Sinclair et al. Clinical Epigenetics (2015) 7:77

DOI 10.1186/513148-015-0105-1 CLINICAL

EPIGENETICS

L

Open Access

@ CrossMark

RESEARCH

Global DNA methylation changes and
differential gene expression in Anaplasma
phagocytophilum-infected human neutrophils

Sara H. G. Sinclair"*** Srinivasan Yegnasubramanian® and J. Stephen Dumler'3#

Abstract

Background: Anaplasma phagocytophilum is an obligate intracellular prokaryotic pathogen that both infects and
replicates within human neutrophils. The bacterium represses multiple antimicrobial functions while simultaneously
increasing proinflammatory functions by reprogramming the neutrophil genome. Previous reports show that many
observed phenotypic changes are in part explained by altered gene transcription. We recently identified that large
chromosomal regions of the neutrophil genome are differentially expressed during A. phagocytophilum infection.
Because of this, we sought to determine whether gene expression programs altered by infection were the result of
changes in the host neutrophil DNA methylome.

Results: Within 24 h of infection, marked increases in DNA methylation were observed genome-wide as compared

with mock-infected controls and pharmacologic inhibition of DNA methyltransferases resulted in decreased
bacterial growth. New regions of DNA methylation were enriched at intron and exon junctions; however, intragenic
methylation did not correlate with altered gene expression. In contrast, intergenic DNA methylation was associated
with A. phagocytophilum-induced gene expression changes. Within the major histocompatibility complex locus on
chromosome 6, a region with marked changes in infection-induced differential gene expression, new regions of
methylation were localized to boundaries of active and inactive chromatin.

Conclusions: These data strongly suggest that A. phagocytophilum infection, in addition to altering histone structure,
alters DNA methylation and the epigenome of its host cell to promote survival and replication, providing evidence that
such bacterial infection can radically alter the epigenome of its host cell.
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Background

Anaplasma phagocytophilum is an obligate intracellular
prokaryotic pathogen of mammalian neutrophils. Trans-
mitted by Ixodes spp. ticks, A. phagocytophilum infection
results in manifestations ranging from subclinical infec-
tion or mild self-limited fever to severe infection requiring
hospitalization or causing death [1, 2]. The neutrophil is
an unusual host cell for any microorganism, especially bac-
teria, due to its role in innate immunity where its primary
function is to recognize and kill microbes. Despite this
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inhospitable environment, A. phagocytophilum reprograms
its host cell so that the bacterium can survive long enough
for continued replication. The major phenotypic alterations
among infected human neutrophils include complex func-
tions such as decreased antimicrobial activity and respira-
tory burst, reduced phagocytosis, reduced margination and
emigration across the endothelium, delayed apoptosis, and
an increased production and release of proinflammatory cy-
tokines, chemokines, and proteases [3—8]. These functional
alterations allow the bacterium to survive long enough to
replicate and spread to newly recruited host cells and to en-
sure that its host cell remains viable within the intravascular
network until it can be accessed by a feeding tick.

The observed changes in host cell function are partially
explained by alterations in granulocyte gene transcription
[9-11]. Decreased respiratory burst allows for prolonged
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inhibition of superoxide production favoring bacterial sur-
vival and likely results from the downregulation of two
key components of the NADPH oxidase required for
proper oxidase assembly: CYBB, which encodes gp91#°*,
and RAC2, a GTPase [3, 12]. Likewise, transcription of
BCL2 family member genes are maintained during A. pha-
gocytophilum infection which results in delayed neutrophil
apoptosis [7, 13] and increased transcript levels of cyto-
kines and chemokines such as IL-1a and IL-8 contribute
to exaggerated inflammatory responses that recruit new
neutrophil hosts [14-16].

Precisely how A. phagocytophilum coordinates the tran-
scriptional changes that allow it to reprogram host cell
functions is not known but is unlikely to result from an
accumulation of individual signaling pathways targeted
by unique pathogen protein effectors. We described de-
creased histone acetylation and methylation at multiple
defense gene promoters with infection [17] and enhanced
intracellular bacterial growth with HDAC-1 and -2 ex-
pression and activity, as well as the dose-dependent de-
crease in bacterial load effects of HDACI silencing and
HDAC pharmacologic inhibition [17]. We also showed
that transfection of the nucleomodulin and type IV system
secretion substrate AnkA of A. phagocytophilum alone
mimics many transcriptional changes observed with infec-
tion by directly binding host cell DNA in multiple gen-
omic regions, including at the CYBB proximal promoter
where it decreases histone H3 acetylation and gene ex-
pression [18]. Previously, we showed that the A. phagocy-
tophilum nucleomodulin AnkA recruits HDAC1 to the
CYBB promoter, and the altered chromatin configuration
excludes RNA polymerase II recruitment thereby silencing
expression [18]. These observations prove an epigenetic
basis for silencing at CYBB and suggest that A. phagocyto-
philum infection alters transcriptional programs of its host
cells via genome-wide epigenetic alterations.

HDAC: target nucleosomal histone proteins to create
modifications that alter gene promoter accessibility to
transcriptional regulators. Interestingly, HDACs also com-
plex with DNA methyl binding proteins (MBDs) and work
to coordinately alter transcriptional programs. DNA methy-
lation at CpG dinucleotides is an important epigenetic
regulator of cellular differentiation, neoplasia, and metasta-
sis [19-22]. Moreover, expression of DNA methyltransfer-
ase 3A (DNMT3A), a key enzyme for de novo DNA
methylation, is upregulated in A. phagocytophilum-infected
neutrophils ex vivo [9]. Given the complex interplay be-
tween these two epigenetic modifiers and the induction of
histone deacetylation by A. phagocytophilum, we hypothe-
sized that A. phagocytophilum also alters the DNA
methylome of human neutrophils that in part determines
transcriptional reprogramming.

Precedence for bacterial influence on host DNA methy-
lation patterns has been established in both Helicobacter
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pylori and uropathogenic Escherichia coli (UPEC) infec-
tions [23]. Gastric mucosa infected with H. pylori shows
increased DNA methylation patterns at CpG islands
but is hypothesized to be a result of infection-related
inflammation rather than bacterial-induced DNA methy-
lation (Na and Woo, 2014). It is important to note that H.
pylori is generally considered to be an extracellular organ-
ism so its effects on gastric mucosa are not due to direct
invasion and replication inside the stomach tissue. UPEC,
which does actively invade uroepithelial cells, was shown
to directly influence the methylation of target genes, but
its genome-wide effects have not yet been elucidated [24].
Here, we found that A. phagocytophilum induces hyper-
methylation of the human neutrophil genome within 24 h
of infection. Although several bacteria are implicated in
alterations of host cell DNA methylation [23], this is
the first demonstration that infection by an intracellular
bacterium alters host DNA methylation patterns on a
genome-wide scale. The data strongly suggest that this
is part of a coordinated reprogramming of host cell func-
tions which leads to improved microbial fitness by promot-
ing intracellular survival, replication, and spread.

