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Abstract

Background: DNA methylation is widely used as a biomarker in crucial medical applications as well as for human
age prediction of very high accuracy. This biomarker is based on the methylation status of several hundred CpG sites.
In a recent line of publications we have adapted a versatile concept from evolutionary biology - the Universal
Pacemaker (UPM) - to the setting of epigenetic aging and denoted it the Epigenetic PaceMaker (EPM). The EPM, as
opposed to other epigenetic clocks, is not confined to specific pattern of aging, and the epigenetic age of the
individual is inferred independently of other individuals. This allows an explicit modeling of aging trends, in particular
non linear relationship between chronological and epigenetic age. In one of these recent works, we have presented
an algorithmic improvement based on a two-step conditional expectation maximization (CEM) algorithm to arrive at a
critical point on the likelihood surface. The algorithm alternates between a time step and a site step while advancing
on the likelihood surface.

Results: Here we introduce non trivial improvements to these steps that are essential for analyzing data sets of
realistic magnitude in a manageable time and space. These structural improvements are based on insights from linear
algebra and symbolic algebra tools, providing us greater understanding of the degeneracy of the complex problem
space. This understanding in turn, leads to the complete elimination of the bottleneck of cumbersome matrix
multiplication and inversion, yielding a fast closed form solution in both steps of the CEM.
In the experimental results part, we compare the CEM algorithm over several data sets and demonstrate the speedup
obtained by the closed form solutions. Our results support the theoretical analysis of this improvement.

Conclusions: These improvements enable us to increase substantially the scale of inputs analyzed by the method,
allowing us to apply the new approach to data sets that could not be analyzed before.

Keywords: Epigenetics, Universal PaceMaker, Conditional Expectation Maximization, Matrix Multiplication, Symbolic
Algebra

Background
The study of aging and in particular human aging has
become a very active field in genomics [1, 2], in partic-
ular due to the role of DNA methylation [3]. Methyla-
tion serves as an epigenetic marker as it measures the
state of cells as they undergo developmental changes [4].
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Methylation however continues also beyond the devel-
opmental stage, as humans age, notwithstanding at sig-
nificantly lower rate [5–8]. Therefore DNA methylation
serves as a central epigenetic mechanism that helps define
and maintain the state of cells during the entire life cycle
[9–11]. In order to measure genome-wide levels of DNA
methylation, techniques such as bisulfite sequencing and
DNA methylation arrays are used [12].

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6606-0&domain=pdf
mailto: ssagi@research.haifa.ac.il
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Snir BMC Genomics 2020, 21(Suppl 2):257 Page 2 of 11

In his seminal paper [13], Steve Horvath defined the
term epigenetic clock, which later appeared to be a very
robust estimation to human age (see e.g. [14]). The
scheme is divided into two: children up to age twenty,
and adults. A raw estimated age is first calculated by a
weighted sum of 353 sites. Then, For the children, this raw
age is log transformed to reflect the real chronological age.
For adults, this raw age us taken as is. This approach, of
using an untransformed epigenetic state as chronological
age induces linearity between these two measures. This
linearity can be compared to the classical concept from
molecular evolutionary known as the as the molecular
clock (MC) [15, 16].

The rate constancy of MC can be relaxed by a mech-
anism dubbed the universal pacemaker (UPM or simply
pacemaker - PM) of genome evolution [17–20]. Under the
UPM, genes within a genome evolving along a linage, can
vary their intrinsic mutation rate in concert with all other
genes in the genome. Figure 1 illustrates pictorially differ-
ences between the two models - UPM and MC. The UPM
mechanism can be adapted from molecular evolution to
model the process of methylation.

In a line of works [21–23] we have developed a model
borrowing ideas from the UPM to describe methylating
site in a body. While the time linearity described above
can be perceived as the MC, under the UPM approach,
the adapted model assumes that all sites change accord-
ing to an adjusted time, which is a non-linear function of
the chronological time. This paradigm - denoted the epige-
netic pacemaker (EPM) - becomes appealing for studying
age related changes in methylation, where methylating
sites correspond to evolving genes.

The first work of the EPM [21] used a simple approach
to find the optimal, maximum likelihood, values for
the variables sought, what restricted the inputs ana-
lyzed to small sizes, and limited the biological inference.
In a recent work [22] we have devised a conditional

expectation maximization (CEM) algorithm [24] which is
an extention to the widespread expectation maximization
(EM) algorithm [25]. CEM is applied when optimizing the
likelihood function over the entire parameter set simulta-
neously is hard. The parameters are partitioned into two
or more subsets and optimiztion is done separately in an
alternating manner. In our specific setting, this partition-
ing separated the variable set into site variables and time
variables that are optimized separately in two alternat-
ing steps. Here however, we combine the structure of the
EPM model with insights from linear algebra, and with
the help of symbolic algebra tools (e.g. Sage-math [26])
trace the use of variables through the entire linear alge-
bra stage. The latter allows us to bypass that heavy step
completely, resulted in a prominent improvement, both
practical and theoretical, and in both running time and
memory space. This improvement is complemented by
a linear time, closed form solution to the second step,
the time step, of the CEM. The unification of these two
improved steps under a combined high level algorithm
as the CEM yields a very fast algorithm that ends in few
iterations of the EM algorithm.

