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Abstract: Animal venoms offer a valuable source of potent new drug leads, but their mechanisms
of action are largely unknown. We therefore developed a novel network pharmacology approach
based on multi-omics functional data integration to predict how stingray venom disrupts the physi-
ological systems of target animals. We integrated 10 million transcripts from five stingray venom
transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large
functional data network. The network featured 216 signaling pathways, 29 of which were shared
and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single
envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed
analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin
and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom.
The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate
receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic
activity among these candidates, with nerve growth factors cooperating with the most abundant
translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharma-
cology approach, here applied to stingray venom, can be used as a template for drug discovery in
neglected venomous species.

Keywords: transcriptomics; high-content screening; multi-omics data integration; drug discovery;
venomics

1. Introduction

More than 200,000 animal species produce venom, mostly for defense and/or pre-
dation [1–4]. Venoms are cocktails of up to 3000 bioactive compounds, including pro-
tein/peptide toxins, metabolites and salts [3,5]. Venoms are produced in specialized tissues
or glands, and are actively transferred to target organisms via spines, teeth or modified
cell-harpoons [3]. Venom targets are found in most major physiological pathways, induc-
ing local effects such as tissue disruption and systemic effects such as paralysis [3,6–8].
The diverse components of venoms offer a rich source of novel molecular entities for
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medical applications. The first example was the cardiovascular agent captopril, which
was approved in 1981 for the treatment of hypertension and congestive heart failure [9].
Twelve toxin-based drugs are currently approved for indications such as cardiovascular
disease, chronic pain and diabetes, and are derived from species with abundant and/or
pure venoms, such as snakes, cone snails, and the gila monster [9,10]. Other toxins are
used as research tools to identify new pharmaceutical targets and mechanisms of action
(MoA), or for the development of pesticides and cosmetics [11,12]. Animal venoms could
help to fill the drug development pipeline because there are hundreds of venomous species
each producing up to thousands of bioactive molecules, potentially yielding more than
20 million drug candidates [13].

Animal toxins interact with a vast array of targets [8], but MoAs, toxin synergisms and
polypharmacology (the ability to act on multiple targets) have been determined for only a
few toxins. The MoA is an elementary property for drug discovery and development [14],
which can be used to reduce the side effects often responsible for high attrition rates during
clinical trials [15], and to facilitate the development of antivenoms [16]. This knowledge
gap must be addressed urgently, given the increasing realization that most drugs act on
multiple targets [17,18] and participate in synergistic interactions to modulate complex
biological systems [18,19].

Network pharmacology is a drug discovery tool that integrates multiple omics meth-
ods on a functional level to achieve a holistic interpretation of biological responses to
specific molecules [20]. Here we report the development of a novel network pharmacology
approach for the comprehensive prediction of animal venom protein MoAs (Figure 1). Most
venomous species have been neglected as a source of drug leads because their venoms are
inaccessible in sufficient quantity and/or purity for analysis, often being extracted as crude
venoms contaminated with mucus and the contents of epidermal cells [21]. In particular,
many marine, vertebrate, defensive and non-glandular (secretory cells) venoms have been
overlooked [21–23]. Modern sample-friendly omics approaches can help to overcome
these limitations, making venoms more accessible for drug discovery. More than 30% of
venomous vertebrates are fish [1], with defensive venom systems (and diverse delivery
structures) arising by convergent evolution at least 19 times among 2900 species [24,25].
However, the remote habitats of these species and the typical impurity of venom samples
limit our ability to test venom composition and activity. We selected stingrays as a rep-
resentative system because they best reflect limitations set out above. Stingrays are the
most speciose order of venomous cartilaginous fish, including 218 extant marine, brack-
ish and freshwater species featuring defensive tail spines covered with venom-secreting
cells, epidermis and mucus [26–28]. To better understand the composition and MoAs of
stingray venom proteins, we created a functional data network based on integrated gene
expression and bioactivity profiles. We analyzed the transcriptomes of venomous spine
tissue isolated from five marine and freshwater stingray species to determine which genes
were strongly expressed, and thus most likely to encode venom peptides and proteins. We
then determined the effect of stingray venom on HeLa cells by image-based high-content
bioactivity screening. In the final network pharmacology step, the transcriptomic and
bioactivity data were screened against a functional database to create a large data network
for comparative analysis, thus increasing the information content. This network combined
the original compositional and bioactivity properties with additional target, pathway and
druggability data. Specific, curated clusters were extracted from this network to reveal
MoAs associated with envenomation symptoms, target systems and pathways. This net-
work pharmacology approach is an inexpensive sample-friendly alternative to traditional
methods, providing a comprehensive insight into MoAs and toxin synergisms of crude and
neglected animal venoms.
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Figure 1. Schematic representation of the integration workflow used to predict the mechanisms of action
for drug candidates in crude stingray venom. First, venomous spine tissue from five stingray species
was used for transcriptome analysis and high-content bioactivity screening. Second, the functional
data inferred from both approaches were integrated, enabling the identification of clusters specific for
particular envenomation symptoms that reveal candidate toxins and mechanisms of action. The spine
3D model was reproduced with permission from Dr. Jessica Reichert and the stingray image was based
on a photograph taken by Hamid Badar Osmany (www.fishbase.org, accessed on 6 August 2019).

2. Results
2.1. Crude Venom Transcripts

RNA was isolated from five stingray species representing the two most important
stingray habitats and the two largest families: Dasyatidae (marine, Dasyatis pastinaca, Himan-
tura leoparda, and Pteroplatytrygon violacea) and Potamotrygonidae (fresh water, Potamotrygon
leopoldi, and Potamotrygon motoro). An average of 30.5 million raw reads were assembled into
an average of 2.1 million transcripts per species transcriptome. The bioinformatics workflow
is shown in Appendix A (Figure A1), the complete datasets are provided in Datasets S1–S5,
quality parameters are listed in Table A1, and the evaluation is summarized in Dataset S9.

Transcriptome-inferred crude venom composition and expression patterns should be
considered only as a guideline because replicates are missing, and it is difficult to distinguish
between toxins and physiological proteins. Even so, venom composition based exclusively on
toxin-related annotations against the ToxProt database indicated high interspecific similarity,
with 24% of toxin families overlapping in all five stingray transcriptomes, representing 65–74%
of all hits (Figure 2A and Dataset S9). This is translated to 19 shared toxin families, among
which the translationally-controlled tumor protein (TCTP) family was the most strongly ex-
pressed in each species, often directly followed by the glycosyl hydrolase 56 (hyaluronidase)
family, although hyaluronidase expression was low in H. leoparda and P. violacea. The shared
family dataset also included the ohanin/vespryn and phospholipase A2 (PLA2) families, and
the widely distributed venom kunitz-type, venom metalloproteinase (M12B), and peptidase
S1 toxin families (Dataset S9). Members of the calmodulin family and several putative neuro-
toxins representing the snake three-finger toxin (TFT) family were also strongly expressed in
stingray venom tissue. However, some toxin-like transcripts matched proteins/peptides with
no family attribution such as the augerpeptide hhe53, which was found in all five transcrip-
tomes and was the most abundant transcript in H. leoparda, P. leopoldi and P. violacea. From a
biochemical perspective, the stingray venom mainly featured enzymes and other proteins, but
has just a low content of peptides (<50 amino acids), representing only ~6% of the annotated
hits against ToxProt when fragments were ignored (Dataset S9).

www.fishbase.org
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Figure 2. Putative venom composition and venom bioactivity profiles of stingray species. (A) The
putative venom composition inferred from eight transcriptome datasets (five newly analyzed, and
three based on publicly available data denoted in the species code with number 5–7 [29,30]) from
seven stingray species, is represented by the top 25 toxin families. (B) A Venn diagram based on
the toxin family data reveals interspecific similarities. (C) The venom bioactivity profile obtained
from a high-content screening assay in HeLa cells is represented as a heat map, including 31 highly-
informative cytological parameters and 712 reference compounds clustering with stingray venom
extracts within a distance threshold of 0.7 (cytological parameters, from outer to inner, are denoted
by the letter codes A-AF, which are listed in the Appendix B). (D) Images of stained actin (green), ER
(blue), Nf-κB (red), and mitochondria (yellow) in HeLa cells.

