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Abstract

Interactive effects of multiple environmental factors on metapopulation dynamics have received scant attention. We
designed a laboratory study to test hypotheses regarding interactive effects of factors affecting the metapopulation
dynamics of red flour beetle, Tribolium castaneum. Within a four-patch landscape we modified resource level (constant and
diminishing), patch connectivity (high and low) and patch configuration (static and dynamic) to conduct a 23 factorial
experiment, consisting of 8 metapopulations, each with 3 replicates. For comparison, two control populations consisting of
isolated and static subpopulations were provided with resources at constant or diminishing levels. Longitudinal data from
22 tri-weekly counts of beetle abundance were analyzed using Bayesian Poisson generalized linear mixed models to
estimate additive and interactive effects of factors affecting abundance. Constant resource levels, low connectivity and
dynamic patches yielded greater levels of adult beetle abundance. For a given resource level, frequency of colonization
exceeded extinction in landscapes with dynamic patches when connectivity was low, thereby promoting greater patch
occupancy. Negative density dependence of pupae on adults occurred and was stronger in landscapes with low
connectivity and constant resources; these metapopulations also demonstrated greatest stability. Metapopulations in
control landscapes went extinct quickly, denoting lower persistence than comparable landscapes with low connectivity.
When landscape carrying capacity was constant, habitat destruction coupled with low connectivity created asynchronous
local dynamics and refugia within which cannibalism of pupae was reduced. Increasing connectivity may be counter-
productive and habitat destruction/recreation may be beneficial to species in some contexts.
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Introduction

Metapopulations are local populations distributed patchily in

space and linked by dispersal [1]. Their viability depends on a

variety of habitat and species-specific features. Models predict that

habitat characteristics such as amount [2,3], suitability [2,4,5],

spatial structure [6,7], and connectivity [8,9] are important

determinants of extinction-colonization dynamics and hence

metapopulation persistence. The spatial [10,11] and temporal

[12] dynamics in the availability of habitable and unsuitable

habitats also are predicted to have important consequences for

metapopulation dynamics. Unfortunately, few studies have

simultaneously explored effects of multiple factors on metapopu-

lation dynamics. Our objective was to test how resource

availability, patch connectivity, and dynamics of patch configura-

tion interact to influence metapopulations.

Numerous prior studies have examined the role of each of these

factors separately. Level of resource availability (often measured

using patch area or quality) has emerged predictably as an

important determinant of metapopulation viability [13]. Resource

loss can result from either gradual depletion of resources from a

patch or outright destruction of patches. Gradual depletion of

resources from a patch, while reducing carrying capacity, does not

alter the connectivity between patches in a landscape. Rather,

gradual depletion can induce higher adult dispersal and mortality

and lower reproduction, while increasing immature mortality and

development time [14]. In contrast, rapid destruction of a patch in

a landscape reduces the number of habitats available for

occupancy, increases inter-patch distances, decreases connectivity

of resource patches, and can lead to rapid extinction beyond a

critical threshold of loss [14,15].

Reduced connectivity of resource patches has lowered persis-

tence for metapopulations of fruit flies (Drosophila hydei) [16].

However, the relation between connectivity and persistence is not

always monotonic, as intermediate levels of connectivity enhanced

persistence for other metapopulations [17,18]. Moreover, if local

extinction rate covaries with connectivity or dispersal rate, an anti-

rescue effect may lead to reduced stability and persistence by, e.g.,

facilitating the spread of contagious disease between subpopula-

tions, enhancing predation pressure, or synchronizing local

population dynamics [9,17,19–22].

In dynamic landscapes, i.e., landscapes in which patches are

destroyed and re-created over time, disturbances that render

patches unsuitable increase local extinction and reduce the

number of empty habitats available for colonization [23].
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Alternatively, patches that are less prone to destruction can serve

as refugia and a source of colonists, thereby enhancing

metapopulation persistence [24].

We manipulated resource availability, patch connectivity, and

dynamics of patch configuration in experimental metapopulations

to investigate their additive and interactive effects. Specifically, we

tested these effects by manipulating the amount of resources and

the level of boundary permeability [25,26] for red flour beetles

(Tribolium castaeneum Herbst (Coleoptera: Tenebrionidae)). We

tested the predicted main effects summarized in the preceding

paragraphs and examined all pairwise interactions of these effects

on colonization, extinction, and abundance of beetles.

Methods

Landscapes and experimental design
Red flour beetle is a stored grain pest that infests a variety of

stored products worldwide. The stock population (Berlin) of

Tribolium castaneum was obtained from the U.S. Grain Marketing

Research Laboratory in Manhattan, Kansas, in 2005. Beetles were

cultured in 95% wheat flour and 5% yeast medium by mass.