The improvements described above give rise to a sub-
stantial increase in the scale of inputs analyzed by the
method, and enable the applications of the new approach
to data sets that could not be analyzed before.

Methods
The evolutionary model
Our model includes m individuals and n methylation sites
in a genome (or simply sites). We also have for each indi-
vidual j his chronological age tj. The set t = {tj} is a set
of time periods of all ages. There is additionally a set of
sites si that undergo methylation changes, where the rate
of site i is ri. The methylation process starts with an ini-
tial level at birth s0

i . Therefore the variables associated
with sites, the site variables, i.e., ri and s0

i are stored in the

Fig. 1 Molecular Clock vs Universal PaceMaker: Solid lines (colors) represent different methylation sites. Vertical (dashed) lines represent time points.
Hence dots along dashed lines correspond to (log) methylation rates at that very time point of each methylation site. Under the Molecular Clock
(MC) model (left), methylation rates of sites differ among each other but are constant in time. By contrast, under the Universal PaceMaker (UPM)
model (right), rates may vary during with time but the pairwise ratio between sites rates remains constant (diference between log rates is constant)



Snir BMC Genomics 2020, 21(Suppl 2):257 Page 3 of 11

vectors of size n and the variables associated with individ-
uals, tj are stored in an m-size vector t. Henceforth, we will
index sites with i and individuals with j. The variable si,j
measures the methylation level (or status) at site si in indi-
vidual j at time tj. Practically, it is the average methylated
sites among all that individual’s cells. Under the molecu-
lar clock model (i.e. when rate is constant over time), we
expect: sij = s0

i + ritj. However, we have noise compo-
nent εi,j that is added and therefore the observed value ŝij
is ŝij = s0

i + ritj + εi,j.
Given the input matrix Ŝ =[ ŝi,j], holding the observed

methylation level at site si of individual j, the goal is to
find the maximum likelihood (ML) values for the vari-
ables ri and s0

i for 1 ≤ i ≤ n. Henceforth we define a
statistical model under which εi,j is assumed to be nor-
mally distributed, εi,j ∼ N(0, σ 2). In [21], (Lemma 6
thereof) we showed that minimizing the following func-
tion, denoted the residual sum of squares (or RSS), is alent
to maximizing the model’s likelihood:

RSS =
∑

i≤n

∑

j≤m

(
ŝi,j − (

s0
i + ritj

))2 . (1)

Under such a setting, there is a precise linear algebra
solution to this problem, which can be computed effi-
ciently, meaning in time polynomial in the input size. We
will elaborate more on this in the sequel.

The more involved model is the EPM model. Under
this model, in contrast to the MC, individual’s sites may
change their rate at any point in life, and this occurs arbi-
trarily and independently of their counterparts in other
individuals. Nevertheless, when this happens, all sites of
that individual change their rate proportionally such that
the ratio ri/ri′ is constant between any two sites i, i′ at
any individual j and at all times. This very property, of
strict correlation between site rates at a certain individ-
ual, is denoted the EPM property and it can be shown [21]
that this is equivalent to multiplying the age of individual
j by the same factor of the rate change. This new age of
the individual reflects its biological, or epigenetic, age and
hence denoted as the epigenetic age (e-age), as opposed to
the chronological age (c-age). Therefore here, we do not
just take the given c-age as the individual’s age, rather esti-
mate the e-age of each individual and the c-age is formally
ignored (but see implementation comment in real data
analysis part). Consequently, in addition to the s0

i , ri vari-
ates of the MC model, the task under the EPM model is to
find the optimal values of s0

i , ri, and tj (where, under this
model, tj in the equation represents a weighted average
accounting for the rate changes an individual has under-
gone through life). Below, a solution to this optimization
problem is illustrated. The difference between the chrono-
logical age and the estimated epigenetic age is denoted as
age acceleration or age deceleration depending on the sign
of that difference.

As we here deal primarily with exact slutions to the
MC case, the task of comparing between the models -
MC and EPM - is beyond the scope of this specific work.
However, for the sake of completeness, and since this is
the prime goal of the EPM model, we now only men-
tion this. Under the statistical setting we described above,
we can use standard tools to compare between the MC
and EPM. Recall that under the MC model, a constant
rate of methylation at each site is assumed implying time-
, or age-, linearity. Conversely, in the alternative, relaxed,
model (EPM), there are no such restrictions, and in turn
an "epigenetic" age for each individual is estimated. By this
definition, the restricted MC solution is contained in the
solution set of the relaxed EPM model, and hence cannot
exceed the EPM solution. Therefore, in order to compare
the approaches, we use the likelihood ratio test (LRT) as
explained below.