Figure 2. Putative venom composition and venom bioactivity profiles of stingray species. (A) The
putative venom composition inferred from eight transcriptome datasets (five newly analyzed, and
three based on publicly available data denoted in the species code with number 5–7 [29,30]) from
seven stingray species, is represented by the top 25 toxin families. (B) A Venn diagram based on
the toxin family data reveals interspecific similarities. (C) The venom bioactivity profile obtained
from a high-content screening assay in HeLa cells is represented as a heat map, including 31 highly-
informative cytological parameters and 712 reference compounds clustering with stingray venom
extracts within a distance threshold of 0.7 (cytological parameters, from outer to inner, are denoted
by the letter codes A-AF, which are listed in the Appendix B). (D) Images of stained actin (green), ER
(blue), Nf-κB (red), and mitochondria (yellow) in HeLa cells.
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We also conducted an interfamilial comparison of the crude venom transcripts between
the marine (Dasyatidae) and freshwater (Potamotrygonidae) species (Figure 2B). Differences
were only considered when more than one species shared the same pattern. The most
remarkable difference was the stronger expression of the true venom lectin family in marine
species, contrasting with the low or absent expression in freshwater species.

2.2. Venom Bioactivity

Crude venom from three stingray species (D. pastinaca, P. violacea, and P. leopoldi) was
tested in a high-content screening (HCS) assay based on HeLa cells. The species were
selected based on their comparability in the transcriptome dataset and the availability of
sufficient fresh venom samples for bioactivity screenings. The raw data were reduced in a
stepwise manner to 31 highly informative cytological parameters (Appendix B). The raw
and reduced datasets, as well as lists of reference drugs (clustering with our crude venom
extracts), are listed in the Datasets S9 and S10.

The cytological profiles of all three stingray venom extracts revealed dose-dependent
effects against the NF-κB pathway and the cytoskeleton, as well as the nucleus, mitochon-
dria, endoplasmic reticulum (ER) and lysosomes (Figure 2C,D). These results indicated a
slight increase in the translocation of NF-κB into the nucleus, the degradation of F-actin,
nuclear chromatin condensation, impairment of mitochondrial thiol-related pathways, a
loss of ER integrity, and the depletion of lysosomes. In all cases the effects were strongest
for the undiluted venom extract of P. violacea. The cytological profiles of stingray venom
clustered with those of ~29% of all the reference compounds we tested. This revealed that
drugs with similar bioactivity profiles to crude stingray venoms (and probably similar
MoA) mainly target the nervous and cardiovascular systems, but also the immune system
(e.g., anti-inflammatory and anti-allergic drugs).

The comparison of marine and freshwater species revealed that marine but not fresh-
water stingray venom induces effects against the ER and lysosomes. In addition, P. violacea
venom triggered the translocation of p53 into the nucleus, membrane disruption (resulting
in the cytoplasmic redistribution of the membrane marker), ~40% cell death, cell cycle arrest
during the G0/G1 phase, and a strong increase in the number of cells with a low DNA
content, indicating damaged (necrotic) or apoptotic cells. Interestingly, 11 of 12 reference
compounds clustering with the (marine) D. pastinaca venom profile overlapped with those
clustering with (marine) P. violacea venom but none of them overlapped with (freshwater)
P. leopoldi venom.

2.3. Network Pharmacology

The transcriptome and bioactivity datasets each offer a limited perspective on the MoA
of stingray toxins. However, the integration of both data topologies at the same functional
level allows a more holistic interpretation. Therefore, stingray toxin-like transcripts and
reference compounds with similar MoAs to our stingray venom extracts were screened
against the KEGG database, linking the transcripts and clustered drugs to molecules with
known targets, target systems, pathways and associated diseases. An average of 32% of
all stingray transcripts and 58% of clustered reference compounds were annotated in this
manner. The datasets were integrated at a pathway level because this was the most infor-
mative and abundantly inferred functional category. The pathways inferred by transcript
and reference compound annotation were compared, resolving the integrated dataset to
a total of 216 pathways among which 29 were shared and represented 15 target systems,
including the Nervous system, Circulatory system, Cancer, Signal Transduction, and the Immune
system. We focused on this shared dataset, which included 70 transcripts representing 16
toxin families and 70 reference drugs clustered by HCS mostly neuropsychiatric and car-
diovascular agents. The core dataset included the interlaced toxin-like transcripts, cellular
bioactivities, and functional data enabling the prediction of stingray toxins MoAs against
individual target systems and pathways in the context of specific envenomation outcomes.
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Fish venom triggers severe pain as the primary envenomation symptom, and we
congruently identified nine pathways in the core dataset with potential roles in pain. These
pathways represented the Signal transduction, Nervous system and Sensory system categories
and were targeted by 20 transcripts and 41 HCS-clustered reference drugs (Appendix C).
The manual curation and graphical representation of molecular targets and associated
signaling cascades in the pain-related pathways allowed us to predict the MoA of pain-
inducing stingray venom components in the nervous system, which we refer to hereafter
as the pain cluster (Figure 3).
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Figure 3. Pain cluster based on integrated transcriptomic and bioactivity data. The integration of
transcriptomic (blue icons) and high-content bioactivity screening data (yellow icons) predicts the
mechanism of action of pain-related drug candidates in stingray crude venom. Green icons show
consistencies in both datasets.

Our pain cluster clearly indicated that G-protein coupled receptor (GPCR) calcium
signaling is a key MoA for pain-inducing stingray toxins. Specifically, the transcriptome
hits bibrotoxin and cholecystoxin, and 16 of the HCS hits (including ebastine, ekomine, and
carvedilol) were found to target distinct GPCRs (5-HTR2, HRH1, ENDR, CC2KR, or ADR),
subsequently activating a Gα protein (Gαq). This in turn causes phospholipase C (PLC) to
hydrolyze a membrane substrate into inositol-1,4,5-triphosphate (IP3) and diacylglycerol
(DAG). IP3 acts as a second messenger, binding to its receptor in the ER or sarcoplasmic
reticulum (SR) and triggering intracellular calcium release. DAG activates protein kinase
C (PKC), which phosphorylates targets such as TRPV1, a non-selective membrane cation
channel, contributing to further intracellular calcium accumulation.

The activation of calcium signaling was supported by the remaining pain cluster hits,
albeit acting via different signaling pathways. Three hits in the transcriptome dataset
represented venom nerve growth factor 1 (vNGF), which binds a receptor tyrosine kinase
(RTK) and directly activates either PLC or PKC (Figure 3). NGFs can activate extracellular

Figure 3. Pain cluster based on integrated transcriptomic and bioactivity data. The integration of
transcriptomic (blue icons) and high-content bioactivity screening data (yellow icons) predicts the
mechanism of action of pain-related drug candidates in stingray crude venom. Green icons show
consistencies in both datasets.