Results

A. phagocytophilum induces genome-wide hypermethylation
Human peripheral blood neutrophils were isolated and
infected with A. phagocytophilum for 24 h before DNA
isolation. We used methylated DNA binding domain
(MBD) enrichment and next generation sequencing
approach (MBD-seq) to analyze patterns of DNA methy-
lation across the whole genome of A. phagocytophilum-
infected and uninfected primary human neutrophils.
Regions significantly enriched for DNA methylation were
determined using either Model-based analysis of ChIP-Seq
software (MACS) [25] or Statistical model for Identifica-
tion of ChIP-Enriched Regions software (SICER) [26] using
stringency cutoffs of p = 10e-6 (MACS) or/and FDR = 0.01
(SICER) with a minimum length of 200 bp. MACS peaks
are used for all figures unless otherwise noted. Using peaks
called by MACS, the majority of methylated regions
(~84 %) across the genome were maintained between
uninfected and infected neutrophils; there were a sig-
nificant number of newly methylated regions (~30,000
or 16 %) in the infected neutrophils as compared to un-
infected samples (Fig. 1a). Regions of methylation unique
to infected or uninfected samples were mapped linearly
along chromosomes, demonstrating that the changes in
DNA methylation associated with infection were pervasive
across all chromosomes (Fig. 1b) and confirmed that al-
terations in DNA methylation patterns occurred on a
genome-wide scale. Luminometric methylation assay
(LUMA) analysis of the same DNA samples further con-
firmed an increase in the percentage of DNA methylation
with A. phagocytophilum infection of human neutrophils.
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Anaplasma phagocytophilum induces genome-wide changes in DNA methylation of human peripheral blood neutrophils. The quantity of new
regions of DNA methylation was compared between infected and uninfected samples. a Pie charts demonstrate the proportion of new methylation
peaks among all meDNA that mapped to infected cells only (left dark wedge) versus uninfected cells (right dark narrow wedge). While a large
percentage of peaks are shared between samples, infected samples have more new regions of methylation as shown by the Venn diagram.
The number of methylated regions shown is the average of the three donors. b CEAS was used to linearly map chromosomal locations of all
methylated peaks unique to infected or uninfected samples. Representative image of a single donor where regions of DNA methylation (bars)
unique to A. phagocytophilum-infected neutrophils and to uninfected human neutrophils are shown per chromosome, by their linear location
on the x-axis. Each bar represents a new region of methylation found only in its respective sample. Roughly 30,000 new regions of methylation
are unigue to infected samples and cover the entire genome. In comparison, the uninfected samples show an equally diverse distribution of

~1000 newly methylated regions

Inhibition of DNMTs with 5-azacytidine slows

A. phagocytophilum growth

In concert with increased global DNA methylation, tran-
scription of DNMT3A is upregulated with A. phagocyto-
philum infection of human neutrophils ex vivo [9]. To
determine whether methylation of host cell DNA is es-
sential for bacterial survival and growth, we investigated
the pharmacologic effects of two DNA methyltransferase
(DNMT) inhibitors with distinct mechanisms of action,
5-azacytidine and RG108, on A. phagocytophilum infec-
tion using 24 h (5-AZA) or 24, 48, and 72 h (RG108) of
infection. All transretinoic acid (ATRA)-differentiated
HL-60 promyelocytic cells, commonly used as a cell model
for A. phagocytophilum infection, were infected with
cell-free A. phagocytophilum for 24 h before treatment
with 5-azacytidine. For RG108 experiments, cultures of
(ATRA)-differentiated HL-60 cells were adjusted to 20 %
infected cells before treatment. After infection or addition
of the inhibitor, DNA from three individually infected and
5-AZA treated cultures was extracted and bacterial load
was determined using a quantitative real time PCR assay
comparing A. phagocytophilum msp2/p44 normalized
to a human ACTB standard. Bacterial replication was
~25 % less than the DMSO vehicle control with all con-
centrations of 5-AZA (Fig. 2a). For RG108, infection in
the vehicle only-treated cultures did not alter normal
bacterial growth, with propagation of 5-fold by 72 h
(Fig. 2b); however, treatment with all doses of RG108
resulted in reduced dose-dependent bacterial growth at
48 and 72 h posttreatment. Growth was also reduced in
most treated cultures at 24 h, but the changes were not
statistically significant. Treatment with RG108 resulted
in a net reduction in 5-methyl cytosine content with
most drug doses over 3 days of treatment as compared
with no drug treatment, suggesting that lack of off-
target drug effects as an alternate explanation for de-
creased A. phagocytophilum growth (Additional file 1:
Figure S1).

Characterization of DNA methylation across common
gene features

We next sought to determine which gene features were
most prominently methylated throughout the genome with

infection. The average methylation signal surrounding all
transcription start sites (TSS), termination sites (T'TS), and
across genes for each individual donor is shown in Fig. 3.
Both A. phagocytophilum-infected and uninfected samples
showed similar relative profiles of DNA methylation across
gene features. However, compared to uninfected, the pro-
files from A. phagocytophilum-infected samples showed a
more pronounced decrease in DNA methylation imme-
diately upstream of the TSS (Fig. 3a), whereas down-
stream of the TSS, DNA methylation rose sharply and
continued to increase throughout the gene body until
the T'TS (Fig. 3b, ). These differences were persistent even
after adjusting for differences in the absolute numbers of
sequencing reads.

Because infection with A. phagocytophilum induced
greater spread and degrees of DNA methylation compared
to uninfected cells, we investigated whether the newly
methylated regions localized to specific gene features. Re-
gions of methylation were highly associated with genes in
A. phagocytophilum-infected neutrophils and uninfected
neutrophils. Nearly 62 and 66 %, respectively, mapped to
or within 3 kb of annotated genes. Infected samples had
higher than expected methylation enrichment within
2-3 kb upstream or downstream of genes (Fig. 4) as well
as increased methylation of exons (Fig. 5). “Expected” re-
fers to how many reads would be expected to align with
each gene feature if there was no DNA methylation en-
richment and is used to demonstrate genomic background.
Expected values were determined by the cis-regulatory elem-
ent annotation system (CEAS) software. Nearly 5 % of all
newly methylated regions in A. phagocytophilum-infected
cells fell within exons compared to the expected value of 2 %
(Fig. 5). Taken as a whole, new DNA methylation was
significantly higher after infection for every gene feature
except bidirectional promoters <5000 bp from the TSS
(p =0.002; Wilcoxon Signed Rank test). However, when
examined at each genomic feature, the proportion of
new DNA methylation was not significantly different be-
tween infected and uninfected neutrophils likely because of
a high degree of variation among uninfected neutro-
phils (Figs. 4 and 5; average coefficient of variation
(CV) (0.387) despite minimal variation after infection
(average CV 0.056).
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Fig. 2 DNA methyltransferase inhibition abrogates A. phagocytophilum growth in HL-60 cells. a Treatment for 24 h with the DNMT inhibitor
5-azacytidine 24 h post A. phagocytophilum infection results in a reduction in bacterial load regardless of inhibitor concentration. The bacterial
load in three replicates was determined using a gRT PCR assay of A. phagocytophilum msp2/p44 normalized to HL-60 cell ACTB and to vehicle
treated cells. b Treatment with the DNMT inhibitor RG108 for 72 h post A. phagocytophilum infection results in a dose-dependent reduction in
bacterial load at 48 and 72 h. Results are normalized to HL-60 cell ACTB, but displayed in comparison with vehicle-only-treated cells. P values
displayed above the bars were calculated by two-sided unequal variance Student’s t tests by comparison with vehicle only-treated samples at
the same time interval after infection