Beetles were maintained in an environmental chamber at 3361uC
and 7065% relative humidity. The life cycle in T. castaneum (egg to

adult) takes roughly one month, with an average 4 days for egg, 3

weeks for larval and 6 days for pupal development [27]. Adults

attain sexual maturity and start laying eggs in 2–3 days of

emergence [28]. Thus, the duration of our experiment (23 tri-

weekly period) corresponded to 14–16 generations [13].

Constructed landscapes. We designed experimental

landscapes with two habitat and two ‘‘marginal’’ habitat patches,

arranged in an alternating sequence (Fig. 1). Habitat patches

consisted of 95% wheat flour and 5% brewer’s yeast by mass.

Preliminary studies demonstrated that this mixture provided a

resource that favored the successful reproduction and survival of

the beetles. ‘‘Marginal’’ habitat patches consisted of powdered

cane sugar (dextrose). Preliminary studies revealed that the

dextrose medium prevented successful reproduction but

permitted adult survival [13].

Each constructed landscape consisted (see Fig. 1) of a

17 cm612 cm plastic box (Pioneer Plastics, Dixon, KY). The

floor was painted with white pigmented primer sealer (William

Zinsser and Co., www.zinsser.com) containing fine-grained sand

to facilitate beetle traction. To confine insects, the sides of the tray

were treated with Fluon (Northern Products Inc., Woonsocket RI).

A patch in a landscape consisted of a small (35 mm diame-

ter610 mm height) Petri dish affixed with glue inside the center of

a larger (60615 mm) Petri dish. Gluing was done all along the rim

of the smaller Petri dish to seal the base and prevent adults or

larvae from crawling under the smaller dish and thus getting

trapped over the course of the experiment. To facilitate beetle

movement between the inner and outer portions of the patch, an

inverted-V paper ramp (2464 mm) was attached to the rim of the

inner dish. The lid of the inner small Petri dish was notched where

the inverted-V paper ramp joined the inner Petri dish to allow the

exit of beetles to the outer Petri dish. A circular hole of diameter

2 mm was made in the outer dish and oriented 180 degrees from

the inverted paper ramp of the inner Petri dish to allow emigration

of beetles from a patch into the surrounding landscape.

Connectivity, specifically, patch boundary permeability

[5,25,26], was varied by modifying the height at which these exit

holes were placed. Preliminary trials over a 3-week period

demonstrated that patches with holes 2.5 mm above the base of

the outer dish exhibited emigration rates 5.8 times greater than

patches with exit holes at a height of 4.0 mm. The entry of beetles

back into patches was facilitated by providing paper ramps

(2264 mm) attached to the edge of the outer dish. The exit holes

and entry ramps that facilitated the movement of the beetles into

and out of the surrounding landscape, respectively, were

positioned in a small circular area at the center of the landscape,

thereby assuring comparable distances to all other patches and

reducing the effects associated with beetles wandering along the

edges of the landscape. Resources were placed inside the smaller

dish, which could hold a maximum of 3 g of medium. Keeping the

resources concentrated in the interior of the smaller patch

minimized spillover of resources into the matrix. In addition,

restricting resources in the interior dish maintained the exit hole

on the outer dish at a constant height.

Initial conditions and data collection. All experimental

patches received 6 adults and 18 larvae released on 3 g of medium

(flour in habitats and dextrose in marginal habitats) inside the

small dish of each patch (total = 24 adults and 72 larvae per

landscape). Both adults and larvae were added as a starter

population to mimic more closely established local populations,

avoid time lags, and buffer against crashes associated with density-

dependent cannibalism [14]. Initial population sizes were chosen

to approximate the maximal carrying capacity of the landscape,

based on preliminary trials. Twenty four adults were used per

landscape, even though estimated carrying capacity was 16, to

increase the likelihood that all life stages were equally distributed

in the 4 patches and to increase odds of 1:1 sex ratios. We

observed a sex ratio of 1:1 when sex of 100 random pupae was

determined (unpublished data). For a sample of six individuals, the

probability of obtaining all adults of a single sex in a patch is 0.03,

whereas the probability of 2–4 adults of a given sex is 0.78. For

larvae, the probability of obtaining 18 individuals of the same sex

is 7.661026, and the probability of 7–12 larvae of a given sex is

0.90.

