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The DJ-1 protein, known as an oxidative stress sensor, participates in the onset of

oxidative stress-related diseases such as cancer, neurodegenerative disorders, type 2

diabetes, and male infertility. Although DJ-1 has been extensively studied for more than

two decades, evidence has only recently emerged that it plays a key role in immune

and inflammatory disorders. The immune regulatory function of DJ-1 is achieved by

modulating the activation of several immune cells including macrophages, mast cells,

and T cells via reactive oxygen species (ROS)-dependent and/or ROS-independent

mechanisms. This review describes the current knowledge on DJ-1, focusing on its

immune and inflammatory regulatory roles, and highlights the significance of DJ-1 as

a novel therapeutic target for immune and inflammatory diseases.
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INTRODUCTION

The DJ-1 gene was originally discovered as an oncogene that shows transforming activity in
conjunction with the ras gene and was later identified as a causative gene for autosomal recessive,
early-onset Parkinson’s disease (PD), PARK7 (1, 2). As a multifunctional protein, DJ-1 can regulate
transcription and signal transduction pathways, scavenge reactive oxygen species (ROS), and
function as a molecular chaperone and enzyme, all of which leads to the anti-oxidative stress
reaction of DJ-1 (3–7). In addition to the participation of DJ-1 in cancer and PD, a great number of
studies have indicated that DJ-1 is also involved in the pathogenesis of multiple oxidative stress-
associated diseases including stroke, male infertility, neurodegenerative diseases, and diabetes
mellitus (8–11).

Recently, accumulating evidence has indicated that DJ-1 exerts immune and inflammatory
regulatory functions by modulating the activation of several immune cells such as macrophages,
mast cells (MCs), and T cells via ROS-dependent and/or ROS-independentmechanisms (12–14). In
this review, we discuss the role of DJ-1 in the physiopathology of several immune and inflammatory
diseases including sepsis, allergic diseases, atherosclerosis (AS), and multiple sclerosis (MS),
highlighting DJ-1 as a potential therapeutic target for immune and inflammatory diseases.

GENE, PROTEIN, AND MOLECULAR CHARACTERISTICS OF DJ-1

The human DJ-1 gene (PARK7) maps on chromosome 1 at 1p36.23 according to Entrez Gene,
and the mouse homolog is found on chromosome 4E. Containing 17 distinct gt-ag introns and 7
exons, DJ-1 encompasses 23.86 kb (15). Through alternative promoters and alternative splicing, 17
different variants from the gene have been reported (15). Among these, 15 transcripts have protein-
coding potential, while 2 transcript variants encoding the same protein have been identified for this
gene (15).
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Comprising 189 amino acid residues, human DJ-1 is a
small (20 kDa) protein that belongs to the large DJ-1/ThiJ/PfpI
superfamily, which is ubiquitously expressed in more than 22
human tissues including the pancreas, kidney, skeletal muscle,
liver, testis, and heart (16). During the course of many years, the
DJ-1/ThiJ/PfpI superfamily has been found in diverse organisms
from bacteria to humans (16). Although not all members of this
superfamily have been characterized structurally, 61 structures
of human DJ-1 that were determined by X-ray crystallography
have been deposited in the Protein Data Bank as of January 2020,
indicating that it exists as a dimer (17). The structure of the DJ-1
monomer has a helix-fold-helix flavodoxin-like fold, with 11 β-
strands (β1–β11) and 8 α-helices (αA–αH) (18). It centers on a
β-sheet that contains six parallel strands arranged regularly and
surrounded by α-helices, and β3–4 that form a hairpin structure
that contributes to its dimerization (17–19). In addition, dimeric
DJ-1 characterizes a different arrangement of the αA and αH
helices of the two monomers from other members of this
superfamily (17). However, the L166P (Leu166Pro) mutation
of DJ-1, which is located in the center of αG and linked to
familial PD, confers reduced protein stability and interferes with
homodimerization (20).

