a time. In the second approach, when all

corpora were used in the training, corpora were added sequentially,

one document at a time. This determined how much added predict-

ive value each corpus provides that is not captured by previously

introduced training examples.

2.5 Orthographic feature analysis
To assess the distinguishing orthographic features between entity

classes, we performed univariate tests on local morphological fea-

tures. Labeled entities for each class of interest were extracted and

labeled accordingly, and the rest of the tokens were considered

’nulls’. These two classes were balanced by random sampling from

the bigger class. GIMLI (Campos et al., 2013a) and regular expres-

sions were used to extract a total of 31 morphological features for

these tokens, including: different forms of punctuation, case sensitiv-

ity (initial caps, end caps, all caps), digits (number of digits) and

number of characters.

Each feature was represented by a binary representation for each

token and therefore summation provided total occurrence of a fea-

ture in the ‘null’ class and ‘entity’ class. This allowed for the calcula-

tion of the percentage difference of a feature occurrence between the

classes. Statistically significant feature differences were determined

by performing Fisher exact tests followed by Benjamini-Hochberg

FDR-correction for multiple testing. This was repeated n-times

[where n¼ size(largest class)/size(smaller class)] and a mean

q-value 6 standard deviation was computed for each feature. When

a feature was determined to be significantly different between the

classes (q < 0.05; including the upper deviation boundary), and

the percentage difference was positive between the entities class and

the null, such feature was considered ‘characteristic’ of that class

(compared to null tokens; Fig. 3).

3 Results and discussion

3.1 Identifying genes and proteins
Ontologically, proteins, genes and variants are related. These were

initially merged in a single superclass to test the overlap between the

annotated entities across different corpora. SNPcorpus and tmVar

achieved almost no predictive performance prior to the introduction

of OSIRIS/SETH training data (Supplementary Fig. S1). SNPcorpus

and tmVar annotate mutations, while none of the training corpora

prior to the introduction of OSIRIS/SETH data have mutations

annotated. While expected, this confirms that mutation entities are

significantly different from the gene/protein classes and were thus

considered as a separate class in subsequent tasks. Contrastingly,

while VariomeCorpus also annotates variants, this corpus also an-

notates genes, with 1690 mutant entities and 4613 genes. This ex-

plains why VariomeCorpus test data was better predicted in

comparison to mutation-specific corpora SNPcorpus and tmVar.

The difference between the GeneProtein class and variants is more

evident when considering the orthographic features (Fig. 3), where

genes and proteins from different corpora share several univariate

features, but less so with entities in the variant class.

To determine the generalizability of the ‘GeneProtein’ class mod-

els, when excluding variants, we tested the cross-performance of

models trained on corpora individually and applied it to other cor-

pora (not seen in the training—leave corpus out cross validation)

(Fig. 1). While increasing training data increased performance in all

cases, the best predictions of the test data were achieved when the

test data originated from the same corpus, with varying predictive

capacity for other corpora (Fig. 1A–H). Furthermore, IEPA data

was the hardest to predict (Fig. 1A–C; E–H), and inversely, IEPA-

trained model was unable to predict any of the other test data for

the other corpora (Fig. 1D), suggesting data incompatibility or cor-

pus bias. Considering the orthographic features on their own, IEPA

was indeed the most inconsistent compared to other GeneProtein

corpora (Fig. 3), with the IEPA corpus having very different ‘finger-

print’ of significant features compared to other corpora within the

same class.

Merging the different corpora for both training and testing

increased the consistency and overall performance for the

GeneProtein class (Fig. 1A). With respect to sample size dependence,

increasing the training data generally incrementally improved the

performance. Some corpora left out from training were predicted by

other corpora with similar performance to their own; for example,

SETH was predicted with an F-score of 64% when all corpora were

merged for training, while leaving SETH out of training obtained a

63% F-score. In case of miRTex, both merged training data and all

corpora other than miRTex, converged at an F-score of 76% at 450

documents, although additional documents improved the perform-

ance of the former up to 84% F-score.

Generally, the maximum F-score for the test data of a specific

corpus was only achieved when introducing training data from the

same corpus. Nonetheless, in most cases, a relative performance

plateau is reached after 1000 training documents, with a maximum

weighted average of 78.32% F-score (Supplementary Fig. S2).