In order to compare between two competing models,
we use a statistical test examining the goodness of fit of
the two models. The likelihood ratio test (LRT) assumes
one of the models (the null model) is a special case of the
other, more general, one. The ratio between the two like-
lihoods is computed and a log is taken. This quantity is
known to distribute as a χ2 statistic and therefore can be
used to calculate a p-value. This p-value is used to reject
the null model in the conventional manner. Specifically,
let � = L0/L1 where L0 and L1 are the ML values under
the restricted and the more general models respectively.
Then asymptotically, −2 log(�) will distribute as χ2 with
degrees of freedom equal the number of parameters that
are lost (or fixed) under the restricted model.
In our case, it is easy to see that

log (�) = −nm
2

log
R̂SSMC

R̂SSPM
(2)

where R̂SSMC and R̂SSPM are the ML values for RSS under
MC and PM respectively. Hence we set our χ2 statistic as

χ2 = nm log
(

R̂SSMC

R̂SSPM

)
. (3)

Results
In the “Results” section we describe both the technical
improvements, that is, the closed form solutions to the
CEM step of [22], and subsequently its application to sev-
eral data sets. We start with a description of the main
technical result of this work that is a significant improve-
ment of the previous standard linear algebra solution used
in both [21, 22].

Solving the MC model
Overview
As this is the central part of the work, we provide a brief
overview of the approach taken. In order to solve the MC
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model we apply a standard optimization procedure as is
shown below. The task is to minimize the RSS (Eq. (1)).
An immediate and basic observation, is that for every site
i, only two variables are involved - s0

i and ri, and hence
they can be optimized separately from any other site i′
variables - s0

i′ and ri′ . Indeed, while the same observa-
tion is enough for the time variable that we handle in
Solving the EPM problem section, as we have here two
parameters, the complexity of the polynomial system is
significantly larger and we cannot get such a (relatively)
simple expression as in Eq. (18). Instead we obtain two
polynomials of quadratic degree that should be solved
simultaneously. While the latter is manageable for a
numerical solution, when the time-values are known and
the polynomials are rather simple, here the goal is a closed
form solution, which is substantially more complex as all
time-variables exist in the equation. Such a solution forces
the use of symbolic algebra tools. Moreover, even using
such a tool was not enough to trace the structure of the
solution. It is the decomposition to the three steps of the
matrix operation, and the definition of special expanded
diagonal matrix, that allowed us to trace how each such
single operation operates on the solution.

Proof details
We now describe the proof detail. Denote the maximum
likelihood RSS by R̂SS and we use it for computing χ2

to obtain confidence values. Every monomial in the RSS
stands for an entry in the input matrix Ŝ, that is ŝi,j, and is
of the form:

ε2
i,j = (

ŝi,j − tjri − s0
i
)2 , (4)

where in our case the inputs are the ŝi,j and tj and the
variables sought are ri and s0

i , for every i ≤ n (our set of
sites).

Critical points in a polynomial are found through par-
tial derivatives with respect to every such variable. These
points lie in the 2n space where all these partial derivatives
vanish simultaneously [27]. The general case problem is
NP-hard, and hence no efficient (polynomial time) algo-
rithm exists, let alone a closed form solution. Hence, the
polynomial’s roots are normally found via some numerical
method.

Here however, the unique structure of the problem per-
mits a more efficient solution. When the residuals are
linear in all unknowns, we can use tools from linear alge-
bra to find a solution which have a closed form (given
that the columns of the matrix are linearly independent).
Under this formalism the optimal (ML) solution is given
by the vector β̂ as follows:

β̂ =
(

XT X
)−1

XT y, (5)

where X is a matrix over the variable’s coefficients in the
problem ( also denoted a design matrix), y is a vector

holding the observed values - in our case the entries of Ŝ,
and the RSS equation can be written such that for every
row i in X, yi − ∑

j Xi,jβj is a component in the RSS. Thus,
the RSS contains mn quadratic terms where m and n are
the number of individuals and sites respectively. Each such
term corresponds to an entry in Ŝ in the form ŝi,j − tjri − s0

i
where ŝi,j and tj are input parameters. This leads to the
following observation (stated in [21]):

Observation 1 ([21]) Let X be a mn × 2n matrix whose
kth row corresponds to the (i, j) entry in S, the first n vari-
ables of β are the ri’s and the second n variables are the
s0
i ’s, and the im + j entry in y contains si,j (see Fig. 2). Then,

if we set the kth row in X all to zero except for tj in the i’th
entry of the first half and 1 in i’th entry of the second half,
we obtain the desired system of linear equations (see again
illustration for row setting in Fig. 2).

The likelihood score is calculated by plugging in the val-
ues obtained for β̂ in (5) to the likelihood function (or
alternatively into the RSS).