DJ-1 seems to act primarily as a redox-sensitive chaperone
and sensor for imbalanced cellular redox state, since its
overexpression is induced by a variety of oxidative agents such
as paraquat, lipopolysaccharide (LPS), iron, hydrogen peroxide
(H2O2), 6-hydroxydopamine, ultraviolet irradiation, and high
glucose, protecting multiple kinds of cells including endothelial
cells, macrophages, fibroblast cells, neurons, cancer cells, and
islet β cells (11, 21–25). Deletion of DJ-1 augments cell death by
oxidative stress, endoplasmic reticulum stress, and proteasome
inhibitors (6).

THE MULTIFACETED ROLES OF DJ-1 AS
AN ANTIOXIDANT

Reduced and Oxidized Forms of DJ-1 and
Their Functions
DJ-1 functions as an antioxidant through various mechanisms,
including scavenging ROS in a manner dependent on three
redox-sensitive cysteine residues at amino acids 46, 53, and 106
(C46, C53, and C106, respectively). Of these, C106 is considered
the most oxidative stress-sensitive residue and is sequentially
oxidized to form sulfenic acid (SOH), sulfinic acid (SO2H), and
sulfonic acid (SO3H) (5). DJ-1 exhibits distinct properties and
functions dependent on the oxidation state of C106. Moderate
oxidation of C106 to SO2H is responsible for mitochondrial

Abbreviations: AS, atherosclerosis; ASK1, apoptosis signal-regulating kinase

1; CXCR4, chemokine receptor 4; Daxx, death-associated protein 6; EAE,

experimental autoimmune encephalomyelitis; H2O2, hydrogen peroxide; Hsp70,

heat shock protein 70; Keap1, Kelch-like ECH-associated protein 1; KO, knockout;

LPS, lipopolysaccharide; MAPKs, mitogen-activated protein kinases; MCs, mast

cells; MS, multiple sclerosis; NF-κB, nuclear factor kappa B; NHE1, Na+/H+

exchanger 1; NOX, NADPH oxidase; Nrf2, NF-E2 related factor-2; PD, Parkinson’s

disease; ROS, reactive oxygen species; SDF, stromal cell-derived factor; SO2H,

sulfinic acid; SO3H, sulfonic acid; SOH, sulfenic acid; Syk, spleen tyrosine kinase;

TCR, T cell receptor; TLR, Toll-like receptor; Trx1, thioredoxin 1; WT, wild-type.

localization of DJ-1 and inhibits fibrillation of α-synuclein (26–
28). Additionally, the cytoprotective interaction of DJ-1 with
apoptosis signal-regulating kinase 1 (ASK1) was mediated by
SO2H and modulated by peripheral C46 and C53 (29, 30).
However, high oxidation of C106 to SO3H results in aggregated
and inactive DJ-1, and has been correlated with the increased
progression of disease including PD where oxidative stress is a
part of the pathophysiology (27, 31).

The reduced form of DJ-1 exerts various functions in addition
to eliminating excessive ROS. In terms of DJ-1-dependent
activation of dopamine biosynthesis by two enzymes, tyrosine
hydroxylase and levodopa decarboxylase, DJ-1 possessing
reduced and SOH forms of C106 is active and binds to two
enzymes, positively regulating their activities (32). Moreover, the
reduced form of DJ-1 is required for interaction with phosphatase
and tensin homolog and inhibits its phosphatase activity in
NIH3T3 fibroblasts, which is not sustained with prolonged
oxidative stress and highly oxidized forms of DJ-1 (33). A recent
study reported that the direct binding between reduced DJ-1 and
Lyn kinase is an indispensable step for full Lyn activation and
IgE-mediated stimulation in human MCs, indicating that MC
signaling is largely unrelated to DJ-1 antioxidant activity (34).

DJ-1 as a Regulator of Mitochondrial
Homeostasis
Under physiological conditions, DJ-1 is predominantly present
in the cytoplasm and, to a lesser extent, in the nucleus and
mitochondria including the outer membrane, matrix, and
intermembrane space of mitochondria (26, 35). However,
upon oxidative stress, cytoplasmic DJ-1 translocates to
the mitochondria and subsequently to the nucleus, while
mitochondrial localized DJ-1 exhibits stronger cytoprotective
effects against oxidative stress than cytosolic or nuclear DJ-1 (36).
The capability of immediate redistribution of DJ-1 according
to changes in the microenvironment is crucial for regulating
mitochondrial homeostasis and function, coinciding with
cytoprotective activity (26, 36, 37). Studies have shown that loss
of DJ-1 leads to mitochondrial dysfunction including decreased
respiratory control ratio, mitochondrial membrane potential,
ATP levels, and impaired dynamics, in vitro and in vivo (37–40).