For each treatment, observations were made every 3 weeks, a

time interval chosen to correspond with the larval developmental

period, allow sufficient time for beetles to respond to the

treatments imposed, and minimize the disturbance associated

with counting. Sifting the resources with #80 mesh sieve retains

Figure 1. Schematic representation of experimental landscapes
consisting of two patches of habitat (H, 95% flour and 5%
yeast by mass) and two patches of marginal habitat (M,
dextrose). Each patch consisted of an inner and outer Petri dish, with
resources contained in the inner one. The dark lines projecting from the
outer and inner Petri dish denote the paper ramps for dispersing
beetles. A small hole on the rim of the outer Petri dish beneath the
point where each paper ramp is attached served as an exit hole.
Dimensions of box and patches are not to scale.
doi:10.1371/journal.pone.0034518.g001

Metapopulations: Connectivity and Patch Dynamics

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e34518



most of the Tribolium eggs in the medium [29]. Measurements were

made by sifting the resources using #20 and #80 mesh sieves and

counting the number of living larvae, pupae and live and dead

adults in the patches and the surrounding matrix outside the

patches. All living individuals in all life stages were returned to the

patch they had occupied during the most recent count. Live

beetles in the matrix also were counted and released back into the

matrix. Experiments were continued for 22 3-week observation

periods or until metapopulation extinction.

Experimental design. We used a factorial design including 3

factors, each at 2 levels, for a total of eight treatments. Each

treatment was replicated three times. The factors were landscape

connectivity, resource level, and patch configuration. Connectivity

was manipulated via high (exit holes at 2.5 mm) and low (holes at

4.0 mm) boundary permeability. Resource levels of landscapes

either remained constant throughout the experiment, i.e., the

medium in each patch was replenished every 3 weeks, or

diminished to represent habitat degradation. For the latter

treatment, at the end of every 3-week period, the medium in

habitat and marginal-habitat patches was replaced with fresh

medium, but in an amount reduced by 0.5 g from what had been

present in the patch 3 weeks earlier. For instance, at the end of the

first 3 weeks, a habitat patch with 3 g of resource was replenished

with 2.5 g of fresh resource and similarly, a marginal-habitat patch

was replenished with 2.5 g of dextrose. Reduction of patch

resources by 0.5 g every 3 weeks was continued until the total

resource available in a patch was reduced to 0.5 g, at which point

a final reduction to 0.2 g was made. Below this resource level

cannibalism is quite high [30]. Patch configuration was

manipulated either by maintaining a fixed identity of habitat

(flour) and marginal-habitat (dextrose) patches for the duration of

the experiment (static), or destroying all habitats and restoring all

marginal habitats to habitat status at tri-weekly intervals

(dynamic). For dynamic landscape treatments, the entire

contents of both habitat patches were removed, and all stages of

beetles were sieved and counted. Next, habitat patches were

‘‘destroyed’’, i.e., converted to marginal-habitat patches

containing dextrose medium. Similarly, marginal-habitat

dextrose patches were restored to habitat patches containing

flour medium. Beetles then were returned to the patch from which

they had been counted and whose state had changed (e.g., from

habitat to marginal-habitat). This pattern of habitat destruction

and restoration mimics rotational cropping systems of many agro-

ecosystems and incorporated temporal dynamics in configuration

of patches while maintaining a constant landscape capacity from a

resource perspective.

In addition to the 23 factorial experiments, we included as

references two controls with no landscape connectivity, i.e., no

dispersal of beetles from static patches. In one control, carrying

capacity remained constant, whereas in the other carrying

capacity diminished over time as described above. Only static

patch configurations were used in control landscapes, because

extinction would be inevitable in landscapes with dynamic patch

configuration (i.e., destruction of habitable patches) and no

dispersal. Each control was replicated three times.

Statistical analysis
Colonization and extinction. Probabilities of colonization

and extinction for each patch state (habitat or marginal habitat)

were calculated as the proportion of those colonization and

extinction events occurring from time t-1 to time t during 22 tri-

weekly surveys (except as noted below) divided by the total number

of patches in a particular state and available for colonization (i.e.,

unoccupied) or extinction (occupied) respectively at time t-1. For

analyses involving comparison across landscapes with diminishing

resources or controls, only data from the first 18 tri-weekly surveys

were used, because metapopulations in all three replicate

landscapes suffered extinction beyond this time.

Patch extinction was defined as absence of adult beetles at time t

after being occupied by adults at time t-1. Conversely, patch

colonization was defined as the presence of at least one adult in a

patch following extinction. Data on colonization and extinction

frequencies in both patch states of each replicate landscape were

used to derive mean colonization and extinction probabilities at

the landscape level for each treatment. Because count data from

the experiment were overdispersed, a quasi-binomial generalized

linear model was fitted [31] to the proportion of successful

colonization and extinction events of each landscape. Predicted

coefficients on a logit scale were back transformed to proportions

for comparison. For all analyses, independent variables included

level of resource (constant = 1, diminishing = 0), connectivity

between patches (high = 1, low = 0) and patch configuration

(static = 1, dynamic = 0). Model selection was conducted using

the quasi Akaike Information Criterion (QAIC) [32] to account for

overdispersion.