Intron and exon methylation was averaged, scaled as a  infection-induced hypermethylation of the host genome
fraction between 0 to 100 %, and plotted by position. Be-  leads to regions of enrichment most often associated with
cause exon and intron lengths vary highly, the default gene bodies or within 3 kb of annotated gene features.
CEAS analysis groups these into three classes by length
to calculate average profiles that in turn avoids graphical ~DNA methylation and transcriptional alterations in the A.
artifacts due to length-normalization. The profile for all ~ phagocytophilum-infected neutrophil
introns had regions of methylation localizing toward the =~ We then sought to determine whether or not DNA
intron/exon junctions (Fig. 6a). For all exons, there was  methylation influenced transcription of the most differ-
a gradual accumulation of methylation signals toward entially expressed genes. Genes that were up- or down-
the middle of the exons (Fig. 6b). The pattern of both  regulated with a fold-change of 3-6 or >6 standard
profiles suggests that exons could be preferentially deviations (SD) from the mean fold-change were assessed
methylated and regions of methylation could overlap for DNA methylation peaks. Since DNA methylation is
at intron/exon junctions. Overall, A. phagocytophilum  found to be correlated across genomic regions at a scale
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of <2 kb [27], if a region of DNA methylation was located
within the gene body or +3 kb from TSS or TTS, it was
considered associated with that gene. Using these criteria,
we compared the fold-change in expression of 516 genes
associated with DNA methylation to the remaining 404
genes not associated with DNA methylation. The average
log, differential gene expression (DGE) of 361 methylated
genes with between 3-6 SD from the mean was -0.037,
and no statistical association with DNA methylation could
be identified when compared with 269 genes lacking DNA
methylation (p =0.565). At this level, 120 of 361 genes
with DNA methylation were upregulated and 100 of 269
genes lacking DNA methylation were upregulated. In con-
trast, of the 155 methylated genes that were differentially
expressed >6 SD above the mean, 86 were upregulated
(logy DGE 0.694) rather than downregulated, although the
resulting association with DNA methylation was not sig-
nificant compared to 135 non-methylated genes with the
same differential gene expression. This is consistent with a
previously published report by Borjesson et al. that the

most differentially expressed genes induced by A. phagocy-
tophilum infection were upregulated [9].

Next, we investigated whether DNA methylation affects
transcription at specific locations of DNA methylation
within gene features. Genes associated with DNA methy-
lation were sorted based on the gene feature location of
the methylation site. Gene features investigated included
both 3" and 5" untranslated regions (UTRs), coding se-
quences (CDS), intronic regions, intergenic regions (>3 kb
from TSS or TTS), and promoters (+3 kb from TSS or
TTS). Additionally, the fold expression change in genes
associated with DNA methylation was compared to those
without. Our findings indicate that intergenic DNA
methylation had a statistically significant impact on nearby
gene expression (p <0.05), but the overall expression
fold-change was low (Fig. 7). Genes associated with DNA
methylation in any location were generally downregulated
(p <0.01). Although statistically significant, it is difficult
to know whether these small fold-changes are biologic-
ally relevant. All other regions were not significantly
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associated with DNA methylation, and overall fold-changes
were minimal.

Although A. phagocytophilum infection induced gen-
ome hypermethylation, the native level of genome methy-
lation in neutrophils was high. Paired with the relatively
low fold-changes in gene expression and the small propor-
tion of all genes that were differentially regulated, these
data could mask correlations that would provide evidence
for the effects that A. phagocytophilum has on DNA
methylation that in turn lead to altered gene expression.
Because of this, we set out to identify local effects at

the chromosomal level especially given that large re-
gions of chromosomes are regulated similarly during
infection [28].

Correlation of individual new meDNA and differential
gene transcription at the MHC locus

The major histocompatibility complex (MHC) locus on
chromosome 6 was shown to have local clustering of
increased gene expression across a large chromosomal
area spanning nearly 4 Mb [28]. This locus also has well-
described epigenetic regulation; thus, we focused our
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attention on the association of gene expression and DNA
methylation here. To examine whether increased DNA
methylation at the MHC locus on chromosome 6 was
related to the observed cluster of differentially regu-
lated genes, we examined newly methylated DNA
(meDNA) fold-enrichment at individual genes and cre-
ated a sliding scale window for both the log, fold-
change in expression and newly methylated sites in
those windows.

On chromosome 6, there were 687 unique newly
methylated genomic sites for which differential gene ex-
pression data was also obtained, including 53 unique
newly methylated sites in the MHC locus and 22 unique
newly methylated sites in the position immediately
downstream of MHC that we call “PROX”. When individ-
ual newly methylated sites across the entire chromosome
were examined, no correlation between individual differ-
ential gene expression and meDNA fold-enrichment
(p -0.0391, p=0.306) or —log;o p value (p —0.0174 and
p=0.649) could be identified. Although correlation be-
tween individual differential gene expression with enrich-
ment of individual newly methylated sites over the MHC
locus was higher (p 0.2664, p = 0.053 and —log;o p value p
0.2311; p = 0.096), it did not reach a level of significance we
defined. Likewise, there was no significant correlation at
the downstream control PROX region (meDNA fold-
enrichment p 0.0864, p =0.702, -log;, p value p —0.0212
and p = 0.925).

Correlation of new meDNA enrichment with differential
gene transcription over long contiguous linear regions at
the MHC locus and chromosome 6

Gene expression is often markedly influenced by meDNA
and histone chromatin, leading to changes in three-
dimensional organization of chromatin itself [29, 30].
To determine whether specific genomic loci over Mb
ranges on chromosomes were significantly enriched for
newly methylated DNA in areas where a correlation with
differential gene expression could be demonstrated, we
plotted p (rho), the Spearman correlation coefficient for
fold-enrichment of new meDNA, and differential gene ex-
pression over windows (median 4.2 Mb (IQR 3.9); median
8 unique meDNA features (IQR 2)) against the physical
chromosome position of each window on the p and q
arms of chromosome 6. Figure 8 demonstrates the aver-
age positive or negative correlations between windows
of newly methylated DNA and DGE expression in linearly
contiguous chromosomal regions that are likely to interact
in three dimensions over the chromosome territories. We
also plotted the g value (1-q) for the correlations at each
window to better visualize genomic regions where DNA
methylation and DGE were significantly correlated and
where there could be a broad impact on gene transcrip-
tion. The analysis demonstrated long genomic stretches of
positive and negative correlation between fold-enrichment
in new DNA methylation and differential gene expression
in the windows, including several at which significant
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associations were found, such as at the MHC locus over
88 Kb. Altogether, there were 11 long linear regions on
chromosome 6 for which new DNA methylation was sig-
nificantly correlated (g value <0.10); 6 regions comprising
27.5 Mb (16 % of chromosome 6) were negatively corre-
lated, whereas 5 regions comprising 12.1 Mb (7 % of chr6)
were positively correlated. To explore these long range
genomic associations between new DNA methylation and
differential gene expression, we examined these large scale
windows on chromosome 6 and the MHC locus in more
detail.

Across chromosome 6, as observed when individual
differential gene expression and newly meDNA were
examined, there was no correlation (p =-0.0037; p =
0.924) between windows with newly methylated DNA
fold-enrichment and log,-fold differential gene expres-
sion windows (median window size 3.9 Mb (IQR 3.6)).

In contrast, across the 3.1 Mb MHC region analyzed,
there was a strongly positive correlation between window
average new meDNA fold-increase and window average
log,-fold-change for differential expression (p = 0.422; p =
0.002); for the similar sized (3.2 Mb) region immediately
downstream from the MHC locus (PROX), the correlation
was not significant (p = 0.233; p = 0.310) (Fig. 9). When ex-
pression was sorted by upregulated vs. downregulated
windows over the MHC locus, a significant positive
correlation was observed for upregulated (p =0.447;
p =0.003) but not downregulated conditions (p =0.133;
p =0.683). Of interest, when windows were sorted by in-
tragenic vs. intergenic features, there was a significant as-
sociation of new meDNA vs. differential regulation at the
MHC locus for intragenic (p = 0.644; p = 0.001; 22 unique
sites) but not for intergenic features (p = 0.144; p = 0.438;
31 unique sites), but the converse was true at PROX
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Fig. 8 Large genomic regions on chromosome 6 demonstrate correlations between new DNA methylation fold-enrichment and differential gene
expression after A. phagocytophilum infection of human peripheral blood neutrophils. Chromosome 6 positions are displayed in Mb across the x-axis
and the Spearman correlation coefficient (p) between fold-enrichment of newly meDNA and log, fold-change in differential gene expression (DGE) is
plotted on the left y-axis. Light gray zones correspond to regions of chromosome 6 that are upregulated (positive) and downregulated (negative), black
zones delineate the boundaries of the MHC locus, and the dark gray zone depicts the PROX region downstream of the MHC locus. Note that the x-axis
is scaled to gene feature density and not linear position on the chromosome. The lower hatched line plot corresponds to the right y-axis and
shows 1-(g value) for the Spearman correlation at the window centered at that genomic position such that peaks correspond to low g values.
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(intergenic p = 0.788; p = 0.002; 10 unique sites; intragenic
p =0.042; p=0.919; 12 unique sites) (Additional file 2:
Figure S2).