The mitochondrial translocation of DJ-1 is likely mediated by
chaperones in response to oxidative stress (41). DJ-1 colocalizes
with heat shock protein 70 (Hsp70) in the cytoplasm and
is associated with mtHsp70/Grp75, a mitochondria-resident
Hsp70 (41). Therefore, DJ-1 homodimers translocate to the
mitochondria by binding to Hsp70 to prevent oxidative
stress-induced cell death and maintain mitochondrial
homeostasis. However, a recent study showed that Bcl-2-
associated athanogene 5 interacts with DJ-1 and attenuates
the DJ-1-mediated protection of mitochondria, probably by
shifting the subcellular distribution of DJ-1 and affecting its
dimerization (42).

Moreover, there are also some possible targets of DJ-1 existing
in the mitochondria, in particular mitochondrial complex I (43).
It has been revealed that DJ-1 directly interacts with complex I
subunits NDUFA4 and ND1, and the binding is enhanced under
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oxidative stress. In addition, complex I activity was shown to
be reduced in DJ-1-knockdown NIH3T3 and human embryonic
kidney 293 cells (43). Based on these findings, we speculate that
DJ-1 is an integral mitochondrial protein that plays a role in
maintaining mitochondrial homeostasis, including the integrity
and activity of complex I.

DJ-1 as a Regulator of Antioxidant Gene
Expression
DJ-1 also acts as an antioxidant by upregulating antioxidant
gene expression, in particular through the transcription factor
NF-E2 related factor-2 (Nrf2), a critical inducer of antioxidant-
responsive element (ARE)-mediated expression. Previous studies
have shown that DJ-1 plays a role in stabilizing Nrf2 by affecting
association with its repressor Kelch-like ECH-associated protein
1 (Keap1), and the subsequent ubiquitination of Nrf2 (44).
The results of a recent finding supported the fact that DJ-
1 promotes Nrf2–Keap1 dissociation, accounting for enhanced
levels of nuclear translocation and ARE binding of Nrf2 in H9c2
cells when exposed to oxidative stress (44). In addition, an in
vivo mouse kidney study reported that Nrf2 ubiquitination was
increased in DJ-1 knockout (KO) mice compared with wild-
type (WT) littermates (45). DJ-1 is responsible for the expression
of several Nrf2 target genes including antioxidant enzyme
NAD(P)H quinone oxidoreductase 1 and heme oxygenase-1,
and products that contribute to the redox reaction such as
thioredoxin 1 (Trx1) and glutathione (44–47).

However, some studies have indicated that activation of the
Nrf2-ARE pathway is independent of DJ-1, and therefore it
has been suggested that Nrf2 is a downstream effector of DJ-
1 function (48). DJ-1 stimulates nuclear translocation of Nrf2
and enhances its recruitment to the Trx1 promoter (47). A study
showed that DJ-1 had no influence on the binding between Nrf2
and Keap1 and ubiquitination state of Nrf2, indicating that DJ-
1 functions through a non-Keap1-dependent mechanism (47).
Consistent with this notion, downregulation of DJ-1 did not
impair the Nrf2–Keap1 association in normal human corneal
endothelial cells (49). Taken together, DJ-1 can exert antioxidant
function by upregulating Nrf2 activation (Figure 1); however, the
precise mechanisms need further research.