3.2 Identifying variants
Based on the predictive power and orthographic differences,

variants were considered as a class on their own, despite the simi-

larity in ontology and semantics. When predicting the test data

of a corpus by other corpora (leave-corpus-out cross-validation),

VariomeCorpus was poorly predicted by any corpus. Taking a closer

look at the raw corpus, it appears that most entities are genes fol-

lowed by the token ‘mutant’ rather than mutation entities following

the standard nomenclature. With the entity structure being ‘gene X

mutant’, this possibly explains why entities in the VariomeCorpus

test data were identified and predicted as genes in the

‘GeneProteinVariant’ superclass (Supplementary Fig. S1). Once

again, this difference is highlighted by the orthographic feature map

(Fig. 3) where VariomeCorpus has 4 significant features (OneDigit,

OneCap, ThreeCap and Length3-5) which are not shared with any

of the other ‘variant’ corpora. Inversely, whereas all other variant

corpora were identified to have the ‘þ’ character as significant (a

symbol commonly used to denote mutations), VariomeCorpus was

the only not to share such characteristic. Indeed, VariomeCorpus

was recently reported to annotate many vague mentions such as ‘de

novo mutation’ and ‘large deletion’, with only a subset mentioning

position-specific variants (Cejuela et al., 2017). Due to such
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differences, this was excluded from subsequent power analyses.

However, if more training data is required, this subset can be identi-

fied and extracted, as described earlier (Jimeno Yepes and Verspoor,

2014).

When merging data from SETH, SNPcorpus, tmVar and OSIRIS,

SETH and tmVar test data was predicted with ~82% in both cases,

plateauing around 500 documents. tmVar test data was predicted

with equal performance when performing leave-corpus-out cross-

validation. Contrastingly, the predictive capacity of other corpora on

unseen corpora test data as well as when using merged training data

was very low (Fig. 1B). This suggests a subset of the entities are

’unique’ in these corpora. OSIRIS obtained the lowest plateaued

performance, and by looking at OSIRIS annotations, indeed they ap-

pear to contain non-standard nomenclature, with annotations such

as: ‘codon 72 (CCC/proline to CGC/arginine’, ‘(TCT TCC) in codon

10’, ‘-22 and -348 relative to the BAT1 transcription start site’, ‘A at

positive -838’, ‘C in -838’. However, these are still valid mutation-

related entities, thus to recall such entities, more training data similar

to OSIRIS is required, although standardization of nomenclature in

more recent publications may render this unnecessary. Nonetheless,

when omitting OSIRIS and re-plotting SETH, SNPcorpus and tmVar

learning curve, SETH and tmVar obtained lower performance, back-

ing up the positive contribution of OSIRIS training data to the pre-

dictive performance of tmVar and SETH.

Fig. 1. Corpus-specific learning curves for the ‘GeneProtein’ class. Learning curves for corpus-specific training and prediction of all corpora test data. (A) AIMED,

(B) OSIRIS, (C) CellFinder, (D) IEPA, (E) MIRTEX, (F) SETH, (G) VariomeCorpus and (H) mTOR
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Looking at the corpus-specific learning curves (Supplementary

Fig. S3), tmVar training data only (Supplementary Fig. S3C)

predicts tmVar test data with �50%. The trend of the learning

curve indicates that with more training data the performance is

expected to increase. Indeed, the performance increased to

>80% when training data from other corpora was added

(Fig. 2B). Leaving the tmVar training data out completely and

using the other corpora to predict tmVar test data achieved

the same performance, indicating high model generalizability

(Fig. 2B).

Fig. 2. Learning curves for merged training data from multiple sources and prediction of the test data for each corpus individually, and leave-corpus-out cross-

validation where each corpus is left out from training and its test data is predicted by all other corpora (where multi-source data is available). Training and testing

of the classes: (A) genes and proteins (dashed lines represents leave-one-out prediction learning curves), (B) variants, (C) chemicals (CHEMDNER corpus),

(D) metabolites (Metabolites corpus), (E) RNA (miRTex corpus) and (F) drugs (DDIcorpus)
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SETH achieved the same performance (86.02% F-score) when

merged training data (Fig. 2B) and SETH only training data were

used (Supplementary Fig. S3B). Leaving out SETH training data

achieves lower F-score (67.09%), therefore the SETH corpus alone

is contributing to 18.93% additional performance. With respect

to generalizability, SETH predicted 66.67% of tmVar test data

(Supplementary Fig. S3B), and considering the maximum tmVar

performance was achieved even when tmVar train data was omitted,

the remaining performance was achieved by the training data of

other corpora (SNPcorpus and OSIRIS).

SNPcorpus and OSIRIS achieved a similar trend in performance

when merging corpora (Fig. 2B) and when using corpus-specific

training data (Supplementary Fig. S3D and A). The absolute per-

formance is slightly lower in the former case, suggesting introduc-

tion of noise to the model.

