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A B S T R A C T   

Objective: To investigate the effectiveness of a multimodal deep learning model in predicting 
tumor budding (TB) grading in rectal cancer (RC) patients. 
Materials and methods: A retrospective analysis was conducted on 355 patients with rectal 
adenocarcinoma from two different hospitals. Among them, 289 patients from our institution 
were randomly divided into an internal training cohort (n = 202) and an internal validation 
cohort (n = 87) in a 7:3 ratio, while an additional 66 patients from another hospital constituted 
an external validation cohort. Various deep learning models were constructed and compared for 
their performance using T1CE and CT-enhanced images, and the optimal models were selected for 
the creation of a multimodal fusion model. Based on single and multiple factor logistic regression, 
clinical N staging and fecal occult blood were identified as independent risk factors and used to 
construct the clinical model. A decision-level fusion was employed to integrate these two models 
to create an ensemble model. The predictive performance of each model was evaluated using the 
area under the curve (AUC), DeLong’s test, calibration curve, and decision curve analysis (DCA). 
Model visualization Gradient-weighted Class Activation Mapping (Grad-CAM) was performed for 
model interpretation. 
Results: The multimodal fusion model demonstrated superior performance compared to single- 
modal models, with AUC values of 0.869 (95% CI: 0.761–0.976) for the internal validation 
cohort and 0.848 (95% CI: 0.721–0.975) for the external validation cohort. N-stage and fecal 
occult blood were identified as clinically independent risk factors through single and multivari-
able logistic regression analysis. The final ensemble model exhibited the best performance, with 
AUC values of 0.898 (95% CI: 0.820–0.975) for the internal validation cohort and 0.868 (95% CI: 
0.768–0.968) for the external validation cohort. 
Conclusion: Multimodal deep learning models can effectively and non-invasively provide indi-
vidualized predictions for TB grading in RC patients, offering valuable guidance for treatment 
selection and prognosis assessment.   
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1. Introduction 

Colorectal cancer (CRC) is one of the more common gastrointestinal tumors, with rectal cancer (RC) accounting for about one-third 
of these cases. In 2020, CRC ranked second in global cancer mortality, and the total incidence of CRC in China also ranked second 
among all cancers, indicating a significant disease burden both globally and in China [1]. With the advancement of endoscopic 
technology, early-stage RC has become a suitable candidate for endoscopic treatment. However, whether additional radical surgery is 
necessary after endoscopic treatment for these patients remains a clinical challenge [2]. Currently, the presence of tumor budding (TB) 
has become one of the evaluation criteria for additional radical surgery after endoscopic treatment in early-stage RC patients [3]. 
Pathological studies have shown that tumor budding, defined as the presence of single or clusters of fewer than five invasive tumor 
cells at the forefront of the tumor stroma, indicates the potential for tumor invasion and metastasis, serving as a harbinger process for 
distant metastasis [4], which is instructive in suggesting early metastasis of RC. Tumor budding is an emerging prognostic biomarker in 
CRC and other solid tumors. There is ample evidence supporting the prognostic value of tumor budding. TB has been listed as an 
important adverse prognostic factor for CRC patients in both the TNM staging system (2017) and the WHO classification scheme 
(2019) [5,6], underscoring its diagnostic importance in assessing RC tumor treatment response and prognosis [7,8]. Studies have 
indicated that RC patients with TB have a higher incidence of local recurrence and liver metastases [9], and a high-grade TB is 
significantly associated with shorter overall survival (OS) and disease-free survival (DFS) (P < 0.05) [10]. Therefore, clear grading of 
TB can assist clinicians in determining whether early adjunctive chemotherapy is needed postoperatively in RC patients to improve 
prognosis [11,12]. 

Currently, the assessment of tumor budding (TB) in pathological examinations employs hematoxylin and eosin (HE) staining or 
immunohistochemistry (IHC) methods. These approaches have limitations, including being invasive and failing to comprehensively 
represent the full scope of the lesion. Additionally, TB is not a mandatory item in pathological tests, which further limits its clinical 
utility. Therefore, a non-invasive and holistic tumor sampling technique is crucial for timely, comprehensive, and accurate prediction 
of TB grading in rectal cancer (RC) patients. Recent studies indicate that multimodal integration, which leverages unique information 
from different imaging modalities, offers a more comprehensive view of tumor biological behavior [13]. Moreover, deep transfer 
learning has been widely applied in colorectal cancer tumors. Pai and Liu [14,15]used deep learning algorithms to analyze patho-
logical images of colorectal cancer, demonstrating the potential of deep learning in identifying and quantifying the histopathological 
features of colorectal cancer tissues. Hence, our study innovatively constructs a multimodal deep transfer learning model based on CT 
and MRI images, aimed at investigating the value of this model in predicting the TB grading in rectal cancer (RC) patients. 