DJ-1 as a Regulator of Oxidative
Stress-Induced Apoptosis
DJ-1 plays a key role in regulating oxidative stress-induced
apoptosis, especially preventing ASK1 activation through
multiple mechanisms. First, DJ-1 can stabilize the inhibitory
complex of Trx1–ASK1 (Figure 1). Under normal conditions,
ASK1 is bound by Trx1 equally with or without DJ-1
overexpression (30). However, upon oxidative stress, Trx1
releases ASK1, a process that is suppressed by overexpression
of DJ-1 (30). DJ-1 KO mouse brain homogenates are more
susceptible to H2O2-mediated dissociation of Trx1–ASK1
complex compared with WT brains (30). In addition, DJ-1
can upregulate Trx1 expression through the Nrf2 pathway
(Figure 1), thus enhancing intracellular levels of Trx1 and
repressing ASK1 activation (47). Second, DJ-1 may disrupt

ASK1 homodimerization through physical interaction, leading
to inhibition of the ASK1 signaling pathway (Figure 1)
(50). Of interest, one study suggested that H2O2 did not
significantly impair the cytoplasm colocalization of ASK1
and DJ-1, while other studies have found that oxidative stress
and DJ-1 with oxidized C106 are required for DJ-1/ASK1
association (29, 50, 51). Third, DJ-1 binds to death-associated
protein 6 (Daxx) in the nucleus, blocking its translocation to
the cytoplasm where Daxx activated its effector kinase ASK1
and the resulting apoptosis (Figure 1) (52, 53). Moreover,
p38-regulated/activated kinase may be the essential partner
of DJ-1, which induces DJ-1 to sequester Daxx in the nucleus
and modulates oxidative stress-induced ASK1 activation
(Figure 1) (53, 54).

ROLE OF DJ-1 IN THE
PATHOPHYSIOLOGY OF IMMUNE AND
INFLAMMATORY DISEASES

DJ-1 and Sepsis
Sepsis, defined as a life-threatening, multiorgan dysfunction
caused by a dysregulated host response to infection, remains
the most leading cause of morbidity and mortality in intensive
care units worldwide (55, 56). It is recently clear that sepsis
features concomitant occurrence of excessive inflammation and
immune suppression (57). Earlier diagnosis based on routine
microbiologic cultures has been proposed in the “Surviving
Sepsis” guidelines, which is key to antimicrobial therapy and
improved outcomes of clinically ill patients (58). However, many
cases have occurred that fail to identify the infecting organism
and the inflammatory reaction often sustains after treatment of
the infection, which is related to tissue damage and organ failure
due to lack of effective therapy and supportive care (57, 59).

Macrophages play a crucial part in host immune and
inflammatory response during all phases of sepsis. After
infection, the activation of macrophages is mediated by a
Toll-like receptor (TLR) that recognizes pathogen-associated
molecular patterns, including LPS of gram-negative bacteria. In
the early stage of sepsis, macrophages undergo M1 polarization
and maintain a homeostasis by eliminating pathogens or
damaged tissues and producing pro-inflammatory mediators
(60). However, if the infection persists, macrophages can polarize
toward the M2 phenotype and the host may present a LPS-
tolerant state, leading to severe immunosuppressive stage of
sepsis with deleterious consequences (61).

Cellular redox status plays a complicated role in the host
immune response and outcomes of sepsis (62). Although
excess ROS causes oxidative stress and cell injury, appropriate
levels of ROS can initiate various signal transduction cascades
that contribute to the bactericidal ability of macrophages and
regulation of inflammatory reaction in host response (63, 64).
Previous studies have shown that ROS is involved in modulating
LPS-induced TLR4 trafficking to lipid rafts and subsequent
TLR4 activation, as well as downstream signaling pathways
in macrophages, such as mitogen-activated protein kinases
(MAPKs) and nuclear factor kappa B (NF-κB) pathways (65,
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FIGURE 1 | The multifaceted roles of DJ-1 as an antioxidant under oxidative stress. (1) DJ-1 translocates to the mitochondria and maintains mitochondrial

homeostasis. (2) DJ-1 exerts antioxidant function by upregulating Nrf2 activation. (3) DJ-1 prevents oxidative stress-induced ASK1 signaling pathways by several

mechanisms, including stabilizing the Trx1–ASK1 complex, increasing the expression of Trx1, disrupting ASK1 homodimerization through direct interaction, as well as

sequestering the ASK1 activator Daxx in the nucleus. Nrf2, NF-E2 related factor-2; ASK1, apoptosis signal-regulating kinase 1; Trx1, thioredoxin 1; Daxx,

death-associated protein 6; PRAK, p38-regulated/activated kinase; JNK, c-Jun N-terminal kinase.