Direct solution of the likelihood function
A standard (algebraic) implementation of Eq. (5) is heavy
as it requires the multiplication of the huge 2n × nm
matrix X followed by inverting the product matrix, and
then another multiplication.
Luckily, the specific matrices handled in our case possess
substantial structure that is imposed by the EPM frame-
work. Below, by a series of claims we prove the main result
of this part, i.e., a fast, closed form solution to Eq. (5) that
entirely eliminates the heavy linear algebra machinery.

As the subject is related to matrix multiplication, and
also to compare the improvement described here to the
previous approach, we provide a brief background to the
field. Matrix multiplication and inversion is a classical yet
very active subject in computational complexity. Naive
multiplication of an n × m matrix A by an m × p matrix
B takes �(nmp) time. The Strassen algorithm [28] was
the first to go below cubic time. It is based on a recur-
sive subdivision of the matrices in hand and its asymptotic
complexity is O

(
nlog27) = O

(
n2.807). There are sev-

eral improvements to the Strassen algorithm with the
Coppersmith—Winograd algorithm [29] of O

(
n2.375477)

time as the most prominent among them (but see very
recent slight improvements [30, 31]). However, even the
relatively simple Strassen algorithm requires significantly
more space than the naive �(nmp) algorithm, which
essentially works with only square matrices (although this
is easily solved but with additional complexity), which may
turn it to inferior in total. The later improved algorithms
incur huge constants that require very large inputs to be
competitive, making them practically irrelevant for our
case. Therefore, in our comparisons below we compare
our algorithm to the naive �(nmp) algorithm.
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Fig. 2 The mn × 2n design matrix X that is used in our closed form solution to the MC case. Every row corresponds to a component in the RSS
polynomial and the corresponding entries (ith and i + nth) in that row are set to tj and 1 respectively

Theorem 1 Solving Eq. (5) under the EPM framework
can be done in O(nm) time and O(nm) space in con-
trast to O

(
n3m

)
time and O

(
n2m

)
space under the naive

multiplication.

Proof Solving (5) incurs four matrix operations. We
prove the theorem by analyzing separately each outcome
of these steps. The final result is achieved by showing that
the vector β̂ from (5) can be constructed directly without
any of these operations. We start with the matrix product
XT X.

Lemma Consider the 2n × 2n matrix XT X from Eq. (5)
where X is as defined in Observation 1 and tj represents the
time (age) of individual j. Then, the matrix is composed of
four n × n diagonal matrices as follows:

XT X =
(

A B
C D

)
, (6)

where (1) A = diag
(

∑
i≤m

t2
i

)
, (2) B = C = diag

(
∑

i≤m
ti

)
,

and (3) D = diag(m).

We start by showing that each of the four submatrices
is diagonal. Consider first the upper left n × n subma-
trix A. This submatrix is composed of the dot products of
columns k, ł in X for k, ł ≤ n in X. It is easy to see that the
diagonal is non zero since we have non zero columns in X.
For off-diagonal entries (k, ł) in A, note that by the con-
struction of X, the kth column in X has non zero entries
only in positions (k − 1)m + 1 through km. Therefore, for
any k �= ł there is no overlap in the region of non-zero
entries and we get zero as the dot product.

For the upper right submatrix, this consists of the dot
products of the last (or second) n columns of X with the
first n columns. However, note that in terms of zero/non
zero entries, these columns are identical (i.e. the ith and
the n + ith columns have the same zero/non zero entries
for every i ≤ n). Therefore the same arguments as before
for diagonal/off-diagonal entries hold.

The third, lower left submatrix is identical to the upper
right since XT X is by definition symmetric.

The last submatrix is obtained by the dot products of
the last n columns in X with themselves. This submatrix is
diagonal by the same arguments as the upper left and the
fact the last n columns are identical to the first n columns
in terms of zero/non zero entries.
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It remains now to prove the value of each entry in these
diagonal submatrices. As the first n columns have t1 · · · tm
from the (k −1)m’th to the km’th entries for every column
k, we obtain

∑
i≤m

t2
i at the (k, k) entry. Similarly, as the last

n columns have 1 at each entry from the (k − 1)m’th to
the km’th, for every column k, we obtain

∑
i≤m

ti at the (k, k)

entry in the second and third submatrices, and m at the
(k, k) entry in the forth submatrix.

Lemma 1 above showed that the 2n × 2n matrix XT X
can be constructed directly from the input, without apply-
ing matrix multiplication. The next lemma below handles
inverting the resulted matrix XT X.

Lemma 2 The 2n × 2n matrix
(
XT X

)−1 can be factored
by the scalar � = 1(∑

i≤m ti
)2−m

∑
i≤m t2

i
and composed of

four n × n blocks:
(

XT X
)−1 = �

(
A B
C D

)
, (7)

where

1. A = diag(−m),

2. B = C = diag
(

∑
i≤m

ti

)
,

3. and D = diag
(

− ∑
i≤m

t2
i

)
.