Our pain cluster clearly indicated that G-protein coupled receptor (GPCR) calcium
signaling is a key MoA for pain-inducing stingray toxins. Specifically, the transcriptome
hits bibrotoxin and cholecystoxin, and 16 of the HCS hits (including ebastine, ekomine, and
carvedilol) were found to target distinct GPCRs (5-HTR2, HRH1, ENDR, CC2KR, or ADR),
subsequently activating a Gα protein (Gαq). This in turn causes phospholipase C (PLC) to
hydrolyze a membrane substrate into inositol-1,4,5-triphosphate (IP3) and diacylglycerol
(DAG). IP3 acts as a second messenger, binding to its receptor in the ER or sarcoplasmic
reticulum (SR) and triggering intracellular calcium release. DAG activates protein kinase
C (PKC), which phosphorylates targets such as TRPV1, a non-selective membrane cation
channel, contributing to further intracellular calcium accumulation.
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The activation of calcium signaling was supported by the remaining pain cluster hits,
albeit acting via different signaling pathways. Three hits in the transcriptome dataset
represented venom nerve growth factor 1 (vNGF), which binds a receptor tyrosine kinase
(RTK) and directly activates either PLC or PKC (Figure 3). NGFs can activate extracellular
signal-regulated kinase (ERK), a transcriptional regulator with key roles in several pain
states [31]. Nine additional HCS hits activate protein kinase A (PKA) via GPCRs, and
subsequently release calcium from the ER via the ryanodine receptor RyR2 (Figure 3).
Intracellular calcium modulation was also supported by HCS hits on voltage-gated calcium
channels and TRPA1, a non-selective sodium/calcium channel. However, six HCS hits
provided evidence for the depletion of intracellular calcium, although the subsequent
calcium-modulated reactions include the induction of metabolic processes, muscle con-
traction, exocytosis, autophagy, apoptosis, neurogenesis or neuronal transmission [32,33].
EF-hand proteins are involved in several of these processes, and our transcriptome dataset
included 11 additional hits for the calmodulin homolog calglandulin.

Our novel network pharmacology approach has a remarkable multiplexing capac-
ity. Depending on the focus, multiple clusters can be built from our integrated shared
core functional network, including cardiovascular and hemostasis clusters (Appendix C,
Figures A2 and A3). Briefly, the cardiovascular cluster included 14 HCS reference drugs
and 17 transcriptome hits against putative cardiotoxins: one endothelin, one cholecys-
tokinin, 15 (acidic/basic) PLA2 homologs, and a natriuretic peptide as another candidate
although it was below our expression level cutoff. The highlighted MoA in this cluster indi-
cated the activation of vascular and probably cardiac contraction and relaxation phases via
the PKA, PKC, or PKG pathways, which subsequently activate or inhibit myosin heavy and
light chains. In the hemostasis cluster (Figure A3), we identified nine hemotoxins with po-
tential fibrin(ogen)olytic activity, including two venom lectins, a serine proteinase inhibitor,
a venom plasminogen, a thrombin-like enzyme, and four (acidic/basic) PLA2 homologs.

3. Discussion

Animal venoms are a rich source of potent and diverse new drug candidates that
could provide large insights into novel MoAs and synergistic activities.

Stingray venom is typically characterized by gel electrophoresis, zymography, in vivo
assays or mass spectrometry, usually focusing on freshwater species from the genus Pota-
motrygon [26,34,35]. Transcriptome analysis has also been carried out for three Potamotrygon
and one Neotrygon species [29,30,36]. These studies reported the presence of enzymes,
but also other proteins and peptides in the mass range 1–276 kDa. Stingray venom is
transferred via a serrated tail spine, causing severe injuries and typical fish envenomation
symptoms: intense pain, hemorrhage, edema, erythema, hypotension, secondary necrosis,
and infection [34,37]. Our transcriptome and HCS data confirmed the general composi-
tional and functional properties discussed above, including apparent inflammatory, tissue
and hemostasis disrupting activity.

The high abundance of transcripts representing the TCTP and hyaluronidase families
in our transcriptome datasets agrees with previous findings in Potamotrygon species and
is commensurate with the symptoms of stingray envenomation [33,34]. TCTP toxins are
thought to induce edema [38], whereas hyaluronidases act as venom spreading factors
and have been found in two Potamotrygon species [26,39]. Interestingly, the putative
hyaluronidases we identified were expressed at high levels in both marine and freshwater
species, contrasting with the absence of hyaluronidase activity in marine stingray Dasyatis
guttata [26] and hyaluronidase sequences in the Neotrygon kuhlii venom proteome [36].

Stingray venom modulates hemostasis by delaying coagulation via the activity of
fibrin(ogen)olytic enzymes [40]. Accordingly, we identified serine proteases and metallo-
proteinases in all our transcriptome datasets, supporting the bioactivity data and providing
the basis for the hemostasis cluster (Figure A2). The abundance of PLA2 transcripts also
agrees with the reanalysis (for comparability) of the Potamotrygon transcriptomes reported
previously (Datasets S6–S8) [29,30] and corresponding enzymes have been identified in
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nearly all animal venoms analyzed thus far. However, only minimal PLA2 activity was
found in stingray venom in one previous study [26], and another study claimed that PLA2
has never been detected in fish venom [21]. A possible explanation for this discrepancy
is the presence of catalytically inactive K49-PLA2 isoforms as found in snake venoms,
which would generate transcriptome hits even in the absence of activity [41]. However,
our transcriptome hits solely indicated the presence of active D49-PLA2 (Appendix D,
Figure A4) and the role of this enzyme family therefore requires further investigation.

Our transcriptome analysis revealed several intriguing results. First, the augerpeptide
was present in all of our transcriptome datasets and was often the most abundant transcript,
supporting its detection in the first P. motoro transcriptome study [30]. However, the
activity of this peptide remains unknown. Second, calglandulin was identified in our
transcriptome datasets and in three previously reported transcriptomes representing the
genus Potamotrygon [29,30], but calglandulin was previously suggested to be a component
of the venom secretion process rather than the venom itself [42]. However, the importance
of calcium signaling during envenomation and the activation of EF-hand proteins by
calcium may indicate that calglandulin has additional roles in the venom that require further
investigation. Finally, we identified abundant, high-ranking transcripts representing several
neurotoxins of the snake TFT family in our five stingray transcriptomes and in the reanalysis
of existing Potamotrygon transcriptome data [29,30], supporting the presence of this family
even if the expression level is typically low (Datasets S6–S9). For further clarification of
these hits, we assessed our transcripts for the characteristic TFT patterns (i.e., cysteine
scaffold, TOLIP domain, and the absence of certain post-translational modifications) and
found that at least 10 transcripts fulfilled all criteria and thus confirm the presence of
TFT-like proteins in stingray venom (Appendix D, Figure A5). Despite a number of studies
indicating a stronger relationship between the transcriptome and proteome, in terms of
presence/absence if not abundance [43], the augerpeptide, calglandulin and TFT hits, as
well as the PLA2 transcripts and the marine hyaluronidases, require further confirmation
at the protein level.

Our bioactivity assay revealed compartmental signals that provide insight into the
cellular responses to stingray venom. Although the precise MoAs remain unknown,
the translocation of Nf-κB, mitochondrial impairment, and the disruption of the ER and
lysosomes indicate oxidative stress at the cellular level [44]. The mitochondrial signal in
particular matches previous finding that venom of the marine stingray Pastinachus (Dasyatis)
sephen alters mitochondrial membrane potential by enhancing the production of reactive
oxygen species [45]. In the ER and lysosome, swelling, loss of membrane integrity, and
even toxin accumulation can contribute to the observed effects [44,46–48]. Another scenario
for the loss of organelle and plasma membrane integrity is the observed degradation of
the cytoskeleton triggered by P. violacea venom, as also reported for cnidarian toxins [49].
The loss of plasma membrane integrity may explain the cytotoxicity of marine P. violacea
crude venom in our bioactivity assay. Contradictorily, it appears that the Potamotrygon
crude venom did not induce cell death on our bioassay, although necrosis in freshwater
envenomations is typically remarkably severe [26,34]. Given the inferred importance of
calcium signaling as a target of stingray toxins, the disruption of the ER, mitochondria, and
lysosomes may reflect their role as intracellular calcium stores [33].