66). Other studies have suggested that NADPH oxidase (NOX)-
dependent ROS generation plays a critical role in this process,
as TLR4 signaling and pro-inflammatory cytokine production
are promoted by NOX activator but are suppressed by a NOX
inhibitor (65). In addition, TLR4/NF-κB activation is involved
in M1 macrophage polarization while the downregulated NF-κB
pathway is connected to M2 polarization (67, 68).

DJ-1 has versatile functions and is distinguished as an
antioxidant by multiple mechanisms. However, DJ-1 facilitates
NOX-dependent ROS production in early active macrophages
through direct interaction with p47phox, a subunit of NOX,
leading to pro-inflammatory cytokine release (69). Compared
with WT mice, DJ-1−/– mice present with blunt TLR signaling
that consequently impairs the bactericidal ability ofmacrophages,
along with decreased local inflammation, and significantly
increases mortality in a sepsis model (69). In addition,
macrophages with restored DJ-1 expression were shown to rescue
ROS generation and enhance survival in LPS-induced sepsis
(69), suggesting that DJ-1 has a protective role during sepsis by
controlling macrophage activation.

Interestingly, a recent study revealed that DJ-1/p47phox

binding disrupted the stability of the NOX complex and
promoted subunit gp91phox ubiquitination, thus influencing
the optimal ROS production for bacterial clearance and M1
differentiation of macrophages (12). DJ-1−/– mice exhibited
elevated levels of pro-inflammatory mediators and improved
survival and organ function compared with WT mice, and
adoptive transfer of DJ-1−/– bone marrow-derived mononuclear
cells rescued WT mice from septic mortality (12). Additionally,
circulatingDJ-1 levels were increased and correlated with severity
of sepsis and organ dysfunction in patients (12). Based on these

findings, DJ-1 seems to act as a potent antioxidant that impairs
optimal ROS levels for bacterial killing of macrophages and
clinical outcomes of sepsis.

It remains unclear how DJ-1 differs in the above two
sepsis studies concerning its functional and molecular outcomes.
In the active state of macrophages, DJ-1 probably exerts
protective functions through NOX-dependent ROS production
against sepsis to facilitate TLR4/MAPKs and/or TLR4/NF-κB
signaling pathways, resulting in releasing pro-inflammatory
mediators, killing bacteria, and polarizing to the M1 phenotype.
However, available DJ-1 functions as an antioxidant in cellular
negative feedback to protect from oxidative stress and excessive
inflammatory response. DJ-1 can reduce ROS at least through
binding to p47phox, disrupting NOX stability and its ROS
generating capacity, thereby impairing TLR4 activation and
downstream signaling pathways. A schematic diagram of our
proposed mechanism is presented in Figure 2.

Since one study revealed that the C-terminus of DJ-1 is
required for the DJ-1/p47phox interaction (69), we consider
that the different consequences of the physical association may
be regulated or determined by the oxidation state of DJ-1,
in particular C106 oxidation. In addition, we believe that the
role of DJ-1 in sepsis is not limited to the DJ-1/p47phox/ROS
axis. Rather, mitochondrial ROS are recognized as essential
components of the innate immune response and bactericidal
activity of macrophages (70).

Taken together, given the effects of DJ-1 on host immune
defense by regulating ROS generation of macrophages, the
pathophysiology of DJ-1 in sepsis remains to be revealed and
the DJ-1/p47phox/ROS axis may become a potential therapeutic
target to modulate the development of sepsis.
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FIGURE 2 | Schematic diagram of the role of DJ-1 in regulating macrophage activation through NOX-dependent ROS production and TLR4 signaling pathways

during sepsis. In the active state of macrophages, DJ-1 probably exerts a protective function against LPS-induced sepsis. Through direct interaction with p47phox,

DJ-1 promotes NOX-dependent ROS production, which facilitates TLR4/MAPKs and/or TLR4/NF-κB signaling pathways and results in releasing pro-inflammatory

mediators, killing bacteria and polarizing to M1 phenotype. However, available DJ-1 functions as an antioxidant in cellular negative feedback to protect from oxidative

stress and excessive inflammatory response. DJ-1 can reduce ROS at least through binding to p47phox, disrupting NOX stability and its ROS generating capacity,

thereby impairing TLR4 activation and downstream signaling pathways. NOX, NADPH oxidase; TLR4, Toll-like receptor 4; LPS, lipopolysaccharide; MAPKs,

mitogen-activated protein kinases.