We note though that the constant � is part of the
diagonals of the original matrix

(
XT X

)−1.

Proof We use the Woodbury matrix identity ([27], p.93)
stating that a partition of a matrix into four disjoint
submatrices satisfies:

(
A′ − B′D′−1C′)−1 = A′−1 + A′−1B′ (D′ − C′A′−1B′)−1 C′A′−1,

(8)

provided A′ and D′ − C′A′−1B′ are invertible. It is impor-
tant to note that A′, B′, C′ and D′ are general and have
no relationship to the specific matrices we analyze here,
specifically to A, B, C and D. By the Woodbury matrix
identity and the block-wise inversion formula [32] we have

⎛

⎝ A B

C D

⎞

⎠
−1

=
⎛

⎝
(
A − BD−1C

)−1 − (
A − BD−1C

)−1 BD−1

−D−1C
(
A − BD−1C

)−1 D−1 + D−1C
(
A − BD−1C

)−1 BD−1

⎞

⎠

(9)

Throughout the proof, we work with two matrices, the
“input matrix” XT X that we invert, and the inverted

matrix
(
XT X

)−1 that is the “output”. As we work block-
wise, we use the letters A to D to denote the blocks of the
result, output matrix, and the letters E to H for the input
matrix. Accordingly we have

XT X =
(

E F
G H

)
, (10)

and by the Woodbury identity we first need to show our
matrices E and H − GE−1F are invertible. By Lemma 1,

E = diag
(

∑
i≤m

t2
i

)
and hence invertible with E−1 =

diag
(

1∑
i≤m

t2
i

)
. Similarly, we also have H, G, and F diagonal

matrices, so H − GE−1F is diagonal and hence invertible.
Next we note that

(
E − FH−1G

) = diag

⎛

⎜⎜⎜⎜⎜⎝

∑

i≤m
t2
i −

(
∑

i≤m
ti

)2

m

⎞

⎟⎟⎟⎟⎟⎠
(11)

and therefore its inverse is

(
E − FH−1G

)−1 = diag

⎛

⎜⎜⎜⎜⎜⎝

m

m
∑

i≤m
t2
i −

(
∑

i≤m
ti

)2

⎞

⎟⎟⎟⎟⎟⎠

= � · diag(−m). (12)

Now, it can be seen that � appears in every submatrix
of the inverted matrix

(
XT X

)−1 but each time with dif-
ferent multipliers. As all our matrices are diagonal, they
commute and also their sum and products are diagonal, so
we only need to take care of the scalars in the diagonals.

For A we have:

A = (
E − FH−1G

)−1 (by Eq. (9))

= � · diag(−m). (by Eq. (12)) (13)

For B we have

B = − (
E − FH−1G

)−1 FH−1 (by Eq. (9))

= −AFH−1. (14)

Now, by Lemma 1 we have F = diag
(

∑
i≤m

ti

)
and H =

diag(m), therefore from (14) and (13) above we get

B = � · diag

⎛

⎝
∑

i≤m
ti

⎞

⎠ . (15)
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For C we have

C = −H−1G
(
E − FH−1G

)−1 (by Eq. (9))
= −H−1GA
= −AGH−1 (as diagonal matrices commute)
= −AFH−1 (as F = G by Lemma 1)
= B (by Eq. (14))

= � · diag

⎛

⎝
∑

i≤m
ti

⎞

⎠ . (16)

It remains to prove for D. By Eq. (9) we have

D = H−1 + H−1G
(
E − FH−1G

)−1 FH−1

D = H−1 + H−1GAFH−1 (again by Eq. (9))

= 1
m

+ 1
m

∑

i≤m
tiA

∑

i≤m
ti

1
m

(by Lemma 1)

= 1
m

+ 1
m

⎛

⎝
∑

i≤m
ti

⎞

⎠
2

m�
1
m

= 1
m

⎛

⎜⎜⎜⎜⎜⎝
1 +

(
∑

i≤m
ti

)2

m
∑

i≤m
t2
i −

(
∑

i≤m
ti

)2

⎞

⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

∑
i≤m

t2
i

m
∑

i≤m
t2
i −

(
∑

i≤m
ti

)2

⎞

⎟⎟⎟⎟⎟⎠

= � · diag

⎛

⎝
∑

i≤m
t2
i

⎞

⎠ (17)

Now that we ended with the structure of the matrix(
XT X

)−1, we can move to the third and last step of our
derivation of the matrix

(
XT X

)−1 XT . This matrix is not
square anymore and cannot be decomposed into square
diagonal matrices as before. Instead, it can be described
as an (n, m)-expanded diagonal matrix which is origi-
nated from a n × n diagonal matrix whose each entry was
duplicated m times to the right. Therefore the number of
rows is nm instead of n, and the “diagonal” entries are a
band spanning m entries. We care only for the 0-entries
and allow the m “diagonal” entries to attain any value.
Formally,

Definition 1 An (n, m)-expanded diagonal matrix is an
n × mn matrix in which for every row i, all entries before
the im entry, and after the (i + 1)m − 1 entry, must attain
zeros.