With respect to orthographic features, the ‘variants’ class is quite

variant across different corpora (Fig. 3B), with very limited

consistently significant features across corpora. Commonly, three or

more digits are present in ‘variant’ entities, however overall there is

no distinctly evident ‘fingerprint’ of univariate significant features

across the different corpora. This variation has been explored in de-

tail by Cejuela et al. (2017), where mutation mentions have been

classified as ‘standard’, ‘semi-standard’ and ‘natural language’, with

SETH and tmVar sharing a subset of standard mutations while only

SETH captured natural language mentions (Cejuela et al., 2017).

3.3 Identifying chemicals, drugs and metabolites
Based on ontology, corpora annotating chemicals, drugs and metab-

olites were remapped into a single ‘ChemicalDrug’ superclass.

However, corpora such as CHEMDNER annotate genes as chem-

icals while more specific corpora such as DDI and metabolites cor-

pus only annotate a particular entity class: drugs and metabolites

respectively, thus would not be able to predict genes in the test set.

Fig. 3. Orthographic feature analysis for entity classes determined per corpus. Features highlighted were identified to be univariately significant for an entity class

in a given corpus. Each layer/row represents an orthographic feature while each column represents a corpus, grouped by entity classes to represent six main

classes: GeneProtein, RNA, variants, chemicals, drugs and metabolites
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Given these annotation mismatches between corpora, we devised

new classes. CHEMDNER is the biggest corpus with over 58 000

chemical entities annotating formulae and multiple alternative

names such as: systematic names and chemical families. This com-

prehensive, large and highly diverse naming system is not found in

any other corpora and hence this corpus was considered on its own.

Since genes/proteins such as ‘interleukin-2’ are also considered as an

entity in this corpus, such entity would be annotated multiple times

when the GeneProtein model and CHEMDNER model are used to

predict its class. This is reasonable considering that such entity in-

deed can be considered as a child of the GeneProtein parent as well

as the Chemical superclass. This backs up the reason why single en-

tity class models (binary class classification problems) were con-

sidered in this study (compared to multi-class models). With the new

classes, chemicals, metabolites and drugs could only be trained on

single corpora. A stable performance was achieved after 1200 train-

ing documents for chemicals, 160 documents for metabolites and

400 documents for drugs.

CHEMDNER achieved 84.8% F-score when all training docu-

ments are utilized during model training (Fig. 2C), with performance

stabilizing around 1500 documents. This is similar to the perform-

ance published by the authors (Krallinger et al., 2015).

When devising a model for drug NER, while DDIcorpus and

mTor both contain drug annotations, mTor only annotates three

unique drug entities (Supplementary Table S2) and hence was

excluded. The drug learning curve for DDIcorpus indicates a stable

performance at and beyond 380 documents, with an average of

78.48% (Fig. 2F).

Similarly, metabolites corpus is the only resource that specifically

annotates metabolites. Other corpora such as CHEMDNER anno-

tate metabolite entities, however these are labeled under a broad

chemical class hence cannot be distinguished from other non-

metabolite entities such as drugs and proteins. The learning curve

for the metabolites corpus was generated and is shown in Figure 2D.

Prediction performance stabilizes around 160 documents with an

average F-score of 71.98%.

3.4 Identifying RNA
As listed in Supplementary Table S2, RNA is annotated in miRTex

and mTor corpora. While miRTex contains over 2700 entities,

mTor only annotates 7 unique entities and thus the latter was

excluded as this is insufficient for representative power calculations.

Furthermore, with such small number of entities, any performance

metrics would not provide meaningful insight following train/test

split, especially with regards to model generalizability.

MiRTex corpus achieved a plateaued performance of 91% with

21 documents (Fig. 2), which increases marginally to a stable F-score

of 96.17%. This high performance and stability may be accounted

for by the high consistency in RNA nomenclature.

4 Conclusion

A generalizable model is crucial for applied machine learning-based

named entity recognition. Here we show that merging training data

from multiple sources may generate a more generalizable model.

However, the absolute performance may be lower when comparing

it to individual source-trained models due to annotation standard

differences, as well as corpus over-fitting of the latter. Overfitting

to one corpus may be the case when the corpus is a selection of pub-

lications from a medical subfield (e.g. cardiac diseases) and there-

fore the corpus is not representative of the class. The average

performance achieved for genes and proteins for a merged data

model is comparable to existing models, while variants showed high

variability. Training data for chemicals, drugs, metabolites and

RNA is limited due to lack of overlap of entity types across corpora,

however individual models show no increased performance with

increasing training data. Generally, collecting more training data is

unlikely to increase performance of bioentity named entity recogni-

tion. However, with improved annotation standards and implemen-

tation of transfer learning approaches may not only improve

performance but also generalizability—providing a more realistic

performance measure of translational named entity recognition.
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