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Isolated backbone curves represent significant
dynamic responses of nonlinear systems; however, as
they are disconnected from the primary responses,
they are challenging to predict and compute. To
explore the conditions for the existence of isolated
backbone curves, a generalized two-mode system,
which is representative of two extensively studied
examples, is used. A symmetric two-mass oscillator
is initially studied and, as has been previously
observed, this exhibits a perfect bifurcation between
its backbone curves. As this symmetry is broken,
the bifurcation splits to form an isolated backbone
curve. Here, it is demonstrated that this perfect
bifurcation, indicative of a symmetric structure, may
be preserved when the symmetry is broken under
certain conditions; these are derived analytically.
With the symmetry broken, the second example—a
single-mode nonlinear structure with a nonlinear
tuned mass damper—is considered. The evolution
of the system’s backbone curves is investigated
in nonlinear parameter space. It is found that this
space can be divided into several regions, within
which the backbone curves share similar topological
features, defining the conditions for the existence of
isolated backbone curves. This allows these features
to be more easily accounted for, or eliminated, when
designing nonlinear systems.

1. Introduction
Over recent decades, demand on the performance of
engineering structures has been continually growing.
Meeting this demand often requires extending the
performance envelope of structures to regions where
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nonlinearity must be accounted for. This results in complex nonlinear dynamic phenomena,
such as bifurcations, internal resonances and multiple solutions [1–6]. Despite the challenges
these phenomena have posed to analysis and design, recent studies seek to exploit, rather
than avoid, the nonlinear behaviours. Application areas include vibration absorbers and energy
harvesting [7–13]. Among these applications, the nonlinear tuned mass damper (NLTMD) has
been extensively studied in the literature with its advantageous performance demonstrated
[14–17].

Den Hartog [18] proposed a widely adopted method to optimize the parameters of a linear
tuned mass damper (LTMD). Later, a nonlinear generalization of Den Hartog’s equal-peak
method for an NLTMD was established in [16], where the performance between the NLTMD
and the LTMD was compared. Gatti [17] highlights that the main advantage of introducing
nonlinearity is the improvement of the bandwidth of the device. An NLTMD has, for example,
been used to control a supercritical Hopf-bifurcation of aerofoil flutter in [19], and to control limit
cycle oscillations of mechanical systems in [20].

Besides these favourable properties, the use of an NLTMD may bring some undesirable
dynamic phenomena, such as isolas, i.e. forced responses that are isolated from the primary
response branches. Due to this feature, the existence of isolas can be difficult to determine;
furthermore, these isolated solutions may represent significant, high-amplitude responses [16,
21–23]. An early study of isolas in engineering systems was carried out by Abramson [24] in 1955.
Extensive work since this has focused on the mechanism for their creation, such as discontinuity
[25,26], internal resonances [27] and symmetry breaking [28,29].

Numerous approaches have been used to detect and trace isolas. One numerical method is
continuation which uses special points, such as fold bifurcations and extremum points, to trace
the evolution of isolas by varying specific parameters [30,31]. In combination with continuation
methods, singularity theory can be used to provide complementary information in the prediction
and identification of isolas [32–34]. Methods based on continuation can efficiently find isolas;
however, they require a good understanding of the system, and its responses, to select the
appropriate continuation parameters. Another numerical method is global analysis, which may
detect an isola by finding initial conditions which are within the basin of attraction of that
isola [35]. This approach requires a large number of simulations of initial conditions, making it
computationally expensive. In addition to these methods, experimental techniques are also used
to detect isolas; for example, using control-based continuation, an isola is detected for a nonlinear
beam structure in [36].

An alternative approach to considering forced responses is to analyse the underlying backbone
curves of the unforced, undamped system. Backbone curves, which are also known as nonlinear
normal modes (NNMs), are also widely used in nonlinear modal analysis, reduced-order
modelling and localization analysis (e.g. [5,6,37]). Backbone curves can be related to the forced
responses of a system (including those that lie on isolas) using energy balance analysis [29,30,38].
This involves finding the points in the forced responses that lie on the backbone curves, such that
the forcing energy in matches the damping energy loss. This approach reduces the isola-finding
problem to an analytical and computationally simpler one; however, it requires that the backbone
curves are known.