To deconstruct this further, we subdivided individual
DNA methylation peaks and differentially expressed genes
over chromosome 6 into their gene regions: intron,
CDS, intergenic, and promoter. Here, no single gene re-
gion of chromosome 6 had new DNA methylation fold-
enrichment that significantly correlated, either positively or
negatively, with differential gene transcription (Spearman
p=0.091), although the number of meDNA peaks in many
categories was relatively small. Only 16 peaks for meDNA
enrichment were found in 9 distinct gene promoters
(BMP6, NOL7, FRS3, PTK7, RCAN2, GJA1, SYNJ2, TULP4,
and PLG), yielding a Spearman p value of -0.438 (p =
0.091). Because those peaks were located outside of
gene bodies, they were grouped with intergenic regions.
This grouping increased the intergenic region Spearman

coefficient to —0.017, suggesting that although these 16
regions could influence expression of their respective
genes, the likely impact across all genes on chromosome 6
is not high. There was insufficient data information about
whether and how DNA methylation at other genomic
regions affects gene expression since similar findings
were obtained when the windows corresponding to
these regions were evaluated. Here, the greatest cor-
relation was in the 5° UTR regions, yet the p value
was —0.223, with a p value of 0.247. The window re-
gions corresponding to the MHC locus could not be
evaluated in the same manner because of the paucity
of data over windows in this region. Yet in specific
genomic loci, the impact of newly meDNA regions is
important, especially considering that newly meDNA
was present in 47 % of intergenic and promoter regions
across chromosome 6 but in 58 % of the intergenic re-
gions in the MHC locus.
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Discussion

Alteration of DNA methylation patterns is well documented
in stem cell differentiation, cellular reprogramming, cancers,
and other disease states but not in bacterial infections
[21, 22, 31-34]. Previously, several groups suggested that
infection by microbial pathogens induces hypermethylation
of candidate genes involved in oncogenesis [35, 36, 24].
Helicobacter pylori infection causes chronic inflammation
of surrounding gastric tissue resulting in aberrant DNA
methylation patterns which can contribute to neoplastic
transformation [36]. Uropathogenic E. coli can induce
hypermethylation of CDKN2A, a cyclin-dependent kinase
inhibitor and tumor suppressor gene, leading to increased
proliferation of the urothelium [24]. Most recently, methy-
lomes of ocular adnexal extranodal marginal zone B-cell
lymphoma (EMZL) tumors from patients with Chlamy-
dophila psittaci infection were compared to EMZL C.
psittaci-negative tumors [37]. Differentially methylated
regions of infected samples hierarchically clustered to-
gether suggesting changes in DNA methylation patterns
were specific to C. psittaci infection [37]. Though in-
formative, two of these studies investigated tissue samples
which inevitably contain heterogeneous cell populations,
and the other only investigated several candidate genes.
Here, we show a direct link between infection of A. phago-
cytophilum and genome-wide alterations of DNA methy-
lation profiles of the human neutrophil.

A. phagocytophilum infection induces widespread hyper-
methylation of the neutrophil genome within 24 h of
intracellular infection. Hypermethylation of the neutrophil
genome benefits the bacterium and allows for increased
colonization of the host cell since inhibition of DNMTs
by 5-azacytidine resulted in decreased bacterial loads at

24-72 h. This further suggests that even small changes in
DNA methylation affect bacterial growth. Previous studies
that investigated neutrophil methylation patterns focused
on changes induced by myeloid differentiation and regions
of hypomethylation [33, 34]. Despite the hypermethylation
of the host genome induced by A. phagocytophilum, many
of the key regions identified as being hypomethylated
remained unmethylated yet had reduced expression in in-
fected cells, suggesting a level of regulation beyond DNA
methylation in these regions.

Regions of methylation were found to localize within
gene bodies and gene-associated DNA within 3 kb of the
transcriptional start and termination sites. Intragenic DNA
methylation is associated with regulation of alternative
promoters, alternative splicing, and non-coding RNAs
(ncRNAs) [38—42]. Genes with intragenic DNA methyla-
tion continue to be expressed or have increased expression.
It is thought that CpG methylation in intragenic regions
results in decreased transcription from alternate pro-
moters, and thus, decreased transcription of regulating
ncRNAs that in turn promotes increased target gene
transcription [39, 42]. In contrast, Jjingo et al. suggest
that increased transcription and gene body methylation
could be a result of DNA accessibility to methylating
complexes, rather than regulation by ncRNA or expres-
sion of alternate promoters [40]. Previously published
reports regarding neutrophil transcription in response
to A. phagocytophilum infection show that more genes
are upregulated than downregulated [9-11], and this ob-
servation is borne out by the demonstration that among
neutrophil genes with newly methylated DNA after A. pha-
gocytophilum infection, more with the most significant dif-
ferential transcription are upregulated than downregulated;
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however, a demonstration of which genomic features, when
DNA hypermethylated, influence differential gene ex-
pression could not be deduced by this approach. The
chromosome 6 MHC locus was one of the regions with
the most differentially expressed genes at 24 h in these
datasets, and these findings correlate with new regions
of new DNA methylation. This discovery, in light of
genome-wide hypermethylation, further supports the
hypothesis that epigenetic alterations coordinate infected
granulocyte transcriptional reprogramming. Whether the
result of ncRNAs, the effects of methylating complexes,
or other mechanisms, hypermethylation of intragenic
sequences could support marked changes in transcriptional
programs, including those that benefit A. phagocytophilum
survival in neutrophils. Owing to the suboptimal infec-
tion levels obtained in the Borjesson et al. studies, the
proximate cause of these changes will require further
investigation [28].

Closer examination of new methylation sites in infected
samples shows higher than expected localization within
exons and intron/exon junctions. Ronnerblad et al. in-
dependently confirmed a large number of differentially
methylated regions in human neutrophils localized after
the first exon in gene bodies [33]. DNA methylation at
intron/exon junctions is associated with increased H3K36
trimethylation resulting in alternative splice variants [38].
Currently it is not known whether DNA methylation is
the precipitating factor for histone H3K36 methylation
or vice versa. Given these findings, we hypothesize that
deep RNA-seq of A. phagocytophilum-infected neutrophils
could identify splice variants of highly expressed genes.
The localization of newly methylated regions in gene
bodies suggests that transcription of these genes could
be enhanced and that splice variants are likely to exist;
these observations could shed light on some aspects of
the transcriptional reprogramming that is key to A.
phagocytophilum survival and transmission. Previous
reports utilizing transcriptional profiling by microarrays
[9, 10] are unlikely to detect or quantify the majority of
potential variants.

Despite the marked increase in gene-associated DNA
methylation induced by A. phagocytophilum, there is not
a strong genome-wide correlation between infection-
induced alterations in gene transcription and annotated
regions of meDNA, especially at individual gene or DNA
methylation marks. Intragenic DNA methylation seems
to have no effect on expression on a genome-wide scale.
This could suggest that most newly methylated regions
were not transcriptionally active and that the potential
for upregulated expression is abrogated by A. phagocyto-
philum infection. We now have evidence to suggest that
intergenic DNA methylation influences transcriptional
programs of nearby genes as observed across the genome
as a whole. For example, within the MHC locus on
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chromosome 6, regions significantly enriched for meDNA
appear to demarcate boundaries of chromatin with in-
creased expression and localize within regions of differ-
ential expression. This particular arrangement suggests
that DNA methylation, and potentially histone marks,
co-contribute to alterations over large chromosomal terri-
tories that influence expression of surrounding genes and
accompanying transcriptional programs. Based on these
observations, DNA methylation or factors that influence
DNA methylation and DGE across large genomic regions
could be important aspects of A. phagocytophilum neutro-
phil infection, and thus, disease pathogenesis.