DJ-1 and Allergic Diseases
IgE-mediated allergic diseases, such as asthma, rhinitis, and
atopic dermatitis (AD), are mainly driven by MCs (71, 72).
When the high-affinity IgE receptor FcεRI of MC surface is
aggregated by multivalent antigen, the Src family tyrosine kinases
are activated, in particular Lyn, leading to the recruitment
and activation of spleen tyrosine kinase (Syk) and downstream
signaling cascades, which ultimately causes the release of
bioactive and inflammatory mediators (72, 73). In addition, other
Src family kinases, such as Fyn, are also involved in antigen-
induced MC activation (74).

ROS plays a role in modulating MC activation in both innate
and acquired immune response, including allergic inflammatory
reactions (75). Activated MCs promote the generation of ROS
and inflammatory mediators through FcεRI cross-linking in
response to antigen stimulation (76, 77). Diminished levels of
DJ-1 and increased levels of ROS have been found in allergic
patients with AD (14). Additional studies have shown that DJ-1
KO mice present with enhanced passive cutaneous anaphylaxis
reactions and MC degranulation, compared with WT mice
(14). In addition, lack of DJ-1 augments ROS generation and
cytokine production in antigen-stimulated MCs (14). It has

been suggested that DJ-1 deficiency causes excessive ROS levels
in MCs, which differentially regulate the activation of Fyn
and Syk (14). Therefore, DJ-1 modulates antigen-induced MC
activation and allergic responses through ROS-dependent signal
transduction cascades.

Of interest, a recent report showed that DJ-1 regulated human
MC signaling by partially ROS-independent mechanisms (34).
The study revealed that non-oxidized DJ-1 translocated and
interacted directly with Lyn in lipid rafts after FcεRI engagement,
initiating Lyn activation and downstream signaling pathways, but
was only specific for human (34). Subsequently, cellular DJ-1 was
oxidized along with the decline of ROS levels, thus preventing
Syk deactivation to perpetuate MC signaling (34). Based on these
findings, DJ-1 plays a unique dual role in FcεRI-activated human
MC responsiveness, although the precise mechanisms are not
completely clear. We speculate that lipid modification especially
palmitoylation of three cysteine residues (C46/53/106) may be
required for DJ-1 redistribution to lipid rafts and the C-terminal
domain of DJ-1 may be required for interaction with Lyn.

Collectively, through ROS-dependent and/or ROS-
independent mechanisms, DJ-1 is a vital regulator of
MC-derived allergic disorders. In terms of an ROS-dependent

Frontiers in Immunology | www.frontiersin.org 5 June 2020 | Volume 11 | Article 994

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Role of DJ-1 in Immunity

FIGURE 3 | Proposed scheme of the role of DJ-1 in atherosclerosis plaques progression. Absence of DJ-1 leads to excess ROS, which could promote the expression

and activity of NHE1 as well as the activity of CXCR4 in response to SDF-1, thus driving CD4+ T cell migration and infiltration into intima. In addition, DJ-1-deficient

CD4+ T cells are prone to differentiate into pro-inflammatory Th1 and Th17 phenotypes. Therefore, lack of DJ-1 contributes to atherosclerosis plaque progression.

NHE1, Na+/H+ exchanger 1; CXCR4, chemokine receptor 4; SDF-1, stromal cell-derived factor 1.

mechanism, whether abnormal DJ-1/ROS levels influence
other MC-involved immune and inflammatory response
needs further investigation. Concerning the ROS-independent
mechanism, the DJ-1/Lyn association proposes new therapeutic
modalities for human allergic diseases or possibly other
Lyn-mediated disorders.