2. Materials and methods 

2.1. Patients 

In a retrospective study, a total of 289 patients who underwent rectal CT and MRI enhancement examinations at Institution 1 from 
November 2019 to December 2022 were identified. These patients were randomly divided into an internal training cohort (n = 202) 
and an internal validation cohort (n = 87) using a 7:3 ratio. Inclusion criteria were: (1) pathologically confirmed rectal adenocarci-
noma with an assessment of TB grading; (2) Underwent rectal MRI and CT enhanced scans within one week before surgery, with a 
maximum interval of three days between the two scans; (3) availability of complete clinical and pathological data. Exclusion criteria 
included: (1) any preoperative treatment (such as radiotherapy, chemotherapy, or immunotherapy); (2) concurrent other malignant 

Fig. 1. Flow chart of the patients’ recruitment pathway.  

Z. Liu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e28769

3

tumors; (3) missing MRI sequences or poor image quality. Ultimately, 208 patients with rectal adenocarcinoma were included in the 
study. An external validation cohort comprised 66 eligible patients with rectal adenocarcinoma from Institution 2 (Fig. 1). The study 
protocol was approved by the Ethics Committee of the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University (KY- 
2022-045-01). Patient consent was waived by the institutional review board due to the retrospective and anonymized nature of the 
data analysis. The study was conducted in accordance with the guidelines of the medical imaging artificial intelligence examination 
checklist [16]. 

2.2. Pathological assessment 

In accordance with the tumor budding (TB) interpretation and counting criteria established by the International Tumor Budding 
Consensus Conference (ITBCC), tumor budding was identified as cell clusters containing tumor cells scattered at the tumor front [17]. 
A microscope with an eyepiece field diameter of 20 mm and an observation area of 0.785 mm2 was used. Tumor tissue samples from 
patients were collected, and the hotspot areas where TB was most prevalent were first identified under low magnification. Subse-
quently, the maximum number of budding instances in the TB hotspot area was counted under a 200x field of view, with at least two 
pathological slides observed per case. According to the ITBCC grading criteria, the categories were classified as: 0–4 buds (low-grade 
budding, Bd1), 5–9 buds (intermediate-grade budding, Bd2), and ≥10 buds (high-grade budding, Bd3). In this study, the TB categories 
were divided into low-intermediate (Bd1+2) and high-grade (Bd3) based on the aforementioned standards. The grading of TB was 
jointly assessed by two senior pathologists using a multi-headed microscope throughout the study. 

2.3. Image acquisition and Region of Interest segmentation 

Images were acquired using a 1.5 T magnetic resonance imaging (MRI) scanner (Siemens, Avanto or Aera, Germany), a 3.0 T MRI 
scanner (Siemens, Verio or Spectra, Germany), and a Siemens SOMATOM Definition dual-source CT scanner from Germany. The 
specific parameters for the machine scans are detailed in Supplementary Material 1. CT Enhanced Scan: A high-pressure injector is 
used to inject non-ionic contrast agent iohexol through the elbow vein at a dose of 1.5 ml/kg, at a rate of 3 ml/s, with scanning starting 
30 s after contrast agent injection. MRI Enhanced Scan: Contrast agent Gd-DTPA is injected at a dose of 0.1 mmol/kg and a rate of 
2.0–3.0 ml/s, followed by an equal volume of saline at the same flow rate, with a dynamic scan performed for 5 min. The T1CE and CT- 
enhanced images were both standardized and resampled to 1 mm × 1 mm × 1 mm voxels, and subsequently normalized to a range of 
0–1 using min-max normalization for each patient’s image intensity. Axial images of both T1CE and CT enhancements were imported 
into the open-source software ITK-SNAP (v.3.8.0, http://www.itksnap.org), where its Registration functionality was utilized for the 
initial automatic registration of CT and MRI images. During the automatic registration process, manual adjustments were made if 
errors were detected to ensure precise alignment of the images. The regions of interest (ROI) in the images were manually segmented 
by two radiologists with 5 and 8 years of experience in abdominal-pelvic MRI diagnosis, who were blinded to the patients’ conditions. 