Lemma 3 The 2n×mn matrix
(
XT X

)−1 XT is composed
of upper and lower (n, m)-expanded diagonal matrices, U,
L as follows:
(1) [ U]k,l = −mtl−(k−1)m + ∑

i≤m
ti, for (k − 1)m ≤ l ≤ km

and 0 otherwise,
(2) [ L]k,l = tl−(k−1)m

∑
i≤m

ti − ∑
i≤m

t2
i for (k−1)m ≤ l ≤ km

and 0 otherwise.

Proof First, we note that by the definition of X (and
therefore of XT ), every m consecutive columns in XT

are of the form (0, . . . , 0, ti′ , 0, . . . , 0, 1, 0, . . . , 0) where the
location ti′ in the vector is the number of the m-tuple (i.e.
first m columns, second, etc). The identity of ti′ (i.e. i′) is
the location of it in the tuple (that is t1 is the first and tm
last in the tuple). It should be noted that the index i′ here
is entirely unrelated to i in the sums along the proofs and
represents an independent index. Now, the location of the
’1’ in the vector, is the same only that counting starts from
the middle of the vector (refer again to Fig. 2). Further-
more, by Lemma 2,

(
XT X

)−1 is composed of four n × n
block diagonal matrices. We therefore analyze separately
the upper n rows that correspond to the upper n coordi-
nates of each column in the result

(
XT X

)−1 XT , that is,
the first part of the claim. The upper k row, by Lemma 2,
is of the form (0, . . . , 0, −m, 0, . . . , 0,

∑
ti, 0, . . . , 0) where

the non zero values appear in the diagonals, i.e. k and
n + k (recall the length of the row is 2n). Since this kth
row is non zero only at these two diagonals the non zero
entries in kth row in the product

(
XT X

)−1 XT are from
the columns in XT where kth entry is non zero. This holds
exactly and only for the kth m-tuple of columns. Since
the form of the jth column in the kth m-tuple of rows
is (0, . . . , 0, tj, 0, . . . , 0, 1, 0, . . . , 0) the product of −mtj +∑
i≤m

ti is obtained as required. This completes the first part

of the claim.
The result for the lower n rows in

(
XT X

)−1 XT (second
part of the claim) is obtained similarly. Note that here, by
Lemma 2, the two diagonals have

∑
i≤m

ti and
∑

i≤m
t2
i , hence

the kth row in the lower half of
(
XT X

)−1 has
∑

i≤m
ti and

− ∑
i≤m

t2
i at positions k and n + k. Therefore, at the prod-

uct
(
XT X

)−1 XT we will have non zero values only for
columns ł for (k − 1)m ≤ ł ≤ km and the inner product
will be tj

∑
i≤m

ti − ∑
i≤m

t2
i as required.
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After settling the structure of the
(
XT X

)−1 XT matrix,
our goal is to produce the results vector β that contains
the values of our missing variables - the rate vector r and
the starting states s0. Recall that the matrix

(
XT X

)−1 XT

is of size 2n×mn and therefore any naive multiplication of
a vector with it will incur time of �

(
n2m

)
which will turn

all our previous efforts futile. However, as that matrix is
sparse, and importantly, we know the values of the entries
and their location without deriving the actual matrix, we
can do much better. The following observation formalizes
precisely the arguments above.

Observation 2 The multiplication
(
XT X

)−1 XT y can be
done with only 2nm scalar multiplications.

Proof We first note that the matrix
(
XT X

)−1 XT has
only m non-zero entries in each row and moreover, their
exact location is known and their value is dependent only
on that location. That suggests that we do not need to hold
the matrix or even some advanced data structure to keep
sparse matrices. Instead, in each row k of

(
XT X

)−1 XT

we find the entries in y that are affected, we calculate
the value in the matrix (this is determined solely by the
indices of that entry) and perform the multiplication with
the corresponding value in y. As the value at the entry is a
multiplication of the appropriate time value tk and the val-
ues

∑
i≤m

ti and
∑

i≤m
t2
i , we can compute the latter two once

in advance and use them throughout the matrix multipli-
cation.
Therefore we have 2m multiplication at the preprocessing
stage to calculate

∑
i≤m

ti and
∑

i≤m
t2
i and 2nm multiplication

for the actual matrix multiplication.

By Lemma 3 we can calculate in advance all entries of
that matrix and then multiply. Therefore we can conclude,

Corollary 1 The result vector β can be computed
directly without all the heavy linear algebra machinery.

This concludes the proof of the main Theorem 1.