Each dataset provided only limited insight into the MoAs and synergistic activity of
stingray venom components, so to achieve a more holistic interpretation we integrated the
gene expression and bioactivity data in a novel network pharmacology approach. Several
fields, including natural product research, drug discovery, and pharmacology, typically
involve large-scale screens based on target binding or MoAs [50], but more recent trends
combine these approaches to provide data on compound-target interaction as well as
on-target and off-target MoAs [51,52]. Special emphasis is placed on the identification of
key nodes that modulate system phenotypes in the context of multi-target drugs and drug
combinations [18]. Our approach adds to the growing number of studies addressing this
knowledge gap. The resulting data network revealed that the functional integration of
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omics data can identify MoAs and potential synergistic interactions for multiple system
perturbations visualized as clusters for major stingray envenomation symptoms.

The primary effect induced by stingray venom is pain. The induction or modulation of
peripheral pain by animal toxins is often linked to ligand-gated or voltage-gated ion chan-
nels, such as TRPV1 and Nav1.7, respectively [53]. However, our pain cluster suggested that
the major pain-inducing mechanism of stingray toxins is the activation of calcium signaling
via GPCRs. Three major GPCR-dependent pain pathways are known—the excitatory IP3
and PKA pathways, and the inhibitory PKG pathway [54]—and all three were highlighted
by our pain cluster. However, the main route synergistically activated by two stingray
venom transcripts and supported by 16 HCS hits appears to be the GPCR-IP3 pathway.
Several lines of evidence indicate that GPCRs in nociceptors (pain-perception neurons) are
targeted by venom proteins, especially those from marine animals [54]. For example, sea
anemone gigantoxin I activates the GPCR-IP3 cascade, followed by the phosphorylation of
TRPV1 and calcium release [55]. Stonefish verrucotoxin appears to act as a β1-adrenoceptor
agonist, increasing L-type calcium currents via the PKA pathway and inducing neurotrans-
mitter release [56]. Furthermore, the synthetic ω-conotoxin ziconotide (an approved drug)
and two α-conotoxins from the cone snail block N-type calcium channels in response to
inhibitory GPCR signaling [57,58].

The perception of severe pain may involve the combined activation of several path-
ways [59]. In our pain cluster, we identified multiple targets that activate calcium signaling
via different routes (IP3, PKA, and also by directly acting on ion channels). However,
we also found evidence for alternative routes, such as NGFs that induce pain via RTK
signaling and downstream ERK and IP3 pathway activation [31]. This is often related to
inflammation, another well-documented stingray envenomation symptom. The multiple
predictions of serotonin and histamine receptor activation in our pain cluster support
the intimate relationship between inflammatory mediators and nociceptor hypersensi-
tivity, sometimes leading to hyperalgesia [59]. Nociceptors can be activated directly by
venom-related histamine, bradykinin or serotonin, as previously suggested for stingray
venoms, or toxins mimicking their activity [60,61]. However, indirect activation is also
possible when venom compounds induce the massive release of endogenous inflammatory
mediators, for example by mast cell degranulation [60]. The abundant TCTP transcripts in
our datasets may encode key mediators of this process by strongly inducing the release of
histamine [38], although the precise mechanism is unknown. The synergistic activity of
TCTPs and hyaluronidases may further trigger the severe necrosis often associated with
stingray envenomation [34]. Necrosis is often more severe following envenomation by
freshwater stingrays, and we congruently identified nine HCS hits for HRH1 that were
exclusively related to the bioactivity profile of P. leopoldi.

We also found strong evidence for the polypharmacology of stingray venom com-
ponents. The candidate pain-inducing toxins in our pain cluster were bibrotoxin and
cholecystoxin, which are associated with neuropathic pain and inflammation but also
cardiovascular disorders [62,63]. Accordingly, these candidates were not only identified
in the pain cluster, but also in the cardiovascular cluster (Figure A2). Their activity in
each cluster may involve different second messengers, but ultimately cause the release of
intracellular calcium thus matching our prediction of IP3-calcium pathway activation.

Taken together, our results agree with previous network pharmacology data showing
that multi-omics data integration can provide robust predictions of MoAs and synergies
in animal venoms that have not been characterized in detail. Our transcriptome and
bioactivity data indicate that stingray venom includes enzymes, other proteins and a
small number of peptides that can induce pain, disrupt the tissue matrix and hemostasis,
and induce pro-inflammatory and cardiotoxic activity. Our integrative approach relies
on the quality and abundance of functional data as well as additional manual curation.
However, the integrated data network and resulting clusters comprehensively unraveled
the mechanisms underlying major stingray envenomation symptoms and their timeline.
First, pain is mainly induced via GPCR-IP3 signaling and potentiated by GPCR-PKA, NGF-



Mar. Drugs 2022, 20, 27 10 of 25

ERK/IP3, and voltage-gated ion channel activation. Second, inflammation triggers further
pain based on the massive release of intracellular histamine, for example by strongly
expressed TCTP toxins. Finally, tissue disruption leads to the typical necrotic profile
probably reflecting the combination of strongly expressed hyaluronidases and massive
inflammation. Our network pharmacology approach was therefore able to identify several
routes via which stingray venom synergistically induces system perturbations, but we also
found initial evidence for the polypharmacological nature of stingray toxins that trigger
multiple systems such as nociception, cardiovascular and immune.

4. Materials and Methods
4.1. Crude Venom Extracts and cDNA Library Preparation

Venomous tissue (45–212 mg) was scraped from the tail spine of mature live speci-
mens of two freshwater stingrays (P. leopoldi and P. motoro; Potamotrygonidae) and three
marine stingrays (D. pastinaca, H. leoparda and P. violacea; Dasyatidae) following Directive
2010/63/EU on the protection of animals used for scientific purposes. Total RNA was
extracted for mRNA isolation, cDNA library construction and sequencing (50 million
paired-end reads) carried out by Vertis Biotechnologie (Freising, Germany) and Macrogen
(Amsterdam, Netherlands) using the Ilumina HiSeq2000 platform. For high-content bioac-
tivity screening, crude venom was obtained from 30–104 mg of spine tissue from mature
live specimens of P. leopoldi, D. pastinaca and P. violacea using a standardized methanol-based
bioactive compound extraction protocol (Appendix B, Table A2).

4.2. Venomous Tissue Transcriptome Analysis

The transcriptome analysis workflow is shown in Figure A1. Briefly, 182 Gb of
sequence data from five new stingray transcriptomes (species listed above, one specimen
per transcriptome) and three existing datasets [29,30] were quality checked, trimmed and
assembled using a combination of Trinity [64] and rna-SPAdes [65] to reduce algorithm-
specific peculiarities (Table A1). Gene expression levels were calculated by mapping
raw reads back onto the assembled transcripts using HISAT2 [66] and sequences with
low coverage (TPM < 0.5) were discarded. Translated transcripts were annotated by
sequence comparison in BLAST [67] and HMMER [68] using UniProt [69] and Pfam [70] as
references, followed by venom-related annotation solely against ToxProt [71]. Annotations
were filtered by identity (≥40%), coverage (≥40%), and bit score (≥30) and only the
highest-scoring hit of the remaining transcripts against a unique UniProt ID was taken
into account. Putative toxin family classification was based on ToxProt and was collapsed
at the superfamily level where possible. Toxin family expression is presented as relative
values (the sum of the expression values of single hits in a single toxin family divided by
the number of these hits). Transcripts were further annotated against KEGG [72] and KEGG
Medicus [73] to improve cross-linking to the bioactivity data and to identify signaling
pathways and target systems. Functional category names from KEGG are herein denoted
with capital and italics.