Metapopulation dynamics. We applied a generalized linear

mixed effects Poisson model (GLMM) to determine how resource

level, patch connectivity and patch configuration affected

metapopulation attributes. The GLMM was implemented within

a Bayesian framework [33]. Specifically, the response trajectory of

each landscape was modeled as a mixture of the population

responses shared by all landscapes (fixed effects) and effects unique

to each individual landscape (random effects), enabling us to

account for over-dispersion.

Response variables in the GLMMs included total live adults,

live adults inside patches, adults outside patches, larvae inside

patches, and pupae inside patches. We fitted a repeated measures

model with all main and two-way fixed effects and two random

effects using the model:

Cij
~PPoisson(lij)

log(lij)~mzb0 � Timeizb1 � Resourcejzb2 � Connectjz

b3 � Configjzb4 � Resourcej � Connectjz

b5 � Resourcej � Configjzb6 � Connectj � Configjz

b7 � Resourcej � Timeizb8 � Connectj � Timeiz

b9 � Configj � Timeizajzei

In the model, Cij is the count observed in landscape j (j = 1 to 24) at

time step i (i = 1 to 22). The intercept m represents the grand mean

effect, and bs are the coefficients associated with fixed effects. The

parameters aj and ei account for random variation in beetle count

data due to landscape and time effects, respectively. Uninforma-

tive normal priors with mean zero were used for m, b, aj and ei.

Standard deviations of 100 were specified for the fixed effects

parameters, whereas the hyperparameters sa and se reflect the

random variation due to landscapes and time, respectively, and

were drawn from a Uniform (0, 1) distribution.

Our control landscapes lacked connectivity between patches.

To model the effect of complete isolation on the number of live

adults in patches, we modified the GLMM described above to

include three levels of connectivity (none = 0, low = 1, high = 2)

and to exclude main and interaction effects associated with patch

configuration. We also fitted a Poisson GLMM to assess the nature

Metapopulations: Connectivity and Patch Dynamics
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of density dependence on pupae and larvae at time t in patches of

control and treatment populations. For this analysis, time and

number of live adult beetles in patches at time t-1 were treated as

fixed factors, along with random landscape and time effects.

The GLMMs were fitted by calling WinBUGS 1.4 [34] directly

from free software package R version 2.9.2 [31] using the R add-

on library R2WinBUGS [31]. For each fitted model, three parallel

chains were run, each with 40000 iterations and a thinning rate of

35, discarding the first 5000 iterations as burn-in. Gelman-Rubin

R-hat values (, = 1.1) were used to assess convergence of chains

[35]. Our WinBUGS script is provided as a supplement (Appendix

S1).

Metapopulation stability. We estimated stability of

metapopulations by measuring the mean amplitude of

fluctuations in population size over time. Specifically, we

computed a fluctuation index [17] representing the mean

change in population size from t to t+1, scaled by average

population size over the duration of the study. We estimated

fluctuation indices for all metapopulations and each of the

associated subpopulations and performed an ANOVA on the

fluctuation indices to investigate the main and interaction effects of

resource level, connectivity and patch configuration on

metapopulation stability. We also performed an ANOVA on the

fluctuation indices estimated for subpopulations in habitat and

marginal habitat with the same set of predictor variables.

Results

Colonization and extinction
For colonization frequency, the QAIC-best model included a

significant (P = 0.0003) interaction effect of patch connectivity and

configuration. Increased connectivity dampened the positive effect

of a dynamic patch configuration on colonization (Fig. 2).

Specifically, colonization frequency (and probability) in landscapes

with low patch connectivity was nearly 10 times greater when

patches had dynamic versus static configuration. In contrast,

colonization frequency (probability) in landscapes with high patch

connectivity was only 2.5 times higher when patches were

dynamic versus static.

The frequency of patch extinctions was 1.65 times greater for

landscapes with diminishing resources (P = 0.01) and nearly three

times greater in landscapes with dynamic patches (P%0.001). No

interactive effects on patch extinction were observed.

At the landscape level, colonization probabilities were on

average 2.6 times greater when resource was constant versus

diminishing (P%0.0001) and 4.9 times greater when patch

configuration was dynamic versus static (P%0.0001) (Table 1).

Ratios of colonization:extinction were highest for landscapes with

constant resources and dynamic patch configuration (Table 1).