Solving the EPM problem
Theorem 1 gives a closed form, non linear algebraic, solu-
tion to the MC problem. However, under the EPM model,
we cannot apply the same tools as in the MC model as the
set of times tj’s also need to be estimated, forming a non
linear function in the RSS polynomial. Hence we ought to
seek a heuristic solution that will provide a sound result
in reasonable time and for non trivial data, as the formu-
lation from the step above does not hold. The Conditional
Expectation Maximization (CEM) [24] algorithm that we
devised in [22] addresses this challenge by subdividing

the maximization step into two steps in which at each
step the likelihood function is maximized over a subset
of the variates conditional on the values of the rest of the
variates.

As our set of variates under the EPM formulation is aug-
mented with the times (individual’s epigenetic ages) it is
now composed of the set of sites, starting states, site rates,
and times. Hence, in order to arrive at a local optimum
point, we partition the set of variates into two: one is the
set of rates and start states, and the other is the set of
times. The CEM algorithm optimizes separately each such
set by alternating between two steps: the site step in which
the site specific parameters, rate and starting state, are
optimized, and time step in which individual’s times are
optimized. At every such step an increase in the likelihood
is guaranteed, until a local optimum is reached.

In our specific case, it remains to show how we opti-
mize the likelihood function at each step. Note, that one
of the sets of variates is exactly the set we solved for under
the MC formulation - the set of rates and site start states.
For this set, we already have a very fast algorithm that is
provably correct by Theorem 1. We now show how max-
imization is done for the other set of variates - the set of
times tj.

Lemma 4 The maximum likelihood value for the time tj
is given by the following closed form rational function:

tj =
∑
i≤n

ri
(
ŝi,j − s0

i
)

∑
i≤n

r2
i

. (18)

Proof Recall that the likelihood function (i.e. the RSS) is
a polynomial over the set of variates,

RSS =
∑

i≤n

∑

j≤m

(
ŝi,j − (

s0
i + ritj

))2 . (19)

In the current case, by the CEM algorithm, we freeze
all the variates save for tj’s, and therefore can treat them
as constants and optimize only for the tj’s. This is done by
finding the partial derivatives of the likelihood function,
with respect to the variates to be optimized, and then
solving these equations jointly (i.e. finding the set of
values under which all these partial derivatives vanish.
The above sentences are generic and apply to any polyno-
mial. However, our formulation posses a special structure
that provides for the closed form of (18). Specifically,
note that every term in the RSS contains exactly a single
time variate tj. This implies that after derivation, we will
have a polynomial only with that tj and since the RSS is
quadratic in tj, the derivative will be linear in tj. Denote Sj
the sum of the terms in the RSS associated with tj. Then



Snir BMC Genomics 2020, 21(Suppl 2):257 Page 9 of 11

Sj = ∑
i≤n

(
ŝi,j − (

s0
i + ritj

))2 , and after derivation in tj we

get S′
j = ∑

i≤n
2

(
ris0

i − riŝi,j + r2
i tj

)
.

After equating to zero and solving for tj Eq. (18) follows.

Corollary 2 The time optimization step can be done in
time O(nm).

Proof By Eq. (18) we see that for each tj we have n sum-
mations and each summation consists of a single multipli-
cation. As this applies to any tj, the result follows. We note
that the quantity

∑
r2

i can be computed independently as
a preprocessing step.

For the sake of completeness, we here describe the full
high-level CEM algorithm from [22]. The algorithm alter-
nates between the two steps, the time step and the site
step as long as an improvement greater than a threshold
δCEM is attained. We use RSS(p) to denote the evaluation
of the polynomial RSS with a set of parameters p.

Procedure CEM-EPM(Ŝ, δCEM):

1. Toss a random m-dimension vector t
2. Toss two random n-dimension vectors s0, r
3. Let y be a mn-dimension vector holding the entries

of Ŝ from top down, left to right (i.e. yim+j ← ŝi,j)
4.

(
r′, s′0

) ← apply the site step with parameters t
and y

5. t′ ← apply the time step with parameters r′, s′0,
and y

6. RSS0 ← RSS
(

Ŝ, t, s0, r
)

7. RSS1 ← RSS
(

Ŝ, t′, s′0, r′
)

8. if RSS1 − RSS0 > δCEM :

• (t, s0, r) ← (
t′, s′0, r′)

• return to 4

Real data results
We incorporated the improved procedure into the con-
ditional expectation maximization (CEM) procedure out-
lined in [22] and implemented it in code. In order to
demonstrate the speedup of the improvement, we applied
the code under two modes to real methylation data from
six data sets. The first mode runs the CEM algorithm
but when the MC stage is done via the four linear alge-
bra matrix operations as incurred by Eq. (5) under the
standard Python math library implementation - Numpy.
We note though that Python has a special function for
least squares in its linear algebra package of Numpy-
linalg.lstsq - but at this stage, we chose to use the manual

algebraic operations, and deferred this use to later. In the
second mode we simply used the closed form solutions
as described in the proof of Theorem 1. The time step
was performed identically in both modes, as depicted by
Eq. (18). For fast convergence of the iterative CEM algo-
rithm, we used the input chronological age as a starting
guess for the hill climbing. All data sets were processed by
a Macbook laptop with a 2.7 GHz Intel Core i5 processor
with 8GB memory.