4.3. High-Content Bioactivity Screening (HCS)

We compared the effects of stingray venom extracts to the effects induced by 712 ref-
erence compounds from the LOPAC 1280 library (Sigma-Aldrich, Steinheim, Germany)
in a HeLa cell bioactivity assay. Briefly, serially-diluted venom extracts were tested in
four replicates. After 24 h, four fluorescence-based cell-staining protocols (Appendix B)
were used to stain nine cellular targets (Table A3). HCS was carried out on the Cellomics
ArrayScan VTI platform (Thermo Fisher Scientific, Waltham, MA, USA) equipped with
a 10x objective EC Plan Neofluar (Zeiss, Oberkochen, Germany). Images were analyzed
using the Compartmental Analysis Bio Application (Cellomics). At least 500 valid objects
were analyzed per well. Cell loss and cycle analysis was carried out in parallel using the
Cell Cycle Bio Application (Cellomics) and a minimum of 2000 valid objects. Raw data
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were processed for stepwise data reduction and statistical evaluation until a final set of
31 highly informative parameters remained.

For each reference compound and crude venom sample, the induced cell responses
were aggregated into high-resolution cytological profiles, defined as unique fingerprints of
cellular perturbations generated by joining distinct features derived from spatially-resolved
measures of fluorescence intensities relative to control treatments [74]. These profiles
were processed by hierarchical clustering (complete linkage clustering and Spearman rank
correlation) in Multi Experiment Viewer v4.9 [75]. Clusters were defined as compounds
(venom-associated or references) that fell within a distance threshold of 0.7. We assumed
that similarities in phenotypic responses among compounds indicate similar biological tar-
gets and MoAs [52,76]. Therefore, as described above for transcriptome analysis, reference
compounds clustering with crude venom profiles were manually annotated against KEGG,
linking the phenotypic responses to the transcriptome-based activity profile.

4.4. Integrative Approach

The functional data inferred independently by transcriptome analysis and bioactivity
screening were integrated to create a dataset of shared signaling pathways including
functionally annotated hits generated by both approaches. From this integrated dataset,
single clusters were identified for each envenomation effect, as herein, but can also be
identified for target systems and toxin families/classes. The cluster for the primary stingray
envenomation effect (pain) was created by combining all pathways potentially related to
this effect and using the hits in these pathways to reveal potential molecular targets and
induced cellular responses either by functional annotation in KEGG or additional manual
curation. Finally, the venom transcripts, molecular targets and cellular response data were
compiled in specific clusters to identify drug candidates in the stingray venom and predict
their major MoAs.
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Appendix A. De Novo Transcriptome Assembly, Expression, Annotation, and
Functional Pre-Integration

The transcriptome analysis workflow was developed to predict the putative venom-
gland composition from RNA-Seq reads (Figure A1 and Table A1). Raw reads were
initially reviewed using FastQC v0.11.8 [77] following adapter trimming using cutadapt
v1.16 [78]. Next, all read ends were trimmed according to their quality score using a win-
dow size of 1 and reads with an average quality score < 20 were discarded using PRINSEQ
v0.20.4 [79]. Assembly was carried out using a combination of Trinity v2.8.4 [64] and
rnaSPAdes v3.13.0 [65] to reduce algorithm-specific peculiarities. Trinity was used with
default parameters plus modifications for the reconstruction of small peptides by apply-
ing min_contig_length = 60 as well as trimomatic (SLIDINGWINDOW:4:5, LEADING:5,
TRAILING:5, MINLEN:25), cpu (128) and max_memory = 1200 G. We also used rnaSPAdes
with default parameters plus modified values for cpu (128) and memory (1200) to increase
the calculation speed. Both reconstructions were compared by BLAST and 100% identical
contigs (identity = 100%, query_coverage = 100%, subject_coverage = 100%) were removed.
The resulting dataset was translated using TransDecoder v5.1.0 [80] to extract open reading
frames with a minimum amino acid length of 20, allowing the recovery of peptides and
even toxin fragments.

Figure A1. Flowchart showing the bioinformatics workflow used to predict putative venom-gland
composition from RNA-Seq reads.

For annotation, sequences were compared to NCBI-NR (release-2019_03), UniProt
(release-2019_05), ToxProt (release-2019_05), KEGG (release-2018_12) and KEGG-Medicus
(release-2019_03) using BLAST v2.8.1 [81] to identify homologous sequences and transfer puta-
tive functionalities. All results were initially filtered by identity ≥ 40%, query_coverage ≥ 40%,
subject_coverage ≥ 40% and score ≥ 30. Multiple hits against a single reference protein
were collapsed by only using the hit with the highest score. Domains were annotated using
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HMMER3 v3.2 [82] with PfamA (release-2019_03) models and default parameters. Results
were filtered by E-value (<1 × 10−17) and coverage (>0.45).

Table A1. Summary statistics for the stepwise quality control and annotation of the five transcrip-
tomes in the present study and the three existing and reanalyzed potamotrygonid transcriptomes.

Potamotrygon
motoro

Potamotrygon
leopoldi

Himantura
leoparda

Dasyatis
pastinaca

Pteroplaty
-trygon
violacea

Potamotrygon
motoro a

Potamotrygon
falkneri b

Potamotrygon
amandae c

Raw reads 33.218.150 27.144.363 30.544.874 29.866.375 31.603.727 38.674.474 7.687.715 7.269.571

Length 150 100 150 150 100 90 35-252 35-252

Assembled contigs 1.920.972 2.008.981 2.229.479 697.969 3.729.178 2.545.786 306.784 562.924

Protein sequences
Transdecoder 13.813.790 4.512.397 5.886.854 2.002.545 7.811.707 10.054.481 2.537.742 4.496.691

Annotation contigs
in UniProt 37.583 22.400 36.133 28.976 22.064

Annotated contifs in
UniProt (with
expression > 0)

18.034 8157 16.859 28.976 6878

Unique UniProt hits 7120 3660 6673 9949 2713

Annotated contigs in
ToxProt (unfiltered) 899.886 435.270 565.171 179.645 776.647 975.812 1.047.614 407.053

Total ToxProt hits
(filtered by expression >0,
ID, coverage, bit-score)

776 214 1229 499 193 388 403 435

Unique ToxProt hits
(filtered by expression >0,
ID, coverage, bit-score)

147 84 160 122 129 154 78 97

Unique annotated Toxin
Families (collapsed on
superfamily level
where possible)

53 38 43 44 46 57 33 41

Annotated contigs in KEGG 56 24 43 63 22 64 52 57

Annotated unique KEGG
Ortholog Group 19 12 24 26 9 31 24 32

Annotated KEGG Pathway 72 68 69 68 43 90 68 80

Annotated KEGG Drugs 4 3 1 12 1 4 2 4

Pathway overlap with HCS 22 22 26 27 16 58 24 26

a Reanalyzed transcriptome of Potamotrygon motoro [30]. b Reanalyzed transcriptome of Potamotrygon falkneri [29].
c Reanalyzed transcriptome of Potamotrygon amandae [29].

To quantify the expression of transcripts, adapter-trimmed raw reads without fur-
ther quality trimming were mapped using HISAT2 v2.1.0 [66] against the reconstructed
transcriptome to detect most possible transcription variants. Abundance was calculated
using StringTie v1.3.6 [83] with a minimum length of 60 and a minimum read coverage of 2
allowed for the predicted transcripts. Abundances are displayed in TPM (transcripts per
million, normalized expression level in RPM units) to allow indirect comparison between
samples. Due to the nature of the probes, no biological replicates were available and
therefore a valid differential gene expression calculation was not possible.