To complicate matters, while less studied than the forced counterpart, backbone curves
themselves can also be isolated.1 Isolated backbone curves have been demonstrated for a simple,
near-symmetric two-mass oscillator [38], and it was shown that this isolated curve emerged
due to the breaking of symmetry. Recently, an isolated backbone curve has also been measured
experimentally for a cross-beam system using a nonlinear force appropriation technique [39], and
again shown to evolve from the symmetry breaking in the system. Without a priori knowledge
of such isolated backbone curves, any isolated forced responses that are associated with them
may go undetected. While the aforementioned systems exhibit isolated backbone curves during
symmetry-breaking, in practice, some systems cannot be symmetric, e.g. a grounded structure

1Note the distinction between isolated backbone curves and isolas, which exist in the forced responses.
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with an ungrounded NLTMD attached, and the existence of isolas can have a significant impact
on their performance, as discussed above. A general methodology, describing the relationship
between the symmetry of the system and the evolution of isolated backbone curves, has not yet
been fully explored. To understand this relationship, a more general case needs to be considered.
Such insights into this relationship would ensure that isolated backbone curves can be reliably
predicted when designing nonlinear devices and structures.

This paper presents a technique to determine the existence of isolated backbone curves for a
two-mode system with cubic nonlinearities and a 1 : 1 internal resonance. This is motivated by
the fact that much of the current literature on modal interactions consider systems where just
two modes interact. The general two-mode model is related to two specific example systems: an
in-line two-mass oscillator is used to explore the relationship between symmetry breaking and
isolated backbone curves; the second motivating example is an NLTMD attached to a single-
mode nonlinear structure. Exploiting the method developed for the general two-mode case, the
evolution of isolated backbone curves in nonlinear parameter space is identified for the NLTMD
system. To this end, the rest of this paper is organized as follows.

Section 2 firstly revisits the backbone curves of a two-mode symmetric system, which has been
considered extensively (e.g. [5,29,37,38,40,41]). This system exhibits two single-mode backbone
curves with one perfect bifurcation leading to mixed-mode backbone curves. By breaking the
symmetry of this system, the perfect bifurcation splits to form an isolated backbone curve. It
is then shown that, similarly to a symmetric system, an asymmetric system may also exhibit
single-mode backbone curves with a perfect bifurcation. The mechanisms by which symmetry
breaking affects the modal equations are then explored. Section 3 considers a nonlinear structure
with an NLTMD and, using the insights from §2, derives the analytical parameter relationships to
obtain two single-mode backbone curves with one perfect bifurcation. Perturbing the linear and
nonlinear parameters from these relationships, the evolution of backbone curves in nonlinear
parameter space is then discussed, and the emergence and evolution of isolated backbone curve
addressed. Focusing on the system with hardening springs, discriminant analysis is used in §4
to find the analytical conditions under which the isolated backbone curve may be removed,
i.e. shifted to infinite frequency and amplitude. Analytical expressions found in §§3 and 4 serve as
boundaries, distinguishing topological features of backbone curves in nonlinear parameter space,
and defining conditions for the existence of isolated backbone curves. Lastly, this paper is closed
with conclusion in §5.

2. Breaking the symmetry of a nonlinear 2-d.f. oscillator
In this section, a general two-mode2 conservative system, with cubic nonlinearities, is firstly
considered, before considering a specific two-mode system. The Lagrangian of this general system
may be written

L= 1
2 q̇2

1 + 1
2 q̇2

2 − 1
2 ω2

n1q2
1 − 1

2 ω2
n2q2

2 − 1
4 Ψ4q4

1 − Ψ1q3
1q2 − 1

2 Ψ3q2
1q2

2 − Ψ2q1q3
2 − 1

4 Ψ5q4
2, (2.1)

where qi, q̇i and ωni are the ith linear modal displacement, velocity and natural frequency
respectively, and Ψ1, . . . , Ψ5 are the nonlinear coefficients. Note that the nonlinear coefficients are
defined in this order for simplicity in later sections. Applying the Euler–Lagrange equation then
leads to the following equations of motion:

q̈1 + ω2
n1q1 + Ψ4q3

1 + 3Ψ1q2
1q2 + Ψ3q1q2

2 + Ψ2q3
2 = 0 (2.2a)

and
q̈2 + ω2

n2q2 + Ψ1q3
1 + Ψ3q2

1q2 + 3Ψ2q1q2
2 + Ψ5q3

2 = 0. (2.2b)

Note that the use of the Lagrangian in deriving these expressions restricts the number of nonlinear
parameters to five, while ensuring that the equations of motion remain conservative [42,43].