The conceptual framework regarding genomic regions
of differential methylation has scarcely been examined.
However, recent studies in colonic carcinoma reveal that
focal regions, >100 kb in size, correlate with regions of
attachment to the nuclear lamina, suggesting that factors
that bring together distant coordinately regulated genomic
regions, such as those tethered by matrix attachment
region binding proteins, could guide DNA methylation,
histone acetylation, and perhaps ncRNA expression to
direct transcriptional reprogramming and pathogen sur-
vival [30]. Much remains to be determined, and an import-
ant question includes whether A. phagocytophilum plays a
passive or active role in the process. A compelling hypoth-
esis could revolve around the known translocation of the
A. phagocytophilum nucleomodulin AnkA that binds to
DNA in multiple genomic locations and recruits histone-
modifying complexes including those known to interact
with DNA methyltransferases and methylated CpG-
binding domain proteins [17, 18]. The specificity of
AnkA-DNA binding could then dictate genome-wide
epigenetic alterations that reprogram cells to support
A. phagocytophilum survival instead of microbial kill-
ing. Indeed, whether such reprogramming events occur
as a result of other prokaryotic nucleomodulins is an
area of intense research by investigators of microbial
pathogenesis. The epigenetic research tools pioneered
by oncologists, stem cell biologists, and those who study
reprogramming of somatic cells now find applications in
microbial pathogenesis studies as well. With mounting evi-
dence of the impact of nucleomodulins from Shigella, Lis-
teria, Legionella, Chlamydia, Mycobacterium, Toxoplasma,
and other pathogenic microbes comes the realization that
their impact surmounts the classical appreciation of influ-
ences over signaling pathways and intracellular trafficking,
to the control of entire cellular programs.

Conclusions

Within 24 h of infection, A. phagocytophilum induces
hypermethylation of neutrophil DNA on a genome-wide
scale. Hypermethylation of the genome is associated with
enhanced bacterial growth and colonization of the host
cell. DNA methylation was predominantly associated with
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gene bodies or within 3 kb of transcriptional start and ter-
mination sites and tended to localize to exons and intron/
exon junctions. Intragenic DNA methylation did not cor-
relate strongly with A. phagocytophilum-induced differen-
tial gene expression over all chromosomes. However,
intergenic DNA methylation is associated with infection-
related transcriptional alterations. Targeted investigation
of the MHC locus on chromosome 6 demonstrated that
newly methylated sites fall within inactive chromatin do-
mains and line the boundaries of active chromatin and
that DNA methylation is associated with differential gene
expression. Together, these data suggest that A. phagocyto-
philum-induced hypermethylation of the neutrophil gen-
ome is important for initial survival and propagation and
that its influence over cellular epigenetics can lead to cel-
lular reprogramming of even terminally-differentiated
neutrophils.

Methods

Cell lines and cell culture

Primary peripheral blood neutrophils were isolated
from venous blood of three healthy adult donors (two
females, one male) as approved by the Johns Hopkins
Medicine IRB and as previously described [43]. Briefly,
EDTA-anticoagulated blood was dextran-sedimented
and leukocyte-rich plasma centrifuged through a Ficoll-
Paque gradient. Mononuclear cells were removed and
the remaining erythrocytes were lysed in hypotonic sa-
line. HL-60 promyelocytic cells (ATCC CCL-240) were
purchased from American Type Tissue Culture (Manassas,
VA, USA). Both neutrophils and HL-60 cells were main-
tained or propagated in RMPI 1640 (Hyclone, Thermo
Fisher Scientific, Waltham, MA, USA) with 10 % fetal bo-
vine serum (Thermo Fisher Scientific) and Glutamax (Life
Technologies, Carlsbad, CA, USA). HL-60 cells were dif-
ferentiated for 3 to 5 days prior to infection with 1 uM all-
trans retinoic acid (ATRA). All cells were grown at 37 °C
in a humidified incubator with 5 % CO,. Where stated,
HL-60 cells were treated with 5-azacytidine (Sigma-Al-
drich, St. Louis, MO, USA) in DMSO for 24 h and separ-
ately with RG108 (Sigma-Aldrich, St. Louis, MO, USA) in
DMSO for 24, 48, and 72 h, or with DMSO alone as a ve-
hicle control.

Anaplasma phagocytophilum propagation, neutrophil
infection, and quantitation

A. phagocytophilum was maintained in HL-60 cells as
previously described [44]. Cell-free bacteria were ob-
tained from HL-60 cells of which 90-95 % were infected.
Infected cells were centrifuged at 500x g for 5 min and
resuspended in 1x PBS. Infected cells were lysed by son-
ication using an output of four of a Branson Sonifier 250
(Branson Ultrasonics, Danbury, CT, USA) for 15 s or via
syringe lysis using a 22 g syringe. Lysed cells were then
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centrifuged at 1000x g for 10 min, and the bacteria-
enriched supernatant was centrifuged at 13,000x g for
30 min. The bacterial pellets were suspended in RMPI
1640 medium.

Neutrophils were infected ex vivo in triplicate using a
multiplicity of infection (MOI) of 25:1 and 100:1 for ex-
periments using HL-60 cells. An estimate of 10 infec-
tious bacteria per infected HL-60 cell was used. The
proportion of infected cells was determined at 24 h after
Romanowsky staining (Protocol HEMA3, Thermo Fisher
Scientific) of cytocentrifuged cells. In addition and for
experiments to test the effect of DNA methyltransferase
inhibitors on A. phagocytophilum propagation, DNA ex-
tracted from these cultures (DNeasy Blood and Tissue
Kit, Qiagen, Valencia, CA, USA) was used in a quantita-
tive real time 5’ nuclease PCR assay that targets A. pha-
gocytophilum msp2/p44 normalized to human ACTB
[16]. A standard curve of cloned msp2 was used to accur-
ately estimate the number of bacteria per cell, providing
that the A. phagocytophilum genome encodes approxi-
mately 100 msp2/p44 genes [45]. For experiments that ex-
amined the effects of DNA methyltransferase inhibition
on A. phagocytophilum growth, 8-azacytosine and RG108
were initially diluted in DMSO, then diluted to working
concentrations (200, 100, and 50 nM for 8-azacytosine
and 100, 50, and 25 pg/mL for RG-108) in RPMI 1640
medium. DMSO diluted to equivalent concentrations as
used in the 200 nM 8-azacytosine or 100 pg/mL RG-108
preparations was used as vehicle controls.