Fig. 2. The schematic workflow of model development.A DLmodel based on 2.5D inputs, and a clinical model were constructed respectively,and the 
two models were fused through a decision-level fusion (An Ensemble model). DL = deep learning; 2.5D = 2.5 dimension. 
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The lesion’s entire volume was segmented manually on axial images, with adjustments made on coronal and sagittal images to achieve 
a higher accuracy of ROI. Any discrepancies were resolved through discussion to reach a consensus. 

2.4. Deep learning model analysis 

Based on the 3D segmentation mask of the tumor, the Region of Interest (ROI) was selected from the original image, focusing on the 
largest cross-section and its adjacent layers, to create a three-channel 2.5D input method. This approach balances the simplicity of 2D 
imaging with the spatial information of 3D images. The transfer learning models employed in this study include DenseNet 121, ResNet 
18, ResNet 34, ResNet 50, ResNet 101, and Vgg11. Each model was pre-trained on the ImageNet dataset to obtain initial weight values, 
aiding in rapid convergence and enhancing the models’ generalization capabilities on medical images. Prior to training, all such 2.5D 
inputs were resized to 224 × 224 pixels. The training process comprised forward computation and backpropagation; additionally, 
dynamic data augmentation techniques such as random horizontal flipping and cropping were applied to effectively enhance the 
models’ robustness and generalization ability. A focal loss function was utilized to address class imbalance issues. The Stochastic 
Gradient Descent (SGD) optimizer was used for updating model parameters, starting with an initial learning rate of 0.01. This rate was 
decreased using a cosine annealing algorithm over 100 epochs and 1800 iteration steps, with a batch size of 128, ensuring ample 
iterations for the models to learn and adjust weights. Subsequently, we constructed and compared the efficacy of different deep 
learning models based on CT and MRI modalities, and the optimal models were combined into a multimodal fusion model using 
decision-level fusion (Fig. 2). The best weights for each model were determined using the predicted probabilities of the individual 

Table 1 
Clinical baseline information for patients.  

Characteristic Training Cohort Internal Validation Cohort External Validation Cohort 

Bd (1 + 2) (n =
142) 

Bd (3) (n = 60) p-value Bd (1 + 2) (n =
63) 

Bd (3) (n = 24) p- 
value 

Bd (1 + 2) (n =
48) 

Bd (3) (n =
18) 

p- 
value 

Sex   0.500   0.637   0.641 
Male 81 (57.0%) 38 (63.3%) 47 (74.6%) 16 (66.7%) 29 (60.40%) 6 (33.30%) 
Female 61 (43.0%) 22 (36.7%) 16 (25.4%) 8 (33.3%) 19 (39.60%) 12 (66.70%) 
Age (years) 65.35 ± 10.38 66.07 ± 10.60 0.752 64.46 ± 9.11 65.38 ± 9.17 0.771 64.60 ± 11.30 65.50 ± 11.70 0.791 
Size (cm) 4.00 (3.00, 

5.00) 
4.00 (3.25, 
5.00) 

0.772 4.00 (2.50, 
4.50) 

4.00 
(3.50,4.75) 

0.208 3.75 
(2.75,5.00) 

3.35 
(2.50,4.00) 

0.381 

Distance (cm) 8.00 (5.00, 
10.00) 

8.0 (5.00, 
10.00) 

0.757 8.00 (5.00, 
10.00) 

6.50 (5.00, 
10.00) 

0.881 8.00 
(5.00,10.00) 

6.00 
(5.00,8.00) 

