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Abstract

Background: Processing of Ab-precursor protein (APP) plays an important role in Alzheimer’s Disease (AD) pathogenesis.
Thr residue at amino acid 668 of the APP intracellular domain (AID) is highly conserved. When phosphorylated, this residue
generates a binding site for Pin1. The interaction of APP with Pin1 has been involved in AD pathogenesis.

Methodology/Principal Findings: To dissect the functions of this sequence in vivo, we created an APP knock-in allele, in
which Thr668 is replaced by an Ala (T668A). Doubly deficient APP/APP-like protein 2 (APLP2) mice present postnatal lethality
and neuromuscular synapse defects. Previous work has shown that the APP intracellular domain is necessary for preventing
early lethality and neuromuscular junctions (NMJ) defects. Crossing the T668A allele into the APLP2 knockout background
showed that mutation of Thr668 does not cause a defective phenotype. Notably, the T668A mutant APP is able to bind Mint1.

Conclusions/Significance: Our results argue against an important role of the Thr668 residue in the essential function of APP
in developmental regulation. Furthermore, they indicate that phosphorylation at this residue is not functionally involved in
those APP-mediated functions that prevent (NMJ) defects and early lethality in APLP2 null mice.
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Introduction

Amyloid-b-precursor protein (APP) plays an important role in

Alzheimer’s Disease (AD) pathogenesis [1,2,3,4,5,6,7,8,9,10]. The

prevalent Amyloid cascade hypothesis of AD pathogenesis posits

that dementia is caused by Ab aggregates. The repeated failure of

therapeutic approaches based on this dogma in humans suggests

that alterations of normal APP functions may contribute to AD

pathogenesis. Thus, understanding the role of APP in vivo is much

needed to reveal fundamental insights into AD pathogenesis and

develop potential therapeutic intervention.

APP null mice have given scant information about the functions of

APP and these mice exhibit seizures, impaired grip strength,

locomotor activity, exploratory activity, cognition and LTP [11,12,

13,14,15,16,17,18,19,20,21,22,23,24]. APP Like Protein 1 and 2

(APLP1 and ALPL2), which belong to the APP gene family, are

structurally [25,26] and functionally similar to APP. The evidence

that APLP12/2, APLP22/2, APP2/2 and APLP12/2APP2/2 mice

are viable, whereas combined APP2/2APLP22/2 or APLP12/2

APLP22/2 double KO [27,28] die shortly after birth show that

functional redundancy compensates for the loss of essential gene

functions in APP knock out mice. Analysis of APP/APLP2 double

knockout (dKO) mice uncovered an essential role for the APP

and APLP2 in the patterning of neuromuscular junction (NMJ)

[29,30,31].

Recent evidence shows that the synaptogenic function of APP

requires the highly conserved intracellular domain [32], and in

particular Tyr682[33]. This residue is part of the YENPTY

sequence (amino acids 682–687, following the numbering of 695

amino acids long brain APP isoform), which is a docking site for

numerous cytosolic proteins [34,35,36,37,38,39,40,41,42,43].

Some proteins, such as Grb2 [44,45], Shc [45,46], Grb7 and

Crk [47] interact with APP only when Tyr682 is phosphorylated;

others, like Fe65, Fe65L1 and Fe65L2 only when this tyrosine is

not phosphorylated [48].

Thr668 is another conserved residue of the intracellular region of

APP. This residue has been intensively studied as phosphorylation

of Thr668 promotes Pin1 binding [49]. The interaction of Pin1

with APP has been shown to reduce APP processing and Ab
generation, thereby protecting from AD [50]. These data are not

easily reconcilable with other evidence showing that mutation of

Thr668 in vivo does not grossly alter APP processing [51,52]. Here,

we asked whether Thr668 and its phosphorylation plays an

important physiological role. The NMJ deficits and the early

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e18006



postnatal lethality present in the APP/APLP2 double knockout

animals provide genetic readouts to determine the role of this

amino acid in vivo. We have created an APP knock-in (ki) mouse in

which Thr668 is replaced by an alanine (we will refer to these mice

as APPTA), thereby abolishing phosphorylation at this position. We

report that APPTA/TA/APLP22/2 mice, unlike APP/APLP2 double

KO mice, do not present NMJ deficits and early lethality,

demonstrating that phosphorylation of Thr668 is dispensable for

the essential function of APP in developmental regulation.

Materials and Methods

Mice and Ethics Statement
Mice were maintained on a C57BL/6 background for several

generations (at least 15). Mice were handled according to the

Ethical Guidelines for Treatment of Laboratory Animals of Albert

Einstein College of Medicine. The procedures were described and

approved by the Institutional Animal Care and Use Committee

(IACUC) at the Albert Einstein College of Medicine in animal

protocol number 20040707. APP-ki generation and genotyping

has been described [51]. Genotyping for the APP and APLP2 KO

alleles were performed as described in the Jackson Laboratory

WEB site.