2Note that the term mode is used here to refer to a mode of the underlying linear model of the system, whereas a Nonlinear
Normal Mode (NNM) denotes a periodic response of the conservative nonlinear system [5].
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From equation (2.2b), when the coefficient of q3
1 equals 0 (i.e. when Ψ1 = 0), q2 = 0 is a solution

(although coupling between the two modes still exists via other terms). Substituting this into
equation (2.2a) gives the single-mode solution, representing a single-mode backbone curve, or
NNM branch, which consists of only the first linear modal coordinate, q1, by solving

q̈1 + ω2
n1q1 + Ψ4q3

1 = 0. (2.3)

Note that Ψ1 = 0 is the special case which results in this single-mode backbone, a solution which
cannot exist when Ψ1 �= 0. In addition to this single-mode solution, backbone curves containing
contributions from both linear modes, i.e. mixed-mode backbone curves, can also be found when
Ψ1 = 0. Likewise, when the coefficient of q3

2 in equation (2.2a), Ψ2, equals 0, one can find the single-
mode solution that consists of only the second linear modal coordinate, q2, from

q̈2 + ω2
n2q2 + Ψ5q3

2 = 0. (2.4)

Otherwise, when both Ψ1 �= 0 and Ψ2 �= 0, this system only has mixed-mode backbone curves. To
find the backbone curves of the general two-mode system, the harmonic balance technique3 is
used, firstly by assuming that the modal displacements may be written as

qi ≈ ui = Ui cos (ωrit − θi) , (2.5)

where ui represents the fundamental response of qi, and where Ui, ωri and θi are amplitude,
response frequency and phase of ui, respectively. Note that this trigonometric solution is
equivalent to the exponential form used in [38,41]. It is further assumed that the fundamental
frequencies of the two modes are equal, i.e. ωr1 = ωr2 = Ω , hence, the response frequency ratio
is 1 : 1. With the substitution of expressions (2.5) into the equations of motion (2.2), and the
non-resonant terms removed, one can obtain the time-independent solutions from

4
(
ω2

n1 − Ω2
)

U1 + 3Ψ4U3
1 + Ψ3U1U2

2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ2U3

2 + 3Ψ1U2
1U2

)
cos (θd) = 0,

(2.6a)

4
(
ω2

n2 − Ω2
)

U2 + 3Ψ5U3
2 + Ψ3U2

1U2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ1U3

1 + 3Ψ2U1U2
2

)
cos (θd) = 0

(2.6b)

and
[
2Ψ3U1U2 cos (θd) + 3Ψ1U2

1 + 3Ψ2U2
2

]
sin (θd) = 0, (2.6c)

where θd = θ1 − θ2. These equations can then be used to compute the backbone curves of the
general two-mode system.

(a) The backbone curves of a symmetric two-mass oscillator
To demonstrate the effect of symmetry breaking, a specific two-mode system, the two-mass
oscillator shown schematically in figure 1, is now used. The system consists of two masses with
mass values m1 and m2, and displacements x1 and x2, respectively. These masses are grounded
via two linear springs, with coefficients k1 and k3, respectively, and are connected by another
linear spring with coefficient k2. This system also contains three nonlinear cubic springs with
coefficients α1, α2 and α3, as shown in figure 1. The backbone curves of this system can be
computed from equations (2.6), using the relationship between the nonlinear modal coefficients,
Ψi, and the physical parameters of the model, as derived in appendix A.

Here, the symmetry of the system is divided into two parts: linear symmetry (LS), where
both m1 = m2 and k1 = k3; and nonlinear symmetry (NS), where α1 = α3. Note that the LS–NS
case leads to Ψ1 = 0 and Ψ2 = 0, as shown in appendix A—see equation (A 9) with α1 = α3. As
previously discussed, this leads to single-mode solutions. The backbone curves of the system
with both LS and NS have been investigated in detail in [29,38,41], and an example is illustrated in