Appendix B. Experimental Details and Data Analysis of High-Content Screening

Table A2. Sampled species, tissue amount, extraction method, and methanol volume for extraction
of stingray crude venoms for the high-content bioactivity screening assay.

Species Dry Weight (mg) Extraction Method Extraction Volume (µL)
Potamotrygon leopoldi 35 Methanol 500

Dasyatis pastinaca 30 Methanol 500

Pteroplaytrygon violacea 104 Methanol 1000
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Tissue extraction protocol. Tissue was frozen in liquid nitrogen and powdered with a
mortar (Table A2). The powder was dissolved in 1 mL 98% methanol per 100 mg tissue,
mixed, and incubated at 30 ◦C for 1.5 h. After overnight incubation at 4 ◦C, the mixed
samples were heated to 30 ◦C, centrifuged and the supernatant divided into aliquots of
100 µL and lyophilized.

Assay preparation. A dilution series was prepared by reconstituting the lyophilized
aliquots in 500 µL Dulbecco’s modified Eagle’s medium (DMEM). HeLa cells were seeded
into 384-well plates at a density of 2000 cells per well in 25 µL DMEM and were incubated
for 24 h at 37 ◦C in a 5% CO2 atmosphere. The cells were treated with 25 µL of the
re-dissolved samples or reference compounds in four replicates for 24 h.

Staining protocols. Cell staining was carried out as previously described [84]. After
fixation in 4% formaldehyde for 20 min, cells were permeabilized, blocked, stained, and/or
repetitively washed using the Cellomics HCS reagents (Thermo Fisher Scientific): Wash
Buffer (WB), Wash Buffer II (WBII), Blocking Buffer (BB) and Permeabilization Buffer (PB).
Following the last staining step, all plates were washed three times with WB, sealed, and
stored at 4 ◦C for imaging. The nine cell compartments were categorized and stained using
four different staining protocols (panels) as described below.

Panel 1 (actin): Fixed cells were permeabilized for 15 min and blocked for 15 min
before adding 12.5 µL of the primary staining solution (cell culture medium) containing
3.6 µL/mL phalloidin-FITC (0.5 mg/mL in methanol; Cat. P5282, Sigma Aldrich) and
1.3 µL/mL of the β-tubulin antibody (1 mg/mL; Cat. MA1-19187, Thermo Fisher Scientific)
per well and incubating for 1 h. After two washes with BB, we added 12.5 µL of the
secondary staining solution in BB (1:500 of 1 mg/mL of GAM-DyLight 550; Cat. 84540,
Thermo Fisher Scientific) and incubated for 1 h. The cells were then washed three times
with WB and nuclei were stained with 0.1 µL/mL Hoechst 33342 (20 mM; Cat. 62249,
Thermo Fisher Scientific).

Panel 2 (ER/lysosomes/membrane): Cells were incubated with stains for the ER
(1 µL/mL of 1 mM ER-Tracker Blue-White DPX; Cat. E12353, Thermo Fisher Scientific)
and lysosomes (0.2 µL/mL of 1 mM LysoTracker Red DND-99; Cat. L7528, Thermo Fisher
Scientific) in pre-warmed DMEM for 30 min at 37 ◦C in a 5% CO2 atmosphere. After
fixation as above, cells were washed twice with WB and incubated with 5 µL/mL labeled
wheat germ agglutinin (1 mg/mL WGA Alexa Fluor 488 Conjugate; Cat. W11261, Thermo
Fisher Scientific) for 10 min. WGA target intracellular membranes of the Golgi, lysosomes
and nucleus [85,86] when incubated with cells for more than 1 h. However, our short
incubation of 10 min avoids cellular uptake and staining is thus restricted to the plasma
membrane, if undamaged.

Panel 3 (mitochondria/NF-κB): Cells were incubated with 0.17 µL/mL MitoTracker
Orange CMTMRos (1 mM; Cat. M7510, Thermo Fisher Scientific) in DMEM for 30 min at
37 ◦C in a 5% CO2 atmosphere to stain thiol membranes [87]. After fixation as above, the
cells were permeabilized, washed twice with WB, and incubated with the primary staining
solution, including the antibody against NF-κB p65 (1 mg/mL; Cat. PA5-16545, Thermo
Fisher Scientific) for 1 h. The primary antibody solution was removed and the cells were
incubated in WBII for 15 min, washed twice with WB, and incubated with the secondary
staining solution in WB (1:500 of 1 mg/mL of GAR-DyLight 550; Cat. 84541, Thermo Fisher
Scientific) for 1 h. The cells were then incubated with WBII for 10 min and stained with
0.1 µL/mL Hoechst 33342 for another 10 min.

Panel 4 (p53/Caspase 9): After fixation as above, cells were permeabilized for 17 min,
washed twice with WB, and blocked for 30 min. The BB was removed and the cells were
incubated with the primary antibody in BB (5.5 µL/mL of 0.05 mg/mL p53 antibody
and 1.5 µL/mL of undiluted caspase 9 antibody, both from Thermo Fisher Scientific, Cat.
MA5-12557 and PA5-17913) for 1 h. After two washes with WBII and one with WB, the
secondary staining solution in WB (1:500 of 1 mg/mL of GAM-DyLight 550 and 1:500 of
1 mg/mL of GAR DyLight 488; Cat. 35552, Thermo Fisher Scientific) was added for 1 h.
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The staining solution was removed and the cells were washed once with WBII and stained
with Hoechst 33342 for 10 min.

Data analysis—general aspects. The screening assay involved nine cellular markers
and a total of 115 cytological parameters (Table A3). The raw dataset was standardized
(all data points were drawn onto a distribution centered at 1.0, which correspond to the
controls). Furthermore, for simplicity, the image analysis data reported all features for
all markers we measured. Therefore, the dataset was reduced according to biological
relevance, manufacturer specifications for spot and non-spot measurements, and relevant
literature [88,89], which indicate, for example, the importance of identifying and removing
correlated features by scatterplot arrays, herein performed in STATISTICA v12.7 (Statsoft,
Tulsa, OK, USA) [90]. The reduced dataset of 31 features was tested for normality and
no normal distribution was found, so a non-parametric test was used for subsequent
cluster analysis.

Table A3. Labeled cellular compartments, with additional information on markers and marker-
target binding.

Target Marker
Marker Binding Site
(Data from Manufacturer, If Not
Otherwise Cited)

NF-κB NFkappaB/p65 antibody
(PA5-16545, Thermo Fisher Scientific)

Binds to the activated subunit p65 of
the heterodimer of NF-κB

p53 P53 antibody
(MA5-12557, Thermo Fisher Scientific)

Stains the protein p53 in the nucleus
and cytoplasma, but accumulates
mainly in the nucleus. Process of
subcellular localization still unclear.