Mouse brain preparations and GST pull-down
experiments

Brains were homogenized (w/v = 10 mg tissue/100 ml buffer)

in tissue homogenization buffer (20 mM Tris-base pH 7.4,

1 mM EDTA, 1 mM EGTA) supplemented with protease

and phosphatase inhibitors (PI and PhI). The post nuclear

supernatant (PNS) was prepared by precipitating the nuclei

and debris by centrifuging the homogenates at 1000 g for

10 min. GST fusion proteins were produced and purified as

described [38]. The binding experiments were performed using

,6 mg (200 pmol) of GST or GST-Mint1 PTB [47] following

the methods described previously [38]. To detect the bound

APP we used the 22C11 (Chemicon) antibody in Western blot

analysis.

Immunofluorescence staining
The muscle dissection, preparation, staining, and quantifica-

tion of the neuromuscular synapses have been previously

described [29,31]. Confocal images were obtained with a Zeiss

510 laser-scanning microscope, and quantification was done

using the ImageJ program from NIH. Antibodies: anti-

synaptophysin (Dako, 1:500); Anti-neurofilament (DSHB

1:500); anti-APP (Epitomics Inc., Y188, 1:250); anti-Alexa-

488/555/647 conjugated secondaries and a-bungarotoxin (Mo-

lecular Probe).

Statistical Analysis
Genotyping analysis of the offspring from APPki/2APLP2+/2

male and female intercrosses was performed using x2 analysis. The

Student’s t test was used for all other analyses (*P,0.05;

**P,0.01; ***P,0.001). Data were presented as the average 6

SEM.

Figure 1. Survival analysis of APPTA ki mice on APLP2 null background. Analysis of genotypes of 128 offspring collected at P1 derived from
crosses of APPTA/2APLP2+/2 male and female mice. All genotypes were recovered at close to a Mendelian ratio (df = 8, p.0.95). Analysis of genotypes
of these same offspring at P28 showed that the number of APP2/2APLP22/2 animals observed was much lower than expected (highlighted in bold,
df = 8, p,0.001). On the contrary, the number of APPTA/TAAPLP22/2, APPTA/2APLP22/2 was still close to a Mendelian ratio (B, df = 8, p.0.20).
doi:10.1371/journal.pone.0018006.g001

Phospho-Thr668 Is Not Required for APP Functions
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Results and Discussion

Expression of APPTA on APLP2 null background does not
lead to early postnatal lethality

We tested whether APLP2 KO mice carrying the APPTA mutation

have a lethal phenotype, similar to the APP/APLP2 dKO mice. This

genetic approach is ideal to assess whether the Thr668 mediates the

essential functions of APP. We inter-crossed double heterozygous

mice harboring one allele each of the APP and APLP2 null mutations

(APPTA/2APLP2+/2). We then determined the genotypes of the

offspring at postnatal day 1 (P1) and day 28 (P28), and compared the

number observed against the number expected (Figure 1A and B).

Genotyping of P1 pups revealed a close to Mendelian distribution of

all genotypes, indicating no embryonic lethality as expected (Chi

square analysis: at P1, gd2/e = 1.775, df = 8, p.0.95). The

distribution of APPTA/TAAPLP22/2 and APPTA/2APLP22/2 mice

did not change between age P1 and P28 (Chi square analysis at P28,

gd2/e = 10.575, df = 8, p.0.20) (Figure 1). These results

demonstrate that mutation of Thr668 into an Ala does not affect

the essential functions of APP that, when compromised, lead to

postnatal lethality of the APP/APLP2 double deficient mice. This is

in sharp contrast with what is observed in mice with deletion of the

entire APP intracellular domain or a point mutation of Tyr682,

another conserved residues in the AID, which show early lethality

similarly to APP2/2APLP22/2 animals [32,33].

Analysis of neuromuscular synapses development in
APPTA knock-in animals

APP2/2APLP22/2 animals show dramatic defects in the

development of NMJ [29,31]. This phenotype, just like the

postnatal early letality, requires the APP intracellular domain and

Tyr682 [32,33]. Analysis of the neuromuscular synapse at P0 stage

showed that APPTA/TAAPLP22/2 mutants exhibited normal

neuromuscular synapses, compared to APP+/+APLP22/2 litter-

mate controls (Figs. 2A and 2C and quantified in 2B and 2D).

These results demonstrate that, in agreement with the survival

result, Thr668 is not involved in the NMJ analysis of APPTA/TA

APLP22/2 mutants revealed indistinguishable staining patterns

compared to the littermate APP+/+APLP22/2 controls expressing

wild-type APP (Figure 2A and C).