3Other analytical methods, such as the second-order normal form technique [44] or the multiple-scales method [45], could
alternatively be used.
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a1 a2
x1 x2 a3

m1 m2k1 k2 k3

Figure 1. A schematic diagramof a two-mode system in the formof a two-mass oscillator. Twomasses,withmass valuesm1 and
m2, have displacements x1 and x2, respectively, while linear and nonlinear cubic springs have coefficients ki andαi , respectively,
where i = 1, 2, 3. (Online version in colour.)
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Figure 2. The effect of breaking the nonlinear symmetry (NS), i.e. breaking the condition α1 = α3, for a system with linear
symmetry (LS), i.e. m1 = m2 and k1 = k3. (a) The nonlinear parameter space, α1 against α3, for the system with LS when
m1 = m2 = 1, k1 = k3 = 1, k2 = 0.3 andα2 = 0.05. Theα1 andα3 values that lead toΨ1 = 0 andΨ2 = 0 are shown as a
green dotted line and a purple dashed line, respectively. (b) Backbone curves for a system with linear symmetry and nonlinear
asymmetry (NA) whenα1 = 1,α3 = 0.5 (represented by a black dot labelled (b) in panel (a)). (c) Backbone curves for an LS–
NS systemwithα1 = 1,α3 = 1, where the solid point represents the perfect bifurcation (denoted by a solid dot labelled (c) in
panel (a)). (d) Backbone curves for an LS-NA systemwithα1 = 1,α3 = 1.5 (represented by a black dot labelled (d) in panel (a)).
Panels (b)–(d) are shown in the projection of the response frequency,Ω , against the amplitude of the first mass, X1. (Online
version in colour.)

figure 2c. The single-mode backbone curves S1 and S2 consist of only the first and second modal
coordinates, respectively; while S+

2 and S−
2 represent mixed-mode backbone curves containing

both linear modal coordinates. The subscripts of S+
2 and S−

2 indicate the backbone curve from
which they bifurcate (i.e. from S2 in this case), and the superscripts + and − denote in-phase
and anti-phase responses between the fundamental components of the linear modal coordinates,
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respectively. For details of how these backbone curves have been computed, using equations (2.6),
see [29,38,41].

Here, we introduce the concept of dynamic symmetry to describe backbone curves with the
features of an LS–NS system, specifically characterized by the following features:

(i) two single-mode backbone curves, S1 and S2.
(ii) two mixed-mode backbone curves; either S±

2 , emerging from a perfect bifurcation on S2,
or S±

1 , emerging from a perfect bifurcation on S1.

(b) Breaking either the nonlinear or the linear parameter symmetry
Figure 2a represents the nonlinear parameter space of α1 against α3—i.e. the parameters of the two
nonlinear grounding springs—for the case where the system has LS. The nonlinear parameters
leading to Ψ1 = 0 and Ψ2 = 0 are denoted by green dotted and purple dashed lines, respectively.
In this case, i.e. for LS, these lines correspond to NS. In other words, for this simple system,
both LS and NS will always lead to Ψ1 = Ψ2 = 0, hence resulting in single-mode backbone curves
which is one of the conditions for dynamic symmetry. For nonlinear parameter combinations
with nonlinear asymmetry (NA), i.e. α1 �= α3, both Ψ1 �= 0 and Ψ2 �= 0, as indicated by the dots
labelled (b) and (d) in figure 2a. This symmetry breaking turns the single-mode backbone curves
into mixed-mode ones, breaks the perfect bifurcation, and generates an isolated backbone curve.
As shown in figure 2b,d (corresponding to parameters labelled (b) and (d) in figure 2a), an isolated
backbone curve emerges from two primary mixed-mode backbone curves, as observed in [29]. As
proven in appendix A, a system with LS and NA cannot exhibit dynamic symmetry as in this case
Ψ1 �= 0 and Ψ2 �= 0.

Similarly, breaking the LS, while retaining the NS, can also break the dynamic symmetry.
With the breaking of the LS (m2 = 0.8m1 and k3 = 0.7k1), the orientations of Ψ1 = 0 and Ψ2 = 0 are
changed, and are no longer overlapping, as shown in figure 3a. If the NS is retained, i.e. α1 = α3
(depicted by the grey line in figure 3a), the backbone curves, depicted in figure 3b, are similar in
form to the ones for the LS–NA system in figure 2d, i.e. one isolated backbone curve between
two primary mixed-mode backbone curves. The LA–NS system considered here cannot have
dynamic symmetry since the intersection of Ψ1 = 0 and Ψ2 = 0, where one can find two single-
mode backbone curves, is not on the line representing α1 = α3 (i.e. the point at which the green
and purple lines in figure 3a cross does not correspond to the grey line).