DJ-1 and AS
AS, a chronic inflammatory disease, is triggered by genetic
susceptibility and environmental risk factors, which is the main
pathological basis of ischemic cardio-cerebrovascular diseases,
including coronary artery disease (78, 79). Accumulating
evidence has demonstrated the essential role of T cells
as drivers and modifiers in AS (80). Mass cytometry has
characterized distinct CD4+ T cells that were activated
and differentiated by T cells in human AS plaque tissue
(81). After migration toward the activated endothelial
layer, CD4+ T cells are critical for local antigen-presenting
cells within early intimal fatty streaks, such as dendritic
cells and macrophages and associated inflammation and AS
progression (82, 83).

Studies have shown that DJ-1−/– mice present with
higher levels of neointimal plaque formation and increased
accumulation of CD3+ T cells in the plaque formed by carotid
artery ligation, compared with WT mice (13, 84). It is likely

triggered by the elevated proliferation of DJ-1 deficient CD3+ T
cells and enhanced migration in response to stromal cell-derived
factor-1 via overexpression of chemokine receptor 4 (13, 85). In
addition, a new relationship between the DJ-1-ROS-Na+/H+

exchanger 1 (NHE1) revealed that DJ-1-deficient CD4+ T
cells upregulated the expression and activity of NHE1, which
may have resulted from enhanced ROS generation (86). In
turn, NHE1 activity can impair ROS production (86). In this
respect, lack of DJ-1 promotes neointima formation since
NHE1 contributes to cell migration (87). Of interest, DJ-1
may take a part in the redox regulation of T cell receptor
(TCR) signaling. The expression of TCR signaling proteins
such as CD3 and TCR-β is dramatically diminished in DJ-
1-deficient activated T cells, while co-stimulatory CD28 is
upregulated (86). Moreover, DJ-1-deficient CD4+ T cells
show more potential to differentiate into pro-inflammatory
Th1 and Th17 phenotypes in an AS model (Figure 3) (13).
Taken together, it appears that DJ-1 is a negative regulator of
CD4+ T cell migration and activation, thereby suppressing
AS pathology.

DJ-1 and MS
MS is a chronic autoimmune disease of the central nervous
system with no cure currently, which is triggered by various
environmental factors in genetically susceptible individuals
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(88, 89). Recent literature suggests that astrocytes play dual roles
in the evolution of MS lesions. They not only adopt a neurotoxic
phenotype and act as immunocompetent cells but also promote
neuroprotection and axonal preservation (90). Emerging
evidence has revealed that ROS has implications in the pathology
of MS and experimental autoimmune encephalomyelitis (EAE),
the most widely used animal model of MS, and contributes
to demyelination and axonal damage of the central nervous
system (91–93).

Previous studies have shown that the expression of DJ-
1 is upregulated in the brains of EAE mice as well as the
cerebrospinal fluid from relapsing–remitting MS patients, along
with increased disease severity (94, 95). Active astrocytes express
higher levels of DJ-1 and Nrf2 in both active and chronic
inactive MS lesions, compared with control brain tissue and
normal-appearing white matter (96). In addition, DJ-1-deficient
astrocytes are prone to enhanced inflammation, including
cytokine production and oxidative stress (97, 98). Based on these
findings, we consider that DJ-1 may participate in astrocyte-
mediated protective effects in MS that are at least partially
dependent on Nrf2 signaling pathways. However, endogenous
regulation is not sufficient to prevent ROS-induced cellular
damage, which is abundant in inflammatory MS lesions. In
this respect, molecules that target DJ-1/Nrf2 signaling may
ameliorate MS development, since dimethyl fumarate that has
been FDA-approved for the treatment of MS can upregulate Nrf2
in astrocytes.