Metapopulation dynamics
Abundance of one or more beetle life stages was influenced by

the main effects of resource level, patch connectivity, and patch

configuration. Not surprisingly, resource level was the most

influential factor affecting abundance of all life stages, with

standardized coefficients that were 1.7–33.8 times larger than the

next most influential main effect (Table 2, 3). Abundance of each

of the beetle life stages also was affected substantially by pairwise

interactions of two or more main effects. The magnitude of

standardized coefficients for significant pairwise interactions of

resource level, patch connectivity, and patch configuration

averaged 16% of the corresponding coefficient for resource level

(Table 2).

Dynamics of adult beetles were affected by interactions of time

with each of the experimental variables, and by interactions of

resource6connectivity and resource6patch configuration

(Table 2). Adult abundance in landscapes declined over time,

with more rapid declines for populations characterized by

diminishing (versus constant) resource levels, high (versus low)

connectivity, or static (versus dynamic) patch configuration. Total

adult abundance averaged 2.8 times higher in landscapes with

constant resources, and this effect was slightly lower (8%) in

landscapes with low connectivity. Effects of patch configuration

were evident only in landscapes with constant resources and

produced an average of 22% more adults when patch configura-

tion was dynamic. Abundance of beetles outside of patches was

time-dependent, exhibiting greater abundance over time in

landscapes with constant resources compared to those with

diminishing resources. The effect of high connectivity on adults

occurring in the matrix was 22% greater for landscapes with static

patch configuration relative to dynamic configuration (Table 2,

Fig. 3).

Dynamics of subadult beetles were affected by interactions of

time with each of the experimental variables, and by interactions

of resource6patch configuration and connectivity6patch config-

uration (Table 2). Larval and pupal abundance in patches declined

over time, with more rapid declines for populations characterized

by diminishing (versus constant) resource levels, high (versus low)

connectivity, or static (versus dynamic) patch configuration

(Table 2). A positive effect of dynamic patch configuration on

larval and pupal abundance was evident only when connectivity

was low (Table 2), and resulted in 17% more larvae and 86% more

pupae than in landscapes with static configuration. Larval

abundance was positively affected by a dynamic configuration of

patches (10% increase relative to static configuration), but only

when resources were constant (Table 2).

For landscapes with static patch configuration, including control

landscapes, significant interactions of time6resource and time6
connectivity were evident (Table 3). The average number of live

adults in patches declined over time, and declines were more rapid

for metapopulations with diminishing resource patches. Land-

scapes with connected patches tended to have more adult beetles

in patches relative to landscapes with no connectivity (Table 3).

The interaction effect between time and connectivity indicated a

temporary increase in the number of adults in populations with

Figure 2. Increased connectivity dampened colonization
differences between dynamic and static landscapes. In land-
scapes with low patch connectivity, frequency of mean colonization
was 9 times higher when patches were dynamic than static. In high-
connectivity landscapes, mean colonization frequency was only 2.5
times higher in dynamic than static landscapes.
doi:10.1371/journal.pone.0034518.g002
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unconnected patches, followed by dramatic declines to extinction

(Table 3). Populations with connected patches exhibited neither

rapid increases nor crashes and stabilized around carrying

capacity (Fig. 4). Results for larval abundance were similar to

those for adults and are not presented here.

Poisson GLMM revealed that pupal abundance at time t

declined with increasing adult abundance at time t-1 for both

treatment and control landscapes (Table 4). Negative density

dependence of pupae was observed in all landscape treatments

with constant resources, with one exception (Table 4). In contrast,

negative density dependence was evident in only two landscape

treatments with diminishing resources, and both of these instances

involved static patch configuration (Table 4). Negative density

dependence was 1.7 times greater in landscapes with low (versus

high) connectivity (Table 4).

Metapopulation stability
Metapopulations with constant resources (b = 20.12,

P = 0.0008) or low connectivity (b = 0.08, P = 0.01) produced

lower fluctuations in amplitude than those with diminishing

resources or high connectivity, respectively. Moreover, the effect of

low connectivity on fluctuations tended to be greater for

Table 1. Colonization and extinction probabilities at the patch and landscape level for all metapopulations in the 23 factorial
experiment.