(c) Breaking both the linear and nonlinear parameter symmetry
Following from the LA–NS system considered in §2b, the NS is also broken to investigate the
backbone curves of an LA–NA system. Figure 4b shows the backbone curves for the case where
α3 is reduced from the NS-case to the point where Ψ2 = 0, marked as a purple dot labelled (b)
in figure 4a. As expected, this leads to a single-mode backbone curve S2; however, as Ψ1 �= 0,
the first primary backbone curve, S+

1 , contains a component of the second mode with in-phase
modal coordinates. As such, this is not a dynamically symmetric case, despite sharing some
characteristics, such as the backbone curves S+

2 and S−
2 which bifurcate off S2. Further reducing

α3 leads to the point where Ψ1 = 0, shown as a green dot labelled (c) in figure 4a, whose backbone
curves are shown in figure 4c. These exhibit a single-mode backbone curve S1 (as predicted by
the Ψ1 = 0 condition) but with a primary and an isolated backbone curve, S+

2 and S−
2 . As shown

in figure 4a, Ψ1 = Ψ2 = 0 may still be satisfied for this case if α1 and α3 are on the intersection
of Ψ1 = 0 and Ψ2 = 0, i.e. the point labelled (d) in figure 4a. Dynamic symmetry can therefore be
obtained for such an LA–NA system, as can be seen from the backbone curves in figure 4d.

As previously discussed, the concept of dynamic symmetry is defined as having similar
characteristics to an LS–NS system; nonetheless, such behaviour can be observed in an LA–NA
system, if parameters are appropriately selected. This means that an LA–NA system can exhibit
the same dynamic characteristics as a fully symmetric system. Furthermore, defining conditions
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Figure 3. The effect of breaking the linear symmetry (LS) for a system with nonlinear symmetry (NS). (a) The nonlinear
parameter space for the system with linear asymmetry (LA) when m1 = 1, m2 = 0.8, k1 = 1, k3 = 0.7, k2 = 0.3 and
α2 = 0.05. The α1 and α3 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as a green dotted line and a purple dashed
line, respectively, and parameters leading to NS are shown as a dash-dotted grey line. (b) Backbone curves for an LA–NS system
withα1 = 1,α3 = 1 (represented by a grey dot labelled (b) in panel (a)) in the projection of the response frequency,Ω , against
the amplitude of the first mass, X1. (Online version in colour.)
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Figure 4. Obtaining dynamic symmetry for an LA–NA system. (a) The nonlinear parameter space for a system with LA (linear
parameters andα2 are equal to those considered in figure 3). Theα1 andα3 values that lead toΨ1 = 0 andΨ2 = 0 are shown
as a green-dotted and a purple-dashed lines, respectively, and parameters leading to NS are shown as a dash-dotted grey
line. (b) Backbone curves for an LA–NA system with α1 = 1, α3 ≈ 0.6785 (represented by a purple dot labelled (b) in panel
(a)). (c) Backbone curves for an LA–NA system with α1 = 1, α3 ≈ 0.5510 (denoted by a green dot labelled (c) in panel (a)).
(d) Backbone curves for an LA–NA systemwithα1 ≈ 0.3333,α3 ≈ 0.1833 (represented by a solid dot labelled (d) in panel (a)).
(Online version in colour.)
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for the existence of single-mode solutions, expressions Ψ1 = 0 and Ψ2 = 0 also serve as boundaries,
which divide the nonlinear parameter space into several regions, within which the backbone
curves share similar topological features. These regions, in the nonlinear parameter space, allow
the changes in the fundamental dynamic behaviours to be identified and predicted.

3. Backbone curves for an NLTMD-inspired two-mode system
In this section, a two-mode asymmetric system, depicted in figure 5, is considered. This system is
equivalent to that shown in figure 1, but with the springs grounding the second mass removed.
This system is representative of a nonlinear structure (first mass) with an NLTMD (second mass)
attached.

Isolated backbone curves represent particularly undesirable features in an NLTMD device
[16,21,23], due to the difficulty of predicting them, and their potential to represent high-
amplitude dynamic responses. To further understand their features, in this section the parameter
conditions required for dynamic symmetry are first found. However, in practice, the optimized
linear parameters of an NLTMD cannot usually satisfy such conditions. The evolution of
backbone curves in nonlinear parameter space, for an optimized set of linear parameters, is then
investigated and used to determine the conditions for the existence of isolated backbone curves.