DJ-1 AS A SECRETORY PROTEIN

Previous studies have shown that DJ-1 is a secretory protein
and can serve as a biomarker of cancer, stroke, and early phases
of PD, which could be beneficial for diagnosis, monitoring,
and prognosis (99–101). As mentioned above, plasma DJ-1
protein levels are increased and correlate with sepsis severity
and poor clinical outcomes in patients (12). DJ-1 levels are
upregulated in the cerebrospinal fluid from MS patients and
may have implications with disease progression (95). In FcεRI-
activated human MCs, total intracellular expression of DJ-1
does not change but DJ-1 with oxidized C106 is upregulated,
coinciding with both DJ-1 secretion and diminished intracellular
ROS levels (14). In addition, oxidized forms of DJ-1 are
preferentially secreted through microdomains and the amounts
of extracellularly secreted DJ-1 are only a fraction of the cellular
DJ-1 content (34, 102). However, diminished levels of DJ-1 and
increased levels of ROS are found in AD patients compared with
healthy volunteers, in which alterations are not related to disease
severity (14). To the best of our knowledge, DJ-1 can be secreted
from various cells because of its ubiquitous expression, but the
precise mechanisms remain unknown. Under stress conditions,
DJ-1 acts as a sensor and plays a role in regulating cell responses.
Damaged cells most likely upregulate the expression of DJ-1 and
secrete it in order to attenuate environmental and intracellular
oxidative stress at least by self-oxidation to maintain homeostasis
(103). Therefore, it will be of clinical importance to determine if
secretion of DJ-1 has any disease-specific role or function.

PERSPECTIVES ON DJ-1 AS A
THERAPEUTIC TARGET OF IMMUNE AND
INFLAMMATORY DISEASES

Here, we reviewed the critical roles of DJ-1 in several immune
and chronic inflammatory diseases. The high levels of DJ-1
could be a candidate biomarker for sepsis and MS, while
the extent of DJ-1/ROS abnormality might be relevant to
the onset of AD. Taking into consideration that the pivotal
functions of DJ-1 involved with activation of macrophages,
MCs and T cells, it is a promising therapeutic target for
various immune and inflammatory diseases. Although
there is no clinical drug targeting DJ-1 for immunotherapy,
we can comment on potential treatment strategies for
future directions.

As discussed above, DJ-1 can act as an antioxidant against
oxidative stress and prevent the development of AS and MS.
DJ-1-binding compounds, including UCP0045037/compound
A, UCP0054278/compound B, and compound-23 identified
from the university compound library and zinc compound
library, prevent superfluous oxidation of DJ-1 and maintain
reduced DJ-1, which inhibits oxidative stress-induced
toxicity in in vitro and in vivo PD and stroke models
(104, 105). Recently, a DJ-1-based peptide named ND-13
was found to protect cultured cells against oxidative insults
through activating Nrf2 signaling and significantly improve
outcomes in a mouse model of PD (106). In addition,
some drugs or drug candidates have also been studied
to test their capability of facilitating DJ-1 expression or
activation. For example, sodium phenylbutyrate, a histone
deacetylase inhibitor, is reportedly neuroprotective in several
neurodegenerative disease animal models (107). Other studies
have revealed that sodium phenylbutyrate upregulates DJ-1
expression in both cultured cells and mice brains, which
is required for its broad protection from metabolic insults
(107). Therefore, these compounds/molecules represent
potential therapeutic modalities for AS and a wide range of
neurodegenerative diseases, including MS, since they can cross
the blood–brain barrier and exert protective effects against
oxidative stress.

In macrophage-involved sepsis, the DJ-1/p47phox

interaction is a decisive factor in regulating ROS-dependent
macrophage activation and LPS-responsiveness. It is
of great significance to unveil the relative influence of
cellular context that leads to different consequences of DJ-
1/p47phox interaction, as well as the crystal structure of the
DJ-1/p47phox complex. After solving these problems, the DJ-
1/p47phox/ROS axis may become an effective therapeutic target
for sepsis.

In human allergic diseases, DJ-1 was identified as a central
regulator of MC activation in response to antigen stimulation
(34). Allergic inflammatory responses such as degranulation,
cytokines, and eicosanoid production of human MCs were
inhibited after transfecting into DJ-1-targeted short hairpin
RNAs, suggesting that transcriptional knockdown of DJ-1 using
short hairpin RNAs may be an effective strategy to treat
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DJ-1-dependent human allergic disorders (34). In addition,
further characterization of DJ-1/Lyn interaction may open novel
avenues of therapeutic options in MC-mediated immune and
inflammatory diseases.
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