Trtmt # Factors Colonization Probability (C) Extinction Probability (E) C/E

Connectivity Resource Configuration Marginal Habitats Habitats Landscape Marginal Habitats Habitats Landscape Landscape

1 High Constant Static 0.34 * 0.31 0.61 0.02 0.17 1.88

2 High Constant Dynamic * 1.00 1.00 0.56 0.02 0.40 2.52

3 High Diminish Static 0.08 0.25 0.13 0.80 0.22 0.30 0.42

4 High Diminish Dynamic 0.00 0.37 0.24 0.74 0.08 0.58 0.41

5 Low Constant Static 0.12 * 0.12 0.90 0.00 0.12 1.05

6 Low Constant Dynamic * 1.00 1.00 0.55 0.00 0.38 2.64

7 Low Diminish Static 0.02 0.00 0.01 0.56 0.08 0.15 0.08

8 Low Diminish Dynamic 0.00 0.68 0.56 0.82 0.02 0.68 0.82

C1 None Constant Static 0.00 0.00 0.00 1.00 1.00 1.00 0.00

C2 None Diminish Static 0.00 0.00 0.00 1.00 1.00 1.00 0.00

Estimates were based on 22 and 18 tri-weekly surveys for constant- and diminishing-resource landscapes, respectively. Asterisks indicate a lack of colonization events.
C1 and C2 denote controls and thus lacked colonization and always went extinct.
doi:10.1371/journal.pone.0034518.t001

Table 2. Estimates of parameters (b) and 95% credible intervals for Poisson mixed effects regressions of adult, larval and pupal
counts.

Fixed Effect Parameters TLA TAO Larvae Pupae

Intercept 2.79 (2.6–2.97)* 1.75 (1.28–2.20)* 3.85 (3.63–4.06)* 0.66 (0.05–1.24) *

Time 20.28 (20.34–20.21)* 0.08 (20.26–0.42) 20.06 (20.15–0.03) 0.41 (0.04–0.78) *

Resource 1.70 (1.45–1.95)* 2.41 (1.94–2.91)* 2.03 (1.76–2.29)* 2.59 (1.86–3.34) *

Connectivity 20.02 (20.27–0.22) 1.39 (0.94–1.89)* 0.04 (20.21–0.29) 0.22 (20.40–0.83)

Configuration 20.14 (20.37–0.09)a 20.10 (20.54–0.36) 0.01 (20.24–0.28) 0.05 (20.59–0.68)

Resource6Connect 0.17 (20.10–0.44)b 20.04 (20.61–0.54) 0.14 (20.18–0.43) 0.18 (20.62–0.98)

Resource6Config 20.21 (20.49–0.06)c 0.04 (20.52–0.61) 20.20 (20.50–0.10)e 20.27 (21.10–0.52)

Connect6Config 0.14 (20.15–0.41) 0.59 (0.06–1.16)* 0.19 (20.09–0.49)f 0.73 (0.03–1.54)*

Time6Resource 1.11 (1.03–1.18)* 1.64 (1.43–1.87)* 1.34 (1.29–1.40)* 1.40 (1.07–1.75)*

Time6Connect 20.12 (20.17–20.06)* 0.01 (20.13–0.14) 0.01 (20.03–0.04)g 0.21 (0.05–0.37)*

Time6Config 20.05 (20.11–0)d 20.02 (20.13–0.10) 0.08 (0.05–0.12)* 0.18 (0.02–0.35)*

Data on response variables were collected over 23 3–week periods. Response variable ‘TLA’ stands for total live adults in landscape, and ‘TAO’ for total adults outside
patches in landscape. An asterisk indicates that the 95% credible interval did not contain zero. Lower-case superscripts are provided for interaction effects with credible
intervals containing zero but for which only a small fraction, f, of the posterior distribution was more extreme than zero.
af = 0.11;
bf = 0.10;
cf = 0.06;
df = 0.02;
ef = 0.08;
ff = 0.11;
gf = 0.07.
doi:10.1371/journal.pone.0034518.t002
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landscapes with constant resources (b = 20.06, P = 0.14). Mean

fluctuations of metapopulations in landscapes with static versus

dynamic patch configurations did not differ (b = 0.02, P = 0.49).

For all landscapes, habitat patches (0.41) always fluctuated less

than marginal habitats (3.34) (F = 41.64, P%0.0001).

Patterns of fluctuations at the subpopulation level (habitat and

marginal habitat) differed dramatically from those observed for

entire metapopulations. Fluctuation in amplitude was 10 times

lower (b = 23.11, P,0.0001) for habitat patches experiencing static

(0.34) versus dynamic (3.4) configuration, but did not differ for other

main effects. Fluctuations of subpopulations in habitat patches were

influenced by the interaction of resource and configuration

(b = 20.18, P,0.0002) as well as connectivity and configuration

(b = 0.14, P = 0.003). Effects of configuration dominated in both

instances, with greatest fluctuations in habitat patches in dynamic

landscapes. When resource levels were constant, the effect of

dynamic patch configuration on fluctuations in habitats was 1.52

times greater than when resource levels were diminishing. Similarly,

when connectivity of habitat patches was low, the effect of dynamic

configuration on fluctuations was 1.34 times greater than when

connectivity was high. Fluctuations in marginal habitats were lower

in landscapes with low patch connectivity (b = 21.61, P = 0.005)

and a static configuration of patches (b = 26.06, P,0.0001), but no

interaction effects were significant.