MBD-Seq library preparation

Enrichment of 5-methylcytosine modified DNA was per-
formed using DNA extracted from ex vivo infected and
uninfected neutrophils from there healthy donor sub-
jects 24 h post ex vivo infection. DNA libraries isolated
by MBD enrichment were analyzed by MBD-seq to de-
termine sites of MBD protein binding and DNA methy-
lation (SKCCC Next Generation Sequencing Core).
MBD-seq was carried out as described previously [46].
Briefly, 2 pg of DNA was sonicated to an average mo-
lecular size of ~150-250 bp and end-repaired using the
NEBNext SOLiD DNA library preparation kit end-repair
module following the manufacturer’s protocol (New
England Biolabs, Ipswich, MA, USA). Fragments were
purified using a Qiagen PCR purification kit (Qiagen).
SOLID P1 and P2 adapters lacking 5" phosphate groups
(Life Technologies) were ligated to the fragment using
the NEBNext adapter ligation module, column-purified,
and subjected to isothermal nick-translation by treating
with Platinum Taq polymerase to remove the nick. The
resulting library was divided into two fractions, a total
input fraction, and an enriched methylated fraction.
The enriched methylated fraction was subjected to af-
finity enrichment of methylated DNA fragments using
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recombinant C-terminal 6xHis-tagged MBD2-MBD
polypeptides immobilized on magnetic beads, similar to
previously described methods [47-49]. The resulting
enriched methylated fraction and the total input frac-
tion were then subjected to library amplification using
the NEBNext amplification module according to the
manufacturer’s protocols, using 4—6 cycles for the total
input, and 10-12 cycles for the enriched methylated
fractions. Library fragments between 200-300 bp were
selected after agarose gel electrophoresis. The libraries
were then subjected to emulsion PCR and bead enrich-
ment following the SOLiD emulsion PCR protocol (Life
Technologies). The resulting beads were then deposited
on the SOLID flow cell and subjected to massively par-
allel 50 bp single-read sequencing on a Life Technolo-
gies SOLID sequencer. Reads were mapped to the
human genome hgl8 build using Bioscope software.
The total number of reads per sample and the percent-
age alignment are summarized in Additional file 3:
Table S1. Regions of methylated DNA enrichment were
identified using MACS [25] and SICER [26] as de-
scribed previously [50]. Additional file 4: Table S2 sum-
marizes the number of peaks called with both MACS
and SICER as well as delineates the total number of peaks
above various thresholds of —10*log;o (p value) >50, >100,
and >200. These and all subsequent DNA methylation
studies were conducted independently using the three in-
dividual donors’ neutrophils, and all data is shown as a
single donor representative of all three, or as an average of
all three donors’ results, as noted in the figures.

Luminometric Methylation Assay and 5-methylcytosine
DNA ELISA

LUMA was performed by EpigenDx (Hopkinton, MA,
USA) as described by Karimi et al. [51]. Briefly, samples
were digested with Hpall + EcoRI or Mspl + EcoRI, and
fragments were amplified by Pyrosequencing™ (Qiagen).
The ratio of (dAGTP + dCTP)/dATP was calculated for
Hpall/EcoRI and Mspl/EcoRI fragments, and the per-
centage of methylation was determined by the ratio of
(Hpall/EcoR1)/(Mspl/EcoRI). Samples were tested in dupli-
cate. 5-Methylcytosine was quantified in DNA preparations
from RG108-treated cultures at days 0-3 postinfection
using a 5-mC DNA ELISA (Zymo Research Corp., Irvine,
CA, USA). The quantity of 5-methyl cytosine DNA was
quantified by comparison with a standard curve and nor-
malized to the content of day 0 no drug control cultures.

Identifying gene regions enriched for DNA methylation

Publically available cis-regulatory element annotation
(CEAS) software [52, 53] was used to characterize re-
gions of methylated DNA enrichment by calculating the
fraction present in different gene regions (introns, exons,
5" UTR, 3'UTR, and distal intergenic regions), promoters,

Page 15 of 17

bi-directional promoters, and regions downstream of gene
bodies; this was also used to create average profile analyses
of the smoothed adjusted log, (M/T) values across tran-
scriptional start sites (TSS), transcriptional termination
sites (TTS), long (2715-11,673 bp), medium (842—
2715 bp), and short (158—842 bp) intronic sequences and
long (164—483 bp), medium (109-164 bp), and short (66—
109 bp) exonic sequences.

Identifying chromosomal locations enriched for DNA
methylation and differential gene expression

Publically available transcription microarray data from
A. phagocytophilum-infected neutrophils was re-
analyzed using RMA [9]. Only the 24 h time point was
used for comparison with the same interval in the
DNA methylation studies. Differential expression was
determined based on the standard deviation of the
fold-change from the mean. Infected and uninfected
fold-change gene expression data were transformed to
log, for all analyses.

Regions enriched for DNA methylation and differential
expression were organized linearly among their respect-
ive chromosomes and divided into bins of ~one million
base pairs. The number of gene features (expression)
and methylation peaks within each bin were counted
and compared to the average number across the genome
to determine locations of interest. Regions of interest
were defined by those bins which had significantly more
counts than average for that chromosome.

DNA methylation and transcription in A.
phagocytophilum-infected neutrophils

Because A. phagocytophilum infection-induced genome-
wide DNA hypermethylation, we investigated whether this
affected gene transcription. Borjesson et al. previously in-
vestigated the effect of A. phagocytophilum infection on
transcription of the neutrophil using microarrays [9]. To
access and compare these data to the DNA methylation
analyses, the transcriptional profiling data were obtained
from Gene Expression Omnibus (GEO accession number
GSE2405) and re-normalized using RMA, as described
above. Differential expression was determined for 24 h
postinfection, and genes were sorted by chromosome and
physical location based on annotations in human genome
assembly hgl8 used for both these data and the DNA
methylation studies. To account for underestimations of
significant discoveries using p values, we calculated the
FDR adjusted p values, or g values, for each Spearman
correlation between windows of DNA methylation and
windows of differential gene expression on chromosome
6. We selected a FDR of a maximum of 10 % as a signifi-
cant correlation.
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Additional files

Additional file 1: Figure S1. Treatment of ATRA-differentiated HL-60
cells infected with A. phagocytophilum with DNMT inhibitor RG108 reduces
5-methyl cytosine genomic content. The proportion of 5-methyl cytosine in
drug-treated cultures vs. no drug on day 0 results is reduced at days 1-3 for
most doses, and at all days for the 100 pg/mL dose, suggesting that the
main target of the inhibitor is DNA methylation as an explanation for
reduced microbial growth.

Additional file 2: Figure S2. Intragenic and intergenic DNA
methylation correlate with differential gene expression within the MHC
locus and downstream region. Increased DNA methylation within
intragenic regions across the MHC locus correlates with differential gene
expression. Conversely, intergenic DNA methylation downstream (PROX)
of the MHC locus is correlated with differential gene expression. MeDNA
data are from the average of 3 donors. Expression data are derived from
GSE2405 [9].

Additional file 3: Table S1. Genome coverage. Genome coverage as
dictated by the total number of reads for enriched and total input
fractions. The % alignment was calculated as the percentage of reads
that aligned to the hg18 human reference genome. Data from all 3
donors is shown.

Additional file 4: Table S2. Number of peaks called using increasing
stringency. Significant peaks were called using MACS v1.4 and SICERV1.1.
Significant peaks were sorted by the —10*log10(p value) score based on
increasing stringencies to determine the number of peaks present above
thresholds of >50, >100 and >200. Data from all 3 donors is shown.
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Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SHGS helped design, conduct the experiments, and write the manuscript. SY
provided critical technical support and advice on experimental design and
helped to revise the manuscript. JSD provided overall design, conducted
experiments, directed the project, and helped write and revise the manuscript.
This work was conducted as part of the PhD thesis requirements for SHGS.

All authors read and approved the final manuscript.

Acknowledgements

The authors wish to acknowledge the contributions and discussions with
members of SHGS's thesis committee, including Stephen Baylin, M.D. (Johns
Hopkins University School of Medicine), Srinivasan Yegnasubramanian M.D,,
Ph.D. Johns Hopkins University School of Medicine), and Frank Deleo, Ph.D.
(Rocky Mountain Laboratory, National Institute of Allergy and Infectious
Disease). The authors would also like to thank Kristen Rennoll-Bankert, Ph.D.