Caspase 9 Cleaved caspase-9 antibody
(PA5-17913, Thermo Fisher Scientific)

Stains the activated form of caspase 9
(cleaved caspase 9)

Nucleus Hoechst 33342
(62249, Thermo Fisher Scientific)

Cell-permeable nucleic acid stain
which emits blue fluorescence when
bound to dsDNA

Cell cycle (see nucleus)
Cell count (see nucleus)

Actin Phalloidin, Fluorescin Isothiocynate
labeled (P5282, Sigma Aldrich) Stains and stabilizes F-Actin

Mitochondrion MitoTracker Orange CMTMros
(M7510, Thermo Fisher Scientific)

The cell-permeant MitoTracker probes
contain a mildly thiol-reactive
compound. Thiols are redox-systems
found in the mitochondrial matrix [87]

Endoplasmic reitculum
(ER)

ER-Tracker Blue-White DPX
(E-12353, Thermo Fisher Scientific)

Highly selective for ER but by
unknown mechanism

Lysosome Lysotracker Red DND-99
(L-7528, Thermo Fisher Scientific) Stains acidic organelles in living cells

Whole cell (see plasma membrane)

Plasma membrane
Wheat germ agglutinin, Alexa Fluor
488 Conjugate
(W11261, Thermo Fisher Scientific)

Wheat germ agglutinin selectively
binds to peptidoglycans
N-acetylglucosamine and
N-acetylneuraminic acid (sialic acid)
residues, found in the
extracellular matrix.

Data analysis—definitions and detailed procedure. The HCS Cellomics manual
(Thermo Fisher Scientific) provides the following definitions:

(a) Circ (C): “Circ is a cellular region derived from, and similar to, the area covered by
the primary object; you can make the Circ larger or smaller than the primary object.
The Circ is used to quantify the presence of a fluorescent macromolecule within the
large cellular compartment defined by the primary object”. The primary object is very
often, and also herein, the nucleus.

(b) Ring (R): “Ring is an annular region defined beyond the primary object. The position
of the rings’ inner and outer perimeters can be defined in relation to the primary
object’s location”. The ring region mostly covers the cytoplasm if the primary object
is the nucleus.
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(c) Ring Spots (R_Sp): “Ring Spots are any discrete punctate objects that fall within the
Ring area. [ . . . ] These spots can be used to identify discrete organelles or other
punctate objects that are located in the cell’s cytoplasm. Examples of organelles that
can be identified by this feature include: mitochondria, proteasomes, lysosomes,
and endosomes”.

(d) Circ Spots (C_Sp): “Circ Spots are any discrete punctate objects that fall within the
Circ area. Intensity thresholds identify these spots in a similar manner as for the Ring
Spots. These spots can be organelles similar to those identified in Ring Spots, but
in the cytoplasmic region above the nucleus, if the nucleus is the primary channel
marker”. Not all cells are recorded on the same level, therefore C-Sp may include
overlaying signals from the nucleus or cytoplasm (C-Sp).

As stated above, the number of parameters included in the evaluation of HCS data was
reduced in stepwise manner. The abandoned parameters are described below along with the rea-
sons for discarding them (nf = NF-κB; cp = caspase 9; wc = whole cell; Nuc = nucleus; ac = actin;
mt = mitochondrion; er = endoplasmic reticulum; ly = lysosome; mb = plasma membrane).

(a) Biological redundancy: For example, the mitochondria were measured in the Circ
and Ring regions, but the Circ region is focused on the nucleus so no representative
mitochondrial signals are recorded here. Furthermore, caspase 9 is not translocated
into the nucleus. Accordingly, we removed:

mt_C_Ti mt_C_SpAi cp_C_Ti
mt_C_AI mt_C_SpTAr cp_C_Ai
mt_Rat-C-R mt_C_SpAAr cp_Rat-C-R
mt_C_SpTi mt_C_SpC

(b) Spot vs. non-spot records: Based on the definition given above, we selected the
spot records for discrete objects such as organelles, and non-spot measurements for
continuous records such as actin, transcription factors and the membrane. Therefore,
we removed:

nf_R_SpTI p53_C_SpTAr ac_R_SpC
nf_R_SpAI p53_C_SpAAr ac_C_SpTI
nf_R_SpTAr p53_C_SpC ac_C_SpAI
nf_R_SpAAr cp_R_SpTI ac_C_SpTAr
nf_R_SpC cp_R_SpAI ac_C_SpAAr
nf_C_SpTI cp_R_SpTAr ac_C_SpC
nf_C_SpAI cp_R_SpAAr mb_R_SpTI
nf_C_SpTAr cp_R_SpC mb_R_SpAI
nf_C_SpAAr cp_C_SpTI mb_R_SpTAr
nf_C_SpC cp_C_SpAI mb_R_SpAAr
p53_R_SpTI cp_C_SpTAr mb_R_SpC
p53_R_SpAI cp_C_SpAAr mb_C_SpTI
p53_R_SpTAr cp_C_SpC mb_C_SpAI
p53_R_SpAAr ac_R_SpTI mb_C_SpTAr
p53_R_SpC ac_R_SpAI mb_C_SpAAr
p53_C_SpTI ac_R_SpTAr mb_C_SpC
p53_C_SpAI ac_R_SpAAr

(c) Select average records: Average records are normalized against the area of the cell (the
definition from the Thermo Fisher Scientific manual is provided below). Given that
swelling can occur when cells are exposed to stress factors such as envenomation, the
total intensity could overestimate the individual records, hence the recommendation
to use averages.

“For each cell, the primary object’s total intensity is measured. The total intensity is
the sum of the intensities of all the individual pixels making up that object. The average
intensity of the pixels making up the object is also reported.

Average intensity in a region =
Total intensity in the region

Number of pixels in the region

Therefore, we removed:
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nf_R_TI ac_C_TI ly_C_TI
nf_C_TI mt_R_TI ly_C_SpTI
p53_R_TI mt_R_SpTI ly_C_SpTAr
p53_C_TI mt_R_SpTAr mb_R_TI
cp_R_TI er_C_TI mb_C_TI
Nuc_TI er_C_SpTI
ac_R_TI er_C_SpTAr

(d) Correlation: Some of the parameters contain the same information and thus appear to
be correlated. Therefore, to avoid overestimating certain records, we removed one of
both correlating parameters in the remaining dataset:

wc_Size correlated to wc_Area (R2 = 0.99)
Nuc_Size correlated to Nuc_Area (R2 = 0.97)
ac_C_AI correlated to ac_R_Ai (R2 = 0.99)
er_C_AI correlated to er_C_SpAi (R2 = 0.95)

The final HCS dataset includes the following 31 highly-informative parameters, with
A to AF notations corresponding to those in Figure 2C in the main paper.

A nf_R-AI I wc_P2A Q ac_Rat-C-R Z ly_C_AI

B nf_C-AI J wc_LWR R mt_R-AI AA ly_C_SpAI
C nf_Rat-C-R K Nuc_Area T mt_R-SpAI AB lyC_SpAAr
D p53_R-AI L Nuc-P2A U mt_R-SpAAr AC ly_C_SpC
E p53_C-AI M Nuc-LWR V mt_R-SpC AD mbR-AI
F p53_Rat-C-R N Nuc-AI W er_C_SpAI AE mb_C-AI
G cp_R-AI O Nuc-VI X er_C_SpAAr AF mb_Rat-C-R
H wc_Area P ac_R-AI Y er_C_SpC

Appendix C. Additional Details on Cluster Identification

Pain cluster. The annotated functional categories of the transcriptome and high-content
bioactivity screening datasets were compared, revealing that both datasets infer a subset of
29 pathways through which stingray toxins potentially exert their action. These pathways
belong to 15 subclasses, the most abundant of which were Signal transduction, Signaling
molecules and interaction, the Circulatory system, and the Endocrine system (Dataset S9). Each
subclass contained potential new drug candidates.

Fish venoms are defensive weapons that have evolved primarily to cause pain, thus
not surprisingly within the large functional data network we identified a cluster of tran-
scriptome and bioactivity hits that predicts the MoA of pain-inducing stingray toxins. Pain
is a complex process involving transduction, conduction, transmission, perception and
modulation, throughout the nervous system. Furthermore, toxins are extracellular stimuli
that induce signal transduction. Therefore, among the 29 shared pathways only those
related to the Nervous system, Sensory system, Signal Transduction and Signaling molecules
and interaction subclasses were specifically analyzed in the pain cluster (Dataset S9 ‘Pain
Cluster’). These comprise nine pathways: Dopaminergic synapse, Inflammatory mediator
regulation of TRP channels, Calcium-, cAMP-, cGMP-PKG-, Apelin-, TGF-β-, TNF- signaling
pathways, and Neuroactive ligand-receptor interaction.