Discussion

Beetles in our constructed landscapes met the four criteria for a

metapopulation [36]. Namely, suitable habitat was configured in

discrete patches (Fig. 1), local populations experienced measurable

rates of extinction (Table 1), local population dynamics were not

completely synchronized, and dispersing individuals linked the local

populations. Regarding the latter point, dispersal was rare but

sufficient to link local populations, averaging 0.4 (low connectivity)

and 1.4 (high connectivity) individuals per generation.

The most noteworthy results from our study were the

unexpected effects of patch connectivity and configuration on

beetle metapopulations, and the manner in which effects

interacted to influence abundance and stability. Dispersing T.

castaneum have shorter developmental times and greater fecundity

than non-dispersers [37]. Therefore, we expected metapopulations

of beetles in highly connected landscapes to exhibit greater

abundance and persistence. Instead, high connectivity led to

greater mortality of dispersing beetles and produced an anti-rescue

effect [38] that resulted in lower metapopulation size. Average

adult mortality in the matrix was nearly 2.5 fold greater in

landscapes with high (1.64) versus low (0.69) connectivity,

corresponding to a nearly 3-fold increase in the magnitude of

dispersers in landscapes with high connectivity. Consequently,

landscapes with low connectivity had higher recruitment to and

natality in habitable patches, and hence greater metapopulation

abundance than landscapes with high connectivity.

Temporal dynamics of resource patches simulated apparent

habitat loss and re-creation, and we expected survival and

persistence of metapopulations to be impacted negatively [39].

Instead, landscapes with dynamic patch configuration supported

larger metapopulations than landscapes with static patches.

Table 3. Mixed effects Poisson regression estimates and 95%
credible intervals for landscapes with static patches and
control landscapes (with no connectivity).

Dependent Variable Parameter b 95% CI

Lower Upper

Live adults in patches Intercept* 2.57 2.39 2.75

Time* 20.24 20.32 20.16

Connectivitya 0.12 20.09 0.32

Resource* 1.26 1.00 1.52

Time6Resource* 0.91 0.81 1.01

Time6Connect* 0.32 0.26 0.37

Connect6Resource 0.02 20.28 0.31

For interpretation of *, see footnote for Table 2.
aThe fraction of the posterior distribution more extreme than zero, f = 0.13.
doi:10.1371/journal.pone.0034518.t003

Figure 3. The number of adult beetles found in the matrix
outside of patches was positively affected by high connectivity
and dynamic patches. Mean (+SE) abundance in the matrix outside
of patches was greatest when connectivity was high and when patches
were dynamic. The ratio of abundance in high and low connectivity
treatments (Nhigh:Nlow) was 4.1:1.4 for static and 4.6:2.0 for dynamic
configuration, or a 22% greater effect of high connectivity with static
configuration relative to dynamic configuration.
doi:10.1371/journal.pone.0034518.g003

Figure 4. Intermediate levels of connectivity resulted in the
greatest abundance of adults in patches. Landscapes with no
connectivity resulted in an early increase of adults, followed by
relatively rapid declines to extinction. Landscapes with patches that
had some connectivity experienced early declines followed by stability
over the last half of the study, with greatest abundance for landscapes
with low connectivity. Values are means (+SE) of replicates.
doi:10.1371/journal.pone.0034518.g004
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Landscapes with dynamic patches supported greater numbers of

both adults and subadults, owing to increased survival associated

with lower cannibalism. Preliminary trials revealed that the

mature larvae and pupae that previously had been nourished by

resources in a habitat patch managed to develop and metamor-

phose to adults in their newly occupied marginal-habitat patch.

Adult beetles occupying marginal-habitat patches in our dynamic

landscapes were motivated to disperse and quickly occupy newly

created habitat patches. Their dispersal to habitat patches

apparently reduced cannibalistic activity in marginal-habitat

patches. At the onset of each tri-weekly period throughout the

study, newly created habitat patches (i.e. transformed marginal

habitats) in our dynamic landscapes had negligibly low adult and

egg density, whereas the habitat patches in static landscapes

retained adults and eggs at greater densities. Low initial densities,

combined with gradual recruitment of dispersing adults, likely

facilitated enhanced adult fecundity in newly formed habitat

patches of dynamic landscapes [40,41]. Thus, dynamic landscapes

contained patches that changed states between habitat and

marginal habitat, effectively providing refugia for juveniles, pupae

and callows by releasing them from cannibalism [42]. Vuilleumier

and coworkers [24] concluded that any patch in a dynamic

landscape that provides refugia can serve as source of colonists for

habitats recovering from disturbance, thereby increasing meta-

population persistence.