Page 16 of 17

and Jose Carlos Garcia-Garcia, Ph.D. for their discussion and day-to-day
support and Valeria Pappas-Brown, Ph.D. and Emily Clemens for help with
technical work. Thank you to S. Yegnasubramanian, M.D., Ph.D. and Sarah
Wheelan, M.D., Ph.D. and the Johns Hopkins University Sidney Kimmel
Comprehensive Cancer Center Next Generation Sequencing Center (http://
nextgenseq.onc.jhmi.edu) for performing the MBD-seq and Conover Talbot,
B.S. from the Johns Hopkins Deep Sequencing and Microarray Core for his
assistance re-analyzing microarray using current tools and for the thoughtful
discussion. Additional thanks to Cosme Adrover-Pacheco, Ph.D. for help with
biocomputing analyses. Funding to support this work was provided by NIAID
grant ROTAI044102 to JSD. SY was supported by NIH/NCI grant P30CA006973,
the Cleveland Foundation Masenhimer Fellowship.

Author details

'Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA. 2Department of
Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD,
USA. *Department of Pathology, University of Maryland School of Medicine,
Baltimore, MD, USA. “Department of Microbiology and Immunology,
University School of Medicine, Baltimore, MD, USA. 5Sidney Kimmel
Comprehensive Cancer Center, Johns Hopkins University School of Medicine,
Baltimore, MD, USA.

Received: 26 March 2015 Accepted: 30 June 2015
Published online: 29 July 2015

References

1. Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a
granulocytotropic Ehrlichia species as the etiologic agent of human disease.
J Clin Microbiol. 1994;32:589-95.

2. Bakken JS, Dumler JS, Chen SM, Eckman MR, Van Etta LL, Walker DH. Human
granulocytic ehrlichiosis in the upper Midwest United States. A new species
emerging? JAMA. 1994;272:212-8.

3. Carlyon JA, Chan WT, Galan J, Roos D, Fikrig E. Repression of rac2 mRNA
expression by Anaplasma phagocytophila is essential to the inhibition of
superoxide production and bacterial proliferation. J Immunol.
2002;169:7009-18.

4. Carlyon JA, Fikrig E. Mechanisms of evasion of neutrophil killing by
Anaplasma phagocytophilum. Curr Opin Hematol. 2006;13:28-33.

5. Carlyon JA, Fikrig E. Invasion and survival strategies of Anaplasma
phagocytophilum. Cell Microbiol. 2003;5:743-54.

6. Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, et al.
Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg
Infect Dis. 2005;11:1828-34.

7. Choi KS, Park JT, Dumler JS. Anaplasma phagocytophilum delay of
neutrophil apoptosis through the p38 mitogen-activated protein kinase
signal pathway. Infect Immun. 2005;73:8209-18.

8. Garyu JW, Choi KS, Grab DJ, Dumler JS. Defective phagocytosis in
Anaplasma phagocytophilum-infected neutrophils. Infect Immun.
2005;73:1187-90.

9. Borjesson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, Deleo FR.
Insights into pathogen immune evasion mechanisms: Anaplasma
phagocytophilum fails to induce an apoptosis differentiation program in
human neutrophils. J Immunol. 2005;174:6364-72.

10. de la Fuente J, Ayoubi P, Blouin EF, Almazan C, Naranjo V, Kocan KM. Gene
expression profiling of human promyelocytic cells in response to infection
with Anaplasma phagocytophilum. Cell Microbiol. 2005;7:549-59.

11. Lee HC, Kioi M, Han J, Puri RK, Goodman JL. Anaplasma phagocytophilum-
induced gene expression in both human neutrophils and HL-60 cells.
Genomics. 2008,92:144-51. http://dx.doi.org/10.1016/j.ygeno.2008.05.005.

12. Banerjee R, Anguita J, Roos D, Fikrig E. Cutting edge: infection by the agent
of human granulocytic ehrlichiosis prevents the respiratory burst by down-
regulating gp91phox. J Immunol. 2000;164:3946-9.

13. Ge'Y, Yoshiie K, Kuribayashi F, Lin M, Rikihisa Y. Anaplasma phagocytophilum
inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance
of mitochondrial membrane potential and prevention of caspase 3
activation. Cell Microbiol. 2005;7:29-38.

14.  Akkoyunlu M, Malawista SE, Anguita J, Fikrig E. Exploitation of interleukin-8-
induced neutrophil chemotaxis by the agent of human granulocytic
ehrlichiosis. Infect Immun. 2001,69:5577-88.


http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0105-1-s1.jpeg
http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0105-1-s2.jpeg
http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0105-1-s3.jpeg
http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0105-1-s4.jpeg
http://nextgenseq.onc.jhmi.edu
http://nextgenseq.onc.jhmi.edu
http://dx.doi.org/10.1016/j.ygeno.2008.05.005

Sinclair et al. Clinical Epigenetics (2015) 7:77

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Klein MB, Hu S, Chao CC, Goodman JL. The agent of human granulocytic
ehrlichiosis induces the production of myelosuppressing chemokines without
induction of proinflammatory cytokines. J Infect Dis. 2000;182:200-5.

Scorpio DG, Akkoyunlu M, Fikrig E, Dumler JS. CXCR2 blockade influences
Anaplasma phagocytophilum propagation but not histopathology in the
mouse model of human granulocytic anaplasmosis. Clin Diagn Lab
Immunol. 2004;11:963-8.

Garcia-Garcia JC, Barat NC, Trembley SJ, Dumler JS. Epigenetic silencing of
host cell defense genes enhances intracellular survival of the rickettsial
pathogen Anaplasma phagocytophilum. PLoS Pathog. 2009;5:e1000488.
Garcia-Garcia JC, Rennoll-Bankert KE, Pelly S, Milstone AM, Dumler JS.
Silencing of host cell CYBB gene expression by the nuclear effector AnkA of
the intracellular pathogen Anaplasma phagocytophilum. Infect Immun.
2009;77:2385-91.

Stirzaker C, Song JZ, Davidson B, Clark SJ. Transcriptional gene silencing
promotes DNA hypermethylation through a sequential change in
chromatin modifications in cancer cells. Cancer Res. 2004,64:3871-7.
doi:10.1158/0008-5472.CAN-03-3690.

Srivastava S, Mishra RK, Dhawan J. Regulation of cellular chromatin state:
insights from quiescence and differentiation. Organogenesis. 2010,6:37-47.
Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics
joins genetics. Trends Genet. 2000;16:168-74.

Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG.
Aberrant patterns of DNA methylation, chromatin formation and gene
expression in cancer. Hum Mol Genet. 2001;10:687-92.

Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections. Cold Spring
Harb Perspect Med. 2012,2:a010272. doi:10.1101/cshperspecta010272.

Tolg C, Bagli DJ. Uropathogenic Escherichia coli infection: potential
importance of epigenetics. Epigenomics. 2012;4:229-35. doi:10.2217/epi.12.5.
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008,9:R137.
doi:10.1186/gb-2008-9-9-r137.

Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W. A clustering approach
for identification of enriched domains from histone modification ChIP-Seq
data. Bioinformatics. 2009,25:1952-8. doi:10.1093/bioinformatics/btp340.

Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA
methylation patterns associate with genetic and gene expression variation in
HapMap cell lines. Genome Biol. 2011;12R10. doi:10.1186/gb-2011-12-1-r10.
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: Microbial
reprogramming of parasitized host cell transcription by epigenetic remodeling
of chromatin structure. Front Genet. 2014;5:274. doi:10.3389/fgene.2014.00274.
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, et al. An
oestrogen-receptor-alpha-bound human chromatin interactome. Nature.
2009;462:58-64. doi:10.1038/nature08497.

Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al.
Regions of focal DNA hypermethylation and long-range hypomethylation in
colorectal cancer coincide with nuclear lamina-associated domains. Nat
Genet. 2012;44:40-6. doi:10.1038/ng.969.