The TA mutation does not affect the APP/Mint1
interaction

It has been proposed that presynaptic differentiation induced by

APP involves intracellular association with Cask and Mint1 [31],

Figure 2. No obvious neuromuscular synapse defects were observed in APPTA/TA/APLP22/2 mice. A. Whole-mount staining of littermate
APP+/+/APLP22/2control (Ctrl) and APPTA/TA/APLP22/2 (TA) P0 diaphragm muscles with antibodies against synaptophysin (Syn). Anti-BTX was used to
mark the AchRs. B. Quantification of the average band width of endplates marked by anti-BTX (band width in control 260.0625.17 mm vs. TA
282.9618.63 mm. p.0.05, student t-test. Mean 6 SEM of 3 animals/genotype). C. Higher magnification images showing endplates closely apposed
by Syn and no axonal Syn staining in the TA mutant. D. Quantification of the area percentage of AchR endplates covered by Syn (control 0.62660.024
vs. TA 0.58860.017. p.0.05, student t-test. Mean6SEM of 20 endplates/genotype). Scale bar: A, 100 mm; C, 20 mm.
doi:10.1371/journal.pone.0018006.g002
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similarly to neurorexin/neuroligin (NX/NL) and SynCAM class

of synaptic adhesion proteins [53,54,55]. We asked whether

mutation of Thr668 interfered with the formation of a Mint1/APP

complex. To test for this, we produced a recombinant protein in

vitro, in which the PTB domain of Mint1 was fused to GST for

production and purification from bacterial cultures. As a control

we produced GST on its own [47]. These recombinant proteins

were used for pull down experiments from mouse brain lysates.

GST-Mint1 interacts with APP in samples isolated from both WT

mice and mice expressing the APPTA mutant form. The

interaction is specific since GST does not bring down APP and

a molecule reacting with the anti-APP antibody is not isolated by

GST-Mint1 when brain lysates from APP KO mice are used

(Fig. 3). These results support the view that the Thr668 mutation

does not abolish presynaptic functions of APP because it does not

impair the recruitment of Mint1.

The highly conserved APP intracellular region is required for

APP-mediated survival and neuromuscular synapse assembly in

vivo, and Tyr682 is necessary for these functions of APP [32,33]. We

report here that, in contrast, mutant APP mice with a non-

phosphorylatable alanyl residue at position 668, have preserved

essential APP functions. The non-consequential effects of the

mutation on Thr668 suggest that the APP/Pin1 interaction does

not play a role in signaling pathways that regulate survival and

synaptogenesis.

Thr668 is followed by a Pro, which generates a consensus site

for phosphorylation, in APP family members and in other species,

except for APLP1 and Drosophila APP ortologue. Phosphorylation

of APP at Thr668 impairs Fe65 interaction [47,56] while

promotes Pin1 binding [49]. Pin1 is a prolyl isomerase that

regulates protein function by accelerating conformational chang-

es. It has been reported that Pin1 is downregulated and/or

inhibited by oxidation in Alzheimer’s disease neurons [57].

Moreover, Pin1 knockout causes tauopathy and neurodegener-

ation [58], and increased amyloidogenic APP processing [50].

These findings have lead to propose that phosphorylation of

Thr668 protects from AD by promoting interaction with Pin1,

which in turn has a protective effect against amyloidosis and

tauopathy. These conclusions however seem to be contradicted

by evidence showing that APPTA knock-in mice, in which

phosphorylation at position 668 is suppressed, show levels of

Ab comparable to wild type mice, suggest that Thr668

phosphorylation does not play an obvious role in governing the

physiological levels of brain Ab in vivo [51,52].

The evolutionary pressure that has resulted in conservation of this

residue during evolution of APP denotes the importance of Thr668

for APP functions. However, the finding that the APPTA mutation

rescues NMJ and lethality of APP/APLP2 deficient mice, argues

against an essential function for phosphorylation of this residue. The

synaptic promoting property of APP may involve the formation of

the APP/Mint1/Cask complex in pre-synaptic termini [31]. Mint1

belongs to a gene family that comprises also Mint3. Both Mint1 and

3 bind APP and have opposite effects on the localization of AID

[59]. Here we focused on Mint1 because only Mint1 interacts with

CASK. In the trans-synaptic interaction model we have previously

proposed for APP function in sysnaptogenesis, APP-Mint1-CASK is

likely the central complex mediating APP effect [31]. As discussed,

Mint1-CASK complex has also been implicated in Neurexin-

Neuroligin mediated signaling in presynaptic organization

[53,54,55]. The finding that Mint1 binds both WT and APPTA

mutant but not APPYG [51] backs this hypothesis.

Growing evidence supports a role for alteration of synaptic

function in AD. Our previous finding that the intracellular region

and Tyr682 of APP plays a role in synaptogenesis makes it a

legitimate possibility that the APP intracellular domain may

contribute to AD pathogenesis [32,51]. If phosphorylation of

Thr668 has a protective role in AD pathogenesis, the finding that

APPTA/ALPL22/2 mice do not present NMJ development defects

represents a notable exception to this hypothesis. However, it is

still possible that Thr668 and its phosphorylation may functionally

regulate synapses in the Central nervous system, especially those

involved in memory formation in the hippocampus. To answer

these questions, it will be important to unveil the biological

mechanisms that regulate phosphorylation of APP on Thr668 and

the signaling pathways that are controlled by this functional

domain of APP. In addition, Thr668 and its phosphorylation may

regulate signaling pathway that are distinct by those that when

compromised double mutant mice, lead to early lethality and NMJ

dysfunctions. It is also conceivable that those roles of Thr668 may

play a pathogenic role in AD.
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