(a) Parameter conditions required for dynamic symmetry
As discussed in §2, an LA–NA system can exhibit dynamic symmetry if the parameters are
selected appropriately. One feature of dynamic symmetry is having two single-mode solutions,
S1 and S2, which requires that both Ψ1 = 0 and Ψ2 = 0 in the equations of motion (2.2). The
expressions of Ψ1 and Ψ2 for the NLTMD system are given in equations (A 5), and may be written
in matrix form as (

Ψ1
Ψ2

)
=
[
φ3

11φ12 (φ11 − φ21)
3 (φ12 − φ22)

φ11φ
3
12 (φ11 − φ21) (φ12 − φ22)

3

](
α1
α2

)
, (3.1)

where α3 = 0 has been substituted (i.e. no nonlinear spring grounding the second mass) and where
φij are elements of the linear modeshape matrix Φ, defined as

Φ =
[
φ11 φ12
φ21 φ22

]
. (3.2)

Note that the first column of this matrix, i.e. φ11 and φ21, represents the modeshape of the first
linear mode, while the second linear modeshape is captured by φ12 and φ22, in the second column
of Φ. In order for Ψ1 = 0 and Ψ2 = 0 to be satisfied, equation (3.1) shows that either α1 = 0 and
α2 = 0 (which would represent the trivial case where the system is linear), or that the determinant
of the matrix in equation (3.1) must be zero, i.e.

φ3
11φ12 (φ11 − φ21) (φ12 − φ22)

3 − φ11φ
3
12 (φ11 − φ21)

3 (φ12 − φ22) = 0. (3.3)

Note that for a system with an asymmetric configuration, φij are non-zero, and φ11 �= φ21 and
φ12 �= φ22. Thus, equation (3.3) can be rearranged to

φ2
11 (φ12 − φ22)

2

φ2
12 (φ11 − φ21)

2 = 1, (3.4)

which can be satisfied using the following conditions:

φ11 (φ12 − φ22)

φ12 (φ11 − φ21)
= 1 :

φ11

φ21
− φ12

φ22
= 0 (3.5a)

and
φ11 (φ12 − φ22)

φ12 (φ11 − φ21)
= −1 :

φ21

φ11
+ φ22

φ12
= 2. (3.5b)



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190374

...........................................................

x2a2

x1a1

k1 k2
m2m1

Figure 5. A schematic diagram of a two-mode asymmetric system, representative of a nonlinear structure with an NLTMD.
(Online version in colour.)

Condition (3.5a) cannot be satisfied as it requires that the first and second modeshapes are equal;
therefore, dynamic symmetry, i.e. when Ψ1 = Ψ2 = 0, may only be achieved when condition (3.5b)
is satisfied. The relationship between the modeshape coefficients, φij, and the linear physical
parameters is derived in appendix A. Substituting equations (A 7) into condition (3.5b) (also using
equation (A 6)) leads to

k1

k2
= m1 + m2

m2
. (3.6)

This demonstrates that, in order for the NLTMD-inspired system to exhibit dynamic symmetry,
the linear stiffness coefficients must obey the ratio described by equation (3.6). As well as this
condition for the linear parameters, the relationship between the nonlinear parameters may be
found by substituting expressions (3.6) and (A 7) back into equation (3.1), leading to

α1

α2
= (φ12 − φ22)

4

φ4
12

= (φ11 − φ21)
4

φ4
11

=
(

m1 + m2

m2

)2
. (3.7)

Figure 6a shows the nonlinear parameter space α1 against α2, for the case where k1/k2 = 21, and
where the mass values satisfy equation (3.6). The overlapping green and purple lines represent
the parameter relationships that lead to Ψ1 = 0 and Ψ2 = 0, respectively (in this instance the case
α1/α2=441, satisfies equation (3.7) and hence Ψ1 = Ψ2 = 0). Despite being a linearly asymmetric
system, this has strong similarities to figure 2a, which represents an LS system, and indicates
that multiple nonlinear parameter combinations will lead to dynamic symmetry. Note that when
the parameter relationships (3.6) and (3.7) are satisfied, expressions for Ψ1, . . . , Ψ5 (A 5) can be
simplified as

Ψ1 = 0, Ψ2 = 0, Ψ3 = 6φ2
11φ

2
12α1, Ψ4 = 2φ4

11α1, Ψ5 = 2φ4
12α1. (3.8)

With Ψ1 = 0 and Ψ2 = 0, expressions for backbone curves (2.6) can be reduced to{
4
(
ω2

n1 − Ω2
)

+ 3Ψ4U2
1 + Ψ3U2

2

[
1 + 2 cos2 (θd)

]}
U1 = 0, (3.9a){

4
(
ω2

n2 − Ω2
)

+ 3Ψ5U2
2 + Ψ3U2

1

[
1 + 2 cos2 (θd)