Metapopulations with constant resource levels and low

connectivity exhibited the greatest levels of density dependence.

Consistent with Desharnais and Liu [43], these metapopulations

also exhibited the greatest stability. Strong intraspecific competi-

tion at high population densities can reduce population variability

and local extinction probabilities [44,45], as shown experimentally

in our study and in rock pool Daphnia populations [46,47].

In our study, reduced patch connectivity increased the

difference in colonization rate between dynamic and static

landscapes by 3–30-fold. Connectivity had no effect on extinction

rate, but high connectivity resulted in more adults, and more adult

mortality, in the matrix for landscapes with static patch

configuration. Thus, the net effect of low connectivity was

increased patch occupancy and abundance for metapopulations

in dynamic landscapes. Despite fluctuations of habitat subpopu-

lations that were 10 times greater for dynamic landscapes,

metapopulations in dynamic landscapes displayed stability com-

parable to those in static landscapes. Asynchrony in the dynamics

of subpopulations likely contributed to this effect, which was

especially notable when connectivity was low. Following patch

destruction, marginal habitats served as more effective refugia for

mature larvae, pupae and callow when connectivity was low; a

similar effect on recruitment was shown in a coral reef fish

(Dascyllus flavicaudus) [48]. In contrast, dynamics of subpopulations

in static landscapes or with higher connectivity experienced

greater synchrony; habitat patches varied together at comparable

adult densities, and marginal habitat patches were occupied only

at low levels throughout the study. Our results agree with those of

Dey and Joshi [17], who attributed higher stability in less-well-

connected fruit fly metapopulations to asynchrony in neighboring

subpopulations. Thus, increasing connectivity may be counter-

productive for some species.

Other investigators have noted potentially deleterious effects of

enhanced connectivity. Hess [9] predicted an anti-rescue effect

with increasing connectivity among subpopulations owing to

increased predation, spread of infectious disease, or other factors

that enhance the local extinction rate relative to recolonization.

Molofsky and Ferdy [18] found a nonlinear relation between

migration rates and persistence time in metapopulations of the

herb (Cardamine pensylvanica) and observed increased extinction due

to increased connectivity when all subpopulations in a metapop-

ulation fluctuated in synchrony and consequently experienced

simultaneous decline. Conflicting results regarding the impact of

connectivity on metapopulation dynamics suggest that predicting

the effects of connectivity between habitat patches requires

consideration of the dispersal ability of a species and how

behaviors modified by landscape heterogeneity influence survival

or reproduction [17,49]. In addition to dispersal and behavior, our

findings indicate that changes in habitat configuration can interact

with patch connectivity to influence metapopulation dynamics.

Specifically, lower connectivity may be advantageous in dynamic

landscapes if it reduces competition and improves juvenile survival

via creation of refugia for critical life stages.

Answering questions about optimal connectivity will likely

require an understanding of the biology of a target species and the

resource requirements for each of its life stages. Our findings

suggest that questions of connectivity should simultaneously

Table 4. Mean pupal abundance, strength of negative density dependence (b) on adults and 95% credible intervals.

Treatment # Factors Mean # of Pupae

Density
Dependence

Connectivity Resource Configuration (b and 95% CI)

1 High Constant Static 2.52 20.04 (20.10–0.01)a

2 High Constant Dynamic 2.58 0.02 (20.04–0.07)

3 High Diminish Static 0.36 20.12 (20.25–20.01)*

4 High Diminish Dynamic 0.24 20.05 (20.20–0.10)

5 Low Constant Static 2.17 20.06 (20.11–20.02)*

6 Low Constant Dynamic 3.80 20.05 (20.08–20.02)*

7 Low Diminish Static 0.32 20.30 (20.55–20.10)*

8 Low Diminish Dynamic 0.73 0.09 (20.09–0.28)

Control 1 None Constant Static 1.22 20.11 (20.20–20.02)*

Control 2 None Diminish Static 0.15 20.06 (20.23–0.10)

For interpretation of *, see footnote for Table 2.
aThe fraction of the posterior distribution more extreme than zero, f = 0.05.
doi:10.1371/journal.pone.0034518.t004
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consider the temporal dynamics of preferred and marginal

habitats. Clearly, additional empirical studies are needed to

explore the impact of patch turn-over rates and habitat complexity

on metapopulations residing in spatially and temporally varying

landscapes.

Supporting Information

Appendix S1 WinBUGS script for specifying Poisson
mixed effect regression model for the response variable
to estimate model parameters. The modelled data are C[i,j],

which represent counts of adult beetles in landscape j at time i.
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