The functional subclasses are not solely targeted by pain-inducing toxins. Therefore,
all transcriptome and bioactivity screening hits associated with these nine ‘pain’ pathways
were manually filtered by their known relation to the pain system. Nine transcriptome
hits were attributed, including five that were pain-related, four hemotoxins, and 11 against
EF-hand proteins. The five pain-related hits comprised three venom nerve growth factors,
endothelin, and cholecystoxin. The HCS contributed to these core pathways with 41 clus-
tered reference drugs—predominantly GPCR-targeting neuropsychiatric, cardiovascular
and anti-allergic drugs, such as fenoldopam bromide and ebastine. All of these drugs were
included in the subsequent evaluation of the pain cluster because their molecular targets
are involved in the activation, inhibition or modulation of pain signaling.

Cardiovascular and hemostasis cluster. Fish venoms also induce hypotensive crisis,
blood pressure variations and injury-related hemorrhage [21]. We further identified clusters
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of putative toxins targeting the cardiovascular system and hemostasis. Similar tothe pain
cluster, among the 29 shared pathways in the integrated dataset only those related to Signal
Transduction, Signaling molecules and interaction, Circulatory system, and Cardiovascular diseases
were considered for the cardiovascular cluster. These comprise 11 pathways: Neuroactive
ligand-receptor interaction, Dilated cardiomyopathy, Cardiac muscle contraction, Adrenergic sig-
naling in cardiomyocytes, Vascular smooth muscle contraction and signaling via the Calcium-,
cAMP-, cGMP-PKG-, Apelin-, TGF-β- and TNF pathways. The Hematopoietic cell lineage
pathway was added to gain insight into hemostasis-disrupting processes (Dataset S9).

As before, the selected functional subclasses were targeted by more than cardiovascu-
lar toxins. Therefore, all transcriptome and HCS hits associated with these 12 pathways
were manually filtered by their known relationship with the cardiovascular and hemostasis
systems. Thirty-six transcriptome hits were attributed, 17 of which were related to car-
diovascular pathways, whereas nine were hemotoxins, and 11 were annotated EF-hand
proteins. The putative cardiotoxins were bibrotoxin, cholecystoxin and 15 acidic/basic
phospholipase A2 proteins. Additionally, we found a natriuretic peptide that was added
due to clear cardiovascular relationship although expression level was below our threshold
value, and thus needs further confirmation (Figure A2).

Figure A2. Cardiovascular cluster. Twelve pathways in the integrated transcriptome and high-content
screening dataset reveal the presence of 18 putative cardiotoxins, which together with 14 clustered
drugs can be used to predict the target modulation by this toxin class and the cellular response. This
cluster indicates alternating vascular and/or cardiac muscle contraction and relaxation periods, for
example based on MLCP inhibition or activation and Na+ and K+ mobilization.

The putative hemotoxins included venom plasminogen activator, thrombin-like en-
zyme, turripeptide, snaclec A8, C-type lectin lectoxin, and four additional PLA2 proteins
with potential hemotoxic activity. The HCS contributed to this cluster with 41 clustered
reference drugs, among which 14 have a cardiovascular indication evident from their
annotated drug class and activity. These include amiodarone HCl, bretylium tosylate,
and phenoxybenzamine HCl. The functional data representing these compounds were
subsequently used to provide initial insight into the mechanism of action of putative car-
diovascular and hemotoxins from the target to the cellular response (Figures A2 and A3).
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Figure A3. Hemostasis cluster. Twelve pathways in the integrated transcriptome and high-content
screening dataset reveal the presence of nine putative hemotoxins which together with 14 clustered
drugs and the corresponding functional data give insight into their potential mechanisms of action.
This cluster strongly suggests that anticoagulants, especially those with fibrin(ogen)lytic activity, play
a key role.

Appendix D. Phospholipase A2 and Putative Three-Finger Toxins

Multiple phospholipases A2 (PLA2) candidates were identified in the five newly
sequenced and three reanalyzed transcriptomes of stingray venomous tissues. These were
aligned to active Asp(D)49-PLA2 and inactive Lys(K)49-PLA2 (Figure A4) representing two
PLA2 subgroups that differ mainly in the residue found at position 49 (aspartate defining
the active subfamily and lysine the inactive subfamily) [91]. In all sequences we analyzed,
an aspartate was found at position 49, indicating that all hits represented the active D49
subfamily (Figure A4). Given the absence of PLA2 activity in the stingray venoms analyzed
thus far [26] it is possible that the candidates are non-venomous PLA2 proteins from the
epidermal spine tissue, a topic that requires further analysis and clarification.
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We also identified several members of the three-finger toxin (TFT) family, which has
thus far been found only in snake venoms [92]. The stingray homologs showed particular
similarity to TFT proteins from sea snakes. We aligned the stingray transcripts to known
TFTs from proteomic and transcriptomic studies to determine whether the typical cysteine
scaffold attributed to this family was present (Figure A5). The TFT family also includes
several non-toxic proteins containing three-finger domains, but unlike the genuine toxins
these possess a C-terminal glycosylphosphatidylinositol (GPI) anchor. We therefore revised
our candidate TFT transcripts by using GPI-SOM [93], PredGPI [94], bigGPI [95], and
Net-GPI [96] to predict the presence or absence of a GPI anchor. We found that a three
finger cysteine scaffold was present in most of the transcripts encoding proteins with >90%
sequence similarity to known TFTs, whereas those with 40–50% similarity contained a
less congruent cysteine scaffold, probably reflecting sequence truncation or false-positive
annotations. Three of 50 transcripts in our eight transcriptomes were clearly predicted
to encode with GPI anchors (and a valid signal peptide prediction), all of which were
among those 40–50% similarity to known TFTs. These results indicate that some of our
hits (especially those with low sequence similarity) may represent non-toxic three-finger
proteins rather than genuine TFTs, and may also represent inactive homologs lacking a
complete cysteine scaffold, which may also indicate incorrect assignment to the TFT family.
However, the 10 transcripts encoding proteins with >90% sequence similarity to sea snake
TFT proteins contained a correct cysteine scaffold and were predicted to lack a GPI anchor,
supporting the presence of TFT-like proteins in stingray venomous tissue.

Figure A4. Alignment of stingray venom transcripts attributed to the PLA2 toxin family and reference
sequences of the active D49 and inactive K49 PLA2 subfamilies from UniProt. The arrow and box
show position 49 of the mature protein. All the stingray transcripts we identified belong to the active
D49 PLA2 subfamily.
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Figure A5. Alignment of stingray venom transcripts attributed to the Three-finger toxin family (TFT)
and their corresponding hits from Uniprot separated by (A) Long-chain, (B) Non-conventional, and
(C) Short-chain subfamilies. The arrow and box denote the characteristic TFT cysteine scaffold leading
to the ‘three-finger’ fold. The table attached to the alignments informs on the sequence identities
of stingray transcripts to the databased TFT, the presence (y) or absence (n) of the TOLIP domain
attributed to TFT only, the presence (y) of a GPI anchor known from non-toxic three finger proteins,
evidences on protein level (P) or only by homology (H), and if the sequence database is a translated
mRNA (R) or a ‘real’ protein sequence (P). The asterisk (*) links the best hits of stingray transcripts
with their annotated TFT.
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