0.082 

T stage   0.314   0.974   0.555 
T1 8 (5.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
T2 44 (31.0%) 19 (31.7%) 21 (33.3%) 8 (33.3%) 20 (41.7%) 8 (44.4%) 
T3 88 (62.0%) 40 (66.7%) 40 (63.5%) 15 (62.5%) 25 (52.1%) 10 (55.6%) 
T4 2 (1.4%) 1 (1.7%) 2 (3.2%) 1 (4.2%) 3 (6.3%) 0 (0.0%)  
N stage   <0.001   0.680   0.693 
N0 74 (52.1%) 13 (21.7%) 27 (42.9%) 8 (33.3%) 12 (25.0%) 3 (16.7%) 
N1 29 (20.4%) 12 (20.0%) 14 (22.2%) 7 (29.2%) 12 (25.0%) 6 (33.3%) 
N2 39 (27.5%) 35 (58.3%) 22 (34.9%) 9 (37.5%) 24 (50.0%) 9 (50.0%) 
Stomachache   0.819   0.627   0.313 
Yes 48 (33.8%) 22 (36.7%) 26 (41.9%) 8 (33.3%) 20 (41.7%) 10 (42.9%) 
No 94 (66.2%) 38 (63.3%) 36 (58.1%) 16 (66.7%) 28 (58.3%) 12 (57.1%) 
Ventosity   0.851   0.791   0.362 
Yes 13 (9.2%) 5 (8.3%) 11 (17.7%) 3 (12.5%) 10 (20.8%) 2 (11.1%) 
No 129 (90.8%) 55 (91.7%) 51 (82.3%) 21 (87.5%) 38 (79.2%) 16 (88.9%) 
Tenesmus   0.902   0.720   0.952 
Yes 32 (22.5%) 14 (11.9%) 14 (22.6%) 7 (29.2%) 11 (22.9%) 4 (22.2%) 
No 110 (77.5%) 46 (76.7%) 48 (77.4%) 17 (70.8%) 37 (77.1%) 14 (77.8%) 
Bloody_stool   0.001   0.003   0.327 
Yes 89 (62.7%) 52 (86.7%) 40 (64.5%) 23 (95.8%) 42 (87.5%) 14 (77.8%) 
No 53 (37.3%) 8 (13.3%) 22 (35.5%) 1 (4.2%) 6 (12.5%) 4 (22.2%) 
Time   0.860   0.924   0.424 
Yes 58 (40.8%) 23 (38.3%) 20 (32.3%) 8 (33.3%) 9 (18.8%) 5 (27.8%) 
No 84 (59.2%) 37 (61.7%) 42 (67.7%) 16 (66.7%) 39 (81.3%) 13 (72.2%) 
Character   0.571   0.423   0.421 
Yes 89 (62.7%) 39 (65.0%) 31 (50.0%) 15 (62.5%) 24 (50.0%) 7 (38.9%) 
No 53 (37.3%) 21 (35.0%) 31 (50.0%) 9 (37.5%) 24 (50.0%) 11 (61.1%) 
CA19-9 (U/ 

mL) 
9.92 
(5.71,14.90) 

11.35 
(7.08,23.65) 

0.067 8.28 
(5.17,20.87) 

10.29 
(6.65,22.25) 

0.342 10.25 
(5.81,16.45) 

7.78 
(5.07,17.70) 

0.579 

CA50 (U/mL) 6.44 
(3.98,9.65) 

7.50 (4.93, 
12.86) 

0.051 5.98 (3.90, 
11.65) 

6.12 
(4.58,15.83) 

0.395 6.33 
(3.97,9.27) 

5.72 
(3.89,10.30) 

0.908 

CEA (ng/mL) 2.91 
(1.83,6.53) 

3.94 
(2.07,10.80) 

0.096 3.49 
(2.27,7.86) 

3.48 
(1.99,4.46) 

0.344 3.52 
(2.04,9.90) 

2.85 
(1.96,4.10) 

0.190 

Note: Data are mean ± standard deviation or median with interquartile range and numbers in parenthese. CA19-9: Carbohydrate antigen19-9; CA50: 
Carbohydrate antigen50; CEA: Carcinoembryonic antigen. 
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models on the training data as inputs for logistic regression. Once the optimal weights were established, a soft voting scheme was 
employed to integrate the models (Equation in Supplementary Materials 2). 

2.5. Statistical analysis 

Statistical analyses were conducted using R software (version 4.1.3: www.R-project.org) and SPSS software (version 25.0, IBM, 
Armonk, NY, USA). Depending on the distribution of variables, quantitative data with a normal distribution were expressed as mean ±
standard deviation and analyzed using independent sample t-tests. Quantitative data with a non-normal distribution were expressed as 
median (interquartile range) and analyzed using the Mann-Whitney U test. Categorical data were analyzed using the Chi-square test or 
Fisher’s exact test and expressed in percentages.We utilized univariate logistic regression analysis to assess the initial associations 
between each clinical indicator and the study outcomes. Subsequently, to determine independent risk factors, we further employed 
multivariable logistic regression analysis. The analysis procedure selected forward selection for variable screening. A p-value of <0.05 
was considered statistically significant. The predictive performance of each model was evaluated using the area under the curve (AUC), 
DeLong’s test, calibration curves, and decision curve analysis (DCA). The F1 score was calculated to assess and compare the predictive 
performance of each model (Supplementary Material 3). Gradient-weighted Class Activation Mapping (Grad-CAM) was used for model 
interpretation. 