Ciechomska M, van Laar JM, O'Reilly S. Emerging role of epigenetics in
systemic sclerosis pathogenesis. Genes Immun. 2014;15:433-9. doi:10.1038/
gene.2014.44.

de Mello VD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M.
DNA methylation in obesity and type 2 diabetes. Ann Med. 2014;46:103-13.
doi:10.3109/07853890.2013.857259.

Ronnerblad M, Andersson R, Olofsson T, Douagi |, Karimi M, Lehmann S,

et al. Analysis of the DNA methylome and transcriptome in granulopoiesis
reveals timed changes and dynamic enhancer methylation. Blood.
2014;123:279-89. doi:10.1182/blood-2013-02-482893.

Zilbauer M, Rayner TF, Clark C, Coffey AJ, Joyce CJ, Palta P, et al. Genome-
wide methylation analyses of primary human leukocyte subsets identifies
functionally important cell-type-specific hypomethylated regions. Blood.
2013;122:¢52-60. doi:10.1182/blood-2013-05-503201.

Kondo T, Oka T, Sato H, Shinnou Y, Washio K, Takano M, et al. Accumulation
of aberrant CpG hypermethylation by Helicobacter pylori infection
promotes development and progression of gastric MALT lymphoma. Int J
Oncol. 2009;35:547-57.

Matsusaka K, Funata S, Fukayama M, Kaneda A. DNA methylation in gastric
cancer, related to Helicobacter pylori and Epstein-Barr virus. World J
Gastroenterol. 2014;20:3916-26. doi:10.3748/wjg.v20.i14.3916.

Lee MJ, Min BJ, Choung HK, Kim N, Kim YA, Khwarg SI. Genome-wide DNA
methylation profiles according to Chlamydophila psittaci infection and the

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

Page 17 of 17

response to doxycycline treatment in ocular adnexal lymphoma. Mol Vis.
2014;20:1037-47.

Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative
pre-mRNA splicing. Cell. 2011;144:16-26. doi:10.1016/j.cell.2010.11.056.
Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD,
et al. Conserved role of intragenic DNA methylation in regulating
alternative promoters. Nature. 2010;466:253-7. doi:10.1038/nature09165.
Jjingo D, Conley AB, Yi SV, Lunyak W, Jordan IK. On the presence and role
of human gene-body DNA methylation. Oncotarget. 2012;3:462-74.
Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this
epigenetic mechanism for cancer research. Br J Cancer. 2012;106:248-53.
doi:10.1038/bjc.2011.550.

Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation
in transcriptional regulation, normal differentiation and cancer. Biochim
Biophys Acta. 1829;2013:1161-74. doi:10.1016/jbbagrm.2013.08.001.
Rennoll-Bankert KE, Sinclair SH, Lichay MA, Dumler JS. Comparison and
characterization of granulocyte cell models for Anaplasma phagocytophilum
infection. Pathog Dis. 2014;71:55-64. doi:10.1111/2049-632X.12111.
Goodman JL, Nelson C, Vitale B, Madigan JE, Dumler JS, Kurtti TJ, et al.
Direct cultivation of the causative agent of human granulocytic ehrlichiosis.
N Engl J Med. 1996;334:209-15.

Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen J, et al.
Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet.
2006;2:e21.

Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ,
Myers JN, et al. Key tumor suppressor genes inactivated by “greater
promoter” methylation and somatic mutations in head and neck cancer.
Epigenetics. 2014;9:1031-46. doi:10.4161/epi.29025.

Aryee MJ, Liu W, Engelmann JC, Nuhn P, Gurel M, Haffner MC, et al. DNA
methylation alterations exhibit intraindividual stability and interindividual
heterogeneity in prostate cancer metastases. Sci Transl Med. 2013;5:169ra10.
doi:10.1126/scitransimed.3005211.

Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG.
Combination of methylated-DNA precipitation and methylation-sensitive
restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative
detection of DNA methylation. Nucleic Acids Res. 2006;34:¢19. doi:10.1093/
nar/gnjo22.

Yegnasubramanian S, Wu Z, Haffner MC, Esopi D, Aryee MJ, Badrinath R,

et al. Chromosome-wide mapping of DNA methylation patterns in normal
and malignant prostate cells reveals pervasive methylation of gene-
associated and conserved intergenic sequences. BMC Genomics.
2011;12:313. doi:10.1186/1471-2164-12-313.

Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, et al.
A DNA hypermethylation module for the stem/progenitor cell signature of
cancer. Genome Res. 2012;22:837-49. doi:10.1101/gr.131169.111.

Karimi M, Johansson S, Stach D, Corcoran M, Grander D, Schalling M, et al.
LUMA (LUminometric Methylation Assay)—a high throughput method to
the analysis of genomic DNA methylation. Exp Cell Res. 2006;312:1989-95.
doi:10.1016/j.yexcr.2006.03.006.

Ji X, Li W, Song J, Wei L, Liu XS. CEAS: cis-requlatory element annotation
system. Nucleic Acids Res. 2006;34:W551-4. doi:10.1093/nar/gkI322.

Shin H, Liu T, Manrai AK, Liu XS. CEAS: cis-regulatory element annotation
system. Bioinformatics. 2009;25:2605-6. doi:10.1093/bioinformatics/btp479.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central



http://dx.doi.org/10.1158/0008-5472.CAN-03-3690
http://dx.doi.org/10.1101/cshperspect.a010272
http://dx.doi.org/10.2217/epi.12.5
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://dx.doi.org/10.1093/bioinformatics/btp340
http://dx.doi.org/10.1186/gb-2011-12-1-r10
http://dx.doi.org/10.3389/fgene.2014.00274
http://dx.doi.org/10.1038/nature08497
http://dx.doi.org/10.1038/ng.969
http://dx.doi.org/10.1038/gene.2014.44
http://dx.doi.org/10.1038/gene.2014.44
http://dx.doi.org/10.3109/07853890.2013.857259
http://dx.doi.org/10.1182/blood-2013-02-482893
http://dx.doi.org/10.1182/blood-2013-05-503201
http://dx.doi.org/10.3748/wjg.v20.i14.3916
http://dx.doi.org/10.1016/j.cell.2010.11.056
http://dx.doi.org/10.1038/nature09165
http://dx.doi.org/10.1038/bjc.2011.550
http://dx.doi.org/10.1016/j.bbagrm.2013.08.001
http://dx.doi.org/10.1111/2049-632X.12111
http://dx.doi.org/10.4161/epi.29025
http://dx.doi.org/10.1126/scitranslmed.3005211
http://dx.doi.org/10.1093/nar/gnj022
http://dx.doi.org/10.1093/nar/gnj022
http://dx.doi.org/10.1186/1471-2164-12-313
http://dx.doi.org/10.1101/gr.131169.111
http://dx.doi.org/10.1016/j.yexcr.2006.03.006
http://dx.doi.org/10.1093/nar/gkl322
http://dx.doi.org/10.1093/bioinformatics/btp479

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	A. phagocytophilum induces genome-wide hypermethylation
	Inhibition of DNMTs with 5-azacytidine slows A. phagocytophilum growth
	Characterization of DNA methylation across common gene features
	DNA methylation and transcriptional alterations in the A. phagocytophilum-infected neutrophil
	Correlation of individual new meDNA and differential gene transcription at the MHC locus
	Correlation of new meDNA enrichment with differential gene transcription over long contiguous linear regions at the MHC locus and chromosome 6

	Discussion
	Conclusions
	Methods
	Cell lines and cell culture
	Anaplasma phagocytophilum propagation, neutrophil infection, and quantitation
	MBD-Seq library preparation
	Luminometric Methylation Assay and 5-methylcytosine DNA ELISA
	Identifying gene regions enriched for DNA methylation
	Identifying chromosomal locations enriched for DNA methylation and differential gene expression
	DNA methylation and transcription in A. phagocytophilum-infected neutrophils

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