]}
U2 = 0 (3.9b)

and 2Ψ3U1U2 cos (θd) sin (θd) = 0. (3.9c)

The case where U1 = 0 and U2 = 0 represent the trivial case where the system is stationary.
Two sets of single-mode solutions, denoted S1 and S2, can be found with frequency–amplitude
relationships described as

S1 : U2 = 0, Ω2 = ω2
n1 + 3

4 Ψ4U2
1 (3.10)

and
S2 : U1 = 0, Ω2 = ω2

n2 + 3
4 Ψ5U2

2. (3.11)

This system can also exhibit mixed-mode backbone curves. To compute these, the phase
relationship, θd, between the fundamental components of the two modal coordinates, u1 and u2,
needs to be determined. From equation (3.9c), this may be satisfied when θd = nπ/2, with n ∈ Z.
The case where n is odd, which satisfies cos(θd) = 0, represents solutions exhibiting out-of-unison
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Figure 6. Dynamic symmetry for an NLTMD-inspired system. (a) The nonlinear parameter space, α1 against α2, for a system
with LA, i.e. m1 = 1, m2 = 0.05, k1 = 1 and k2 = 1/21, whereΨ1 = 0 andΨ2 = 0 are two overlapping lines. (b) Backbone
curves with dynamic symmetry for a hardening LA–NA system when α1 = 1 and α2 = 1/441 (represented by a solid dot
labelled (b) in panel (a)). (c) Backbone curves with dynamic symmetry for a softening LA–NA system when α1 = −1 and
α2 = −1/441 (represented by a solid dot labelled (c) in panel (a)). (Online version in colour.)

resonance [46], i.e. the two modes are ±90◦ out-of-phase. The case where n is even, satisfying
sin(θd) = 0, represents in-phase and anti-phase solutions. Considering the out-of-unison solutions,
the substitution of cos(θd) = 0 into equations (3.9a) and (3.9b), leads to the frequency–amplitude
relationship

S±90
1,2 : U2

1 = 4
(
ω2

n2 − ω2
n1
)+ (3Ψ5 − Ψ3) U2

2
3Ψ4 − Ψ3

(3.12a)

and

Ω2 = 4
(
3Ψ4ω

2
n2 − Ψ3ω

2
n1
)+ (

9Ψ4Ψ5 − Ψ 2
3
)

U2
2

4 (3Ψ4 − Ψ3)
. (3.12b)

With substitution of expressions (3.6), (3.8), (A 6) and (A 8) into equation (3.12b), one can find that
the response frequency, Ω , of out-of-unison resonance, in this case, is always zero. This means
that out-of-unison solutions cannot exist in the dynamically symmetric case for this system.

The in-phase solutions, corresponding to θd = 0 are denoted S+
1 and S+

2 , while the anti-phase
solutions, corresponding to θd = π are denoted S−

1 and S−
2 (S±

1,2 is used to denote all of them).
For the dynamically symmetric case, these backbone curves all share the frequency-amplitude
relationship, given by

S±
1,2 : U2

1 = 4
(
ω2

n2 − ω2
n1
)+ 3 (Ψ5 − Ψ3) U2

2
3 (Ψ4 − Ψ3)

(3.13a)

and

Ω2 = 4
(
Ψ4ω

2
n2 − Ψ3ω

2
n1
)+ 3

(
Ψ4Ψ5 − Ψ 2

3
)

U2
2

4 (Ψ4 − Ψ3)
. (3.13b)

As well as two single-mode backbone curves, described by equations (3.10) and (3.11),
dynamic symmetry also requires two mixed-mode backbone curves, described by equations
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(3.13), with a perfect bifurcation on either S2, which are denoted S±
2 , or on S1, which are denoted

S±
1 . For the perfect bifurcation point on S2, the amplitude of the first modal coordinate U1 = 0;

likewise, the second modal amplitude U2 = 0 for the perfect bifurcation point on S1. Using these
conditions, the amplitude and frequency of these two bifurcation points can be obtained, from
equations (3.13), as

bifurcation point on S1: U2
1 = 4

(
ω2

n2 − ω2
n1
)

3 (Ψ4 − Ψ3)
, Ω2 = Ψ4ω

2
n2 − Ψ3ω

2
n1

Ψ4 − Ψ3
(3.14a)

and

bifurcation point on S2: U2
2 = 4

(
ω2

n2 − ω2
n1
)

3 (Ψ3 − Ψ5)
, Ω2 = Ψ3ω

2
n2 − Ψ5ω

2
n1

Ψ3 − Ψ5
. (3.14b)