3. Results 

3.1. Clinical data and model establishment 

A total of 355 patients were included in the study, with 253 patients (71.3%) in the Bd (1 + 2) group and 102 patients (28.7%) in 
the Bd (3) group. The clinical characteristics are as follows (Table 1): there was no statistical significance in patients’ gender, age, 
tumor diameter, distance from the anal margin, clinical T stage, symptoms of abdominal pain, bloating, tenesmus, frequency and 
nature of bowel movements, and tumor markers (CA199, CA50, CEA). Through univariate and multivariate logistic regression ana-
lyses, two independent predictive factors (clinical N stage and bloody stool) were identified (Table 2). A clinical model was con-
structed, and the AUC values for the internal and external validation cohorts were 0.664 (95% CI: 0.554–0.773) and 0.634 (95% CI: 
0.504–0.763), respectively. 

3.2. Fusion and ensemble model establishment and evaluation 

In the deep learning models constructed based on CT images, the Vgg11 model demonstrated the best performance, with AUC 
values for the internal and external validation cohorts being 0.802 (95% CI: 0.671–0.932) and 0.758 (95% CI: 0.609–0.907), 
respectively. Similarly, in the deep learning models based on MRI images, the Vgg11 model also showed outstanding performance, 
with AUC values for the internal and external validation cohorts of 0.815 (95% CI: 0.697–0.933) and 0.764 (95% CI: 0.604–0.924), 
respectively(Supplementary Material 4). Based on these findings, we performed a decision-level fusion of the Vgg11 models from CT 
and MRI to construct a multimodal fusion model. Excitingly, the performance of the fusion model significantly surpassed that of the 
single modality imaging approach, with AUC values for the internal and external validation cohorts of 0.869 (95% CI: 0.761–0.976) 
and 0.848 (95% CI: 0.721–0.975), respectively. Further, we combined the fusion model with clinical independent risk factors to 
construct an ensemble model. The results indicated that the AUC values for the internal and external validation cohorts were 0.898 
(95% CI: 0.820–0.975) and 0.868 (95% CI: 0.768–0.968), respectively (Table 3). Compared to the individual clinical and deep learning 
models, the ensemble model showed significant improvements in accuracy, sensitivity, specificity, and predictive performance. The 
calibration curve was evaluated using the Hosmer-Lemeshow (HL) test, which showed good consistency between predicted and actual 
outcomes. Decision curve analysis (DCA) indicated that within the risk threshold, the ensemble model provided higher overall net 
benefit and clinical decision-making efficacy compared to the clinical model and deep learning models (Fig. 3). 

3.3. Model interpretation 

Gradient-weighted Class Activation Mapping (Grad-CAM) provides an intuitive visualization of the model’s specific decisions 
through heatmaps, where different colors represent the convolutional neural network’s focus on different regions of the input image 
[18]. By overlaying the heatmap of the last convolutional layer onto the original image, Grad-CAM helps identify the image regions on 
which the model relies when diagnosing diseases, thereby offering crucial insights into its decision-making process. This is particularly 

Table 2 
Independent risk factors were screened by univariable and multivariable logistic regression analysis.  

Factors Univariable logistic regression Multivariable logistic regression 

OR（95% CI） p value OR（95% CI） p value 

N_stage 2.255（1.559–3.261） ＜0.001 2.173 (1.490–3.171) ＜0.001 
Blood_stool 3.871（1.708–8.774） 0.001 3.51（1.507–8.173） 0.004  

Z. Liu et al.                                                                                                                                                                                                              

http://www.r-project.org/


Heliyon 10 (2024) e28769

6

significant in medical image analysis, where researchers can understand how the model identifies disease features by observing these 
heatmaps, providing valuable insights into its decision-making process. Moreover, Grad-CAM not only enhances the transparency of 
the model but also aids in identifying and correcting model biases. For instance, if the model erroneously focuses on irrelevant areas, it 
may indicate issues with the training data or require adjustments in the learning approach. Hence, Grad-CAM offers an intuitive way to 
understand and explain complex neural network decisions, especially in the critical field of medical image processing. Through this 
technique, we can enhance the credibility and practicality of the model. Fig. 4 illustrates the comparative results of the original images 
and overlays of heatmaps from different deep learning models. The inward-concentrated red regions indicate activation, suggesting 
that the model is particularly attentive to these areas. 