The data sets differ mainly by their sizes - number
of individuals. As in previous studies, for all data sets,
we chose the 1000 sites providing the largest Pearson
correlation with time [21, 22]. Our first data set is the
GSE87571, from human blood taken from 366 individuals
[33]. The second data set is from GSE40279, consisting of
656 blood samples from adults [34]. The Next data set is
the GSE64495, also from blood samples of 113 individu-
als [35]. Then, the GSE60132, taken from peripheral blood
samples of 192 individuals of Northern European ancestry
[36]. The fifth data set is the GSE74193, consisting of 675
samples from brain tissues from before birth to old age
[37]. Our last data set is the GSE36064 data set of blood
samples taken from 78 children of ages ranging from one
year to 16 [38].

The analysis of the results obtained is highly involved
and concerns with the ages of individuals in the data sets,
therefore requires further analysis of the properties exhib-
ited by the epigenetic age. As this work focuses more
on the technical aspects of the algorithm and not on
the epigenetic aspects involved, the latter is beyond the
scope of the current work. Hence it is deferred to a later
publication, and we here focus only on running times.

The results of our runs are depicted in Table 1. We
see that for the two largest data sets, GSE40279 and
GSE74193, with 656 and 675 individuals respectively, the
naive linear algebra implementation could not terminate
and we associate this also to the space consumption of
this step and less to the time complexity (or to their
combination). For the four other data sets, we see a
speed up of above 300 with exception for GSE60132 with
speedup of 192. These results stand in agreement with
our prediction of a linear speedup as suggested by our
theoretical results.

Our next experiment was to check the effect of num-
ber of sites - n. Here, we chose to use the improved least
square package of Numpy. We chose only a single data
set from the above for this experiment, the GSE40279, of
656 blood samples from adults [34]. The number of sites
selected were 50, 100, 500, 1000, and 5000. The running
times obtained were 10 seconds, 1.23 minutes, 47 min-
utes, and 300 minutes, for the 50, 100, 500, 1000, sites
respectively. For the 5000 sites the Numpy least squares
could not terminate while our improved version of closed
form solution ended in less then 10 minutes.
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Table 1 Detailed experimental results. The columns, from left to right are: data set id, description (tissue, ages), # individuals, running
time (minutes) under the closed form - T(CF), running time (minutes) under the linear algebra operations - T(LA), residuals sum of
square (RSS) under MC, RSS under EPM, χ2, Degree of freedom for χ2. All p-values of χ2 are below 10−6

Data Set Description n T(CF) T(LA) RSSMC RSSEPM χ2 DF

GSE87571 Adults, Blood 366 2.4 745 29.9145 25.6283 2716.8 366

GSE40279 Adults, Blood 656 5.63 NA 142.265 115.3552 13479.5 656

GSE64495 Human, All Ages, Blood 113 0.7 254 258.333 203.851 26765.0 113

GSE60132 Human, All Ages, Blood 192 1.8 346 19498.871 17122.519 24952.7 192

GSE74193 Human, All Ages, Brain development 675 7.16 NA 1614.285 712.837 551740.8 675

GSE36064 Children Blood 78 0.52 193 166.774 148.41 9099.3 78

Conclusions and discussion
In this work we showed a closed form rational func-
tion solution to the epigenetic pacemaker problem. This
solution replaces the cumbersome linear algebra step
employed in the procedure for solving the likelihood func-
tion under the molecular clock (MC) model. Under the
EPM model, such a solution can be used as a subroutine
in the conditional expectation maximization approach we
have developed in our previous work. Under this approach
the MC problem is solved in a site step, that is applied
interchangeably to a time step, until a local optimum
point is reached. Both steps, as we showed here are done
accurately via closed form solutions.

We demonstrated the speedup induced by this improve-
ment by applying it to six data sets of considerable sizes.
The analysis used the CEM algorithm described above but
with and without the closed form algebraic solutions. We
showed that for data sets of moderate sizes, a speedup of
about 300 fold is achieved. Notwithstanding, for the larger
data sets of more than 600 individuals, the linear algebraic
solution could not run, and we associate this also to the
space improvement of the closed form solution.

Finally and importantly, the use of advanced tools such
as symbolic algebra has value beyond the mere algo-
rithmic improvements illustrated here, rather it grants a
deeper understanding of the internals of the model that
cannot be achieved otherwise.
As a future research direction, we seek to further under-
stand the likelihood surface. This understanding will not
only teach us about the degeneracy of this surface with
regard to multiple ML points, but also the relationship
between them and what invariants they satisfy. In the bio-
logical realm, an immediate goal is to provide a rigorous
analysis of the trends we see in aging - is there a trend
in the population towards non linear (i.e. constant) ratio
between epigenetic age versus chronological age.
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