As ωn2 > ωn1, to obtain positive solutions, i.e. positive amplitude and frequency, requires

bifurcation point on S1: Ψ4 − Ψ3 > 0, Ψ4ω
2
n2 − Ψ3ω

2
n1 > 0 (3.15a)

and
bifurcation point on S2: Ψ3 − Ψ5 > 0, Ψ3ω

2
n2 − Ψ5ω

2
n1 > 0. (3.15b)

Note that conditions (3.15) are valid for any system with cubic nonlinearities and a 1 : 1
resonance between two modes. To relate these to the NLTMD system, the expressions for
modeshape elements (A 8) and the nonlinear parameter relationship (3.7) are substituted into
these inequalities. This reveals that a perfect bifurcation from S1 onto S±

1 exists when both
nonlinear parameters are softening, i.e. α1 < 0 and α2 < 0; while a perfect bifurcation from
S2 onto S±

2 may be seen for hardening nonlinear parameters, i.e. α1 > 0 and α2 > 0 when
m2 < m1/3. Figure 6b,c shows the backbone curves with dynamic symmetry, i.e. satisfying
parameter conditions (3.6), (3.7) and (3.15) for systems with hardening and softening parameters,
respectively (labelled with (b) and (c), respectively, in figure 6a).

(b) Evolution of backbone curves in the nonlinear parameter space
In the previous discussion, we did not consider the tuning of the NLTMD, but rather concentrated
on whether a solution exists that exhibits dynamic symmetry and derived the linear and nonlinear
parameter relationships, (3.6), (3.7) and (3.15) for this to occur. Now, to investigate the evolution
of backbone curves in nonlinear parameter space, it is assumed that the linear parameters of the
NLTMD are tuned to achieve optimal performance.

The classical approach for optimizing the linear parameters of a TMD is known as the fixed-
points method [18]. Instead of imposing two fixed points, using H∞ optimization, a closed-form
exact solution to obtain equal peaks in receptance curves of the underlying linear system is
discussed in [47], where the linear stiffness of the NLTMD can be optimized using

kopt
2 = 8μk1

[
16 + 23μ + 9μ2 + 2 (2 + μ)

√
4 + 3μ

]
3 (1 + μ)2 (64 + 80μ + 27μ2

) , (3.16)

where μ = m2/m1 is the mass ratio and kopt
2 is the optimized linear spring coefficient of the

NLTMD. This cannot satisfy relationship (3.6), and hence dynamic symmetry cannot be achieved.
However, if nonlinear parameters are correspondingly selected on either Ψ1 = 0 or Ψ2 = 0, single-
mode backbone curves, S1 and S2, respectively, can still be solved via amplitude–frequency
relationships (3.10) and (3.11). To find the nonlinear parameter conditions that lead to either
Ψ1 = 0 or Ψ2 = 0, the modeshape expressions (A 7) are substituted into the expressions for Ψi (A
5) (with α3 = 0). Letting Ψ1 = 0 and Ψ2 = 0, respectively, one has

Ψ1 = 0 :
α1

α2
= −

(−ω2
n1m1 + k1

)3 (−ω2
n2m1 + k1

)
k4

2
(3.17a)

and

Ψ2 = 0 :
α1

α2
= −

(−ω2
n1m1 + k1

) (−ω2
n2m1 + k1

)3
k4

2
. (3.17b)
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Figure 7. Optimizing the linear parameters of the NLTMD leads to the breaking of dynamic symmetry for an NLTMD-inspired
system. (a) Nonlinear parameter space, α1 against α2, for a system with LA, i.e.m1 = 1,m2 = 0.05, k1 = 1 and k2 = kopt2 ≈
0.0454. The α1 and α3 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as a green dotted line and a purple dashed line,
respectively, and curvesΨ1 = 0 andΨ2 = 0 are intersecting at the origin. (b) Backbone curves with the single-mode solution
S2 for the LA–NA system whenα1 = 1 andα2 ≈ 0.00256 (represented by a purple dot labelled (b) in panel (a)). (c) Backbone
curveswith the single-mode backbone curve S1 for the LA–NA systemwhenα1 = 1 andα2 ≈ 0.00166 (represented by a green
dot labelled (c) in panel (a)). (Online version in colour.)

As depicted in figure 7a, the curves Ψ1 = 0 and Ψ2 = 0 do not overlap, instead, these curves now
are intersecting at the origin in the nonlinear parameter space