4. Discussion 

Recent years have seen the prediction analysis of combinations of multiple modal variable features as a more effective method to 
assist clinical practice, providing more comprehensive information support for clinical diagnosis and treatment [19]. In our study, we 
used decision-level fusion to construct anensemble model combining the clinical model and the fusion model. This model demon-
strated superior diagnostic ability over single models, exhibiting outstanding diagnostic performance in both internal and external 
validation cohorts, indicating its strong applicability. Moreover, using data from two centers for validation also enhanced the stability 
and universality of our study results. 

Tumor budding, as an emerging prognostic biomarker in colorectal cancer, adheres to the principle that ’higher budding levels 
correlate with worse clinical outcomes,’ regardless of clinical situation or tumor type [3]. Therefore, clear grading of TB is helpful for 
clinicians to administer precise treatment for patients. Currently, traditional radiomics methods have been used to construct predictive 
models for rectal cancer tumor budding. Li [20] developed an imaging-based model using multi-sequence MRI to predict tumor 
budding grades in rectal cancer patients, with AUC values of 0.875 (95% CI: 0.752–0.951) for internal validation and 0.796 (95% CI: 
0.702–0.871) for external validation. Furthermore, Peng [21] added a clinical model to the study to construct a combined model, with 
an AUC value of 0.891 (95% CI: 0.800–0.981) for validation. However, the predictive performance of theensemble model constructed 
in our study surpasses these levels, with AUC values of 0.898 (95% CI: 0.820–0.975) and 0.868 (95% CI: 0.768–0.968) for internal and 
external validation cohorts, respectively. This improvement may be attributed to the use of deep transfer learning models, which, 
unlike handcrafted features, can automatically learn complex features directly from the raw pixels of input images for end-to-end 
classification and prediction [22]. Additionally, the inclusion of multimodal data, allowing for information extraction from 
different types, may also contribute, enabling a more comprehensive and holistic understanding of the biological information of lesions 
[23]. Pai and Liu [14,15]have both utilized deep learning methods to analyze pathological images of rectal cancer, demonstrating the 
potential of deep learning in identifying and quantifying histopathological features including tumor budding. Although these studies 
emphasize the application value of deep learning in pathological image analysis, our study extends the application scope of deep 
learning techniques to the analysis of multimodal data based on MRI and CT images, yielding promising results. In comparison to their 
research, we not only focus on pathological images but also analyze MRI and CT images using deep learning techniques, allowing us to 
make predictions without the need for actual pathological samples, thereby providing the possibility for non-invasive predictions. 

In our study, we selected only the T1CE sequence from MRI images, based on Li and Peng’s multi-sequence MRI research, which 
found that enhanced sequence models showed better predictive performance, in line with our clinical practice. Delong tests(Sup-
plementary Material 5) revealed that the T1CE model performed slightly better than CT in both internal and external validation co-
horts, but the difference was not statistically significant. This minor difference could stem from MRI’s advantage in soft tissue 
resolution. Although the difference between the fusion model and single modality models was not statistically significant, considering 
improvements in sensitivity and performance, the advantages of multimodal models remain significant, especially in analyzing 
complex tumor features, such as differentiating subtypes or assessing tumor invasion into surrounding tissues [24,25]. Therefore, 
while single modality imaging methods can be sufficiently predictive in some cases, combining the advantages of CT and MRI provides 

Table 3 
F1-score, sensitivity, specificity, and AUC values in the five models.  

model_name Accuracy AUC 95% CI Sensitivity Specificity F1-score Task 

Clinic 0.673 0.731 0.662–0.799 0.667 0.676 0.548 Training cohort 
Clinic 0.609 0.664 0.554–0.773 0.625 0.603 0.469 Internal Validation cohort 
Clinic 0.576 0.634 0.504–0.763 0.500 0.604 0.391 External Validation cohort 
DTL_CT 0.822 0.821 0.755–0.886 0.783 0.838 0.723 Training cohort 
DTL_CT 0.816 0.802 0.671–0.933 0.667 0.873 0.667 Internal Validation cohort 
DTL_CT 0.833 0.758 0.609–0.907 0.389 1.000 0.560 External Validation cohort 
DTL_T1CE 0.906 0.837 0.761–0.913 0.683 1.000 0.812 Training cohort 
DTL_T1CE 0.874 0.815 0.696–0.933 0.625 0.968 0.732 Internal Validation cohort 
DTL_T1CE 0.864 0.764 0.603–0.924 0.500 1.000 0.667 External Validation cohort 
DTL_CT + T1CE 0.871 0.936 0.897–0.974 0.867 0.873 0.800 Training cohort 
DTL_CT + T1CE 0.885 0.869 0.761–0.977 0.708 0.952 0.773 Internal Validation cohort 
DTL_CT + T1CE 0.848 0.848 0.721–0.976 0.722 0.896 0.722 External Validation cohort 
Ensemble 0.886 0.954 0.918–0.991 0.917 0.873 0.827 Training cohort 
Ensemble 0.862 0.898 0.820–0.975 0.708 0.952 0.773 Internal Validation cohort 
Ensemble 0.848 0.868 0.768–0.968 0.722 0.896 0.722 External Validation cohort  
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Fig. 3. A, B: Comparison of the AUC of each model in the internal and external validation cohorts; C, D: Calibration curves of each model in the 
internal and external validation cohorts; E, F: DCA curves of each model in the internal and external validation cohorts. 
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richer data, offering more accurate predictions in complex clinical situations [26–28]. Moreover, we must recognize that 
multi-sequence parameters in MRI images might provide a more comprehensive view of the tumor [29,30], aiding in more accurately 
identifying specific tumor characteristics, which has not been fully explored in our study. Future research should explore the combined 
use of different imaging technologies. This finding also suggests that clinicians, when choosing imaging techniques, should consider 
not only availability and cost-effectiveness but also the comprehensive advantages of different imaging methods to achieve optimal 
clinical decision-making. 

This study employed six transfer learning models (including DenseNet 121, ResNet 18, ResNet 34, ResNet 50, ResNet 101, and 
Vgg11) to predict the grading of tumor budding in patients with rectal cancer. Among these models, the Vgg11 model exhibited 
stronger generalization and predictive capabilities compared to other classic CNNs. The performance differences between various CNN 
models could be attributed to differences in their internal network architectures. The Vgg11 model, with its relatively simple structure 
and fewer parameters, helps reduce the risk of overfitting in small datasets or simple tasks [31,32], which could be advantageous in 
practical clinical applications. Furthermore, the Grad-CAM visualization of the Vgg11 model effectively highlights specific features 
within rectal cancer images. These features predominantly manifest as morphological heterogeneity in the tumor area, such as the 
indistinctness of tumor margins and irregularity in shape. Additionally, the heterogeneity of the internal structure of the tumor is also 
recognized by the model as a significant feature. This confirms the model’s effectiveness in identifying and analyzing key tumor 
characteristics. In this manner, the model not only demonstrates its diagnostic capabilities on a technical level but also provides 
physicians with a more intuitive means of understanding the pathological characteristics of the tumor. 

This study has certain limitations: (1) It is a retrospective study and may contain inherent selection biases. Further research 
involving more centers and prospective experiments is necessary. (2) To avoid overfitting due to too many training parameters, we 
only used 2.5D inputs for the deep learning models, inevitably missing some image information. Future studies might need to increase 
the sample size and implement 3D inputs. (3) This study only considered the T1CE sequence for MRI images. Future studies incor-
porating more sequence parameters for MRI may achieve better predictive results. 

In conclusion, the multimodal deep learning model constructed in this study can effectively and non-invasively perform individ-
ualized prediction of TB grading in RC patients. This has significant implications for guiding the choice of treatment and prognosis 

Fig. 4. Grad-CAM Heatmaps, Highlighting Key Areas and Original Lesion Regions Predicted by the Model. The areas focused on by different deep 
learning models in the analysis of CT and MRI images. Regions of the lesion predominantly in red indicate the highest activation level by the model 
in these parts. Areas predominantly in blue represent lower activation levels, suggesting that these regions have a lesser impact on the model’s 
diagnostic decision-making. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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assessment for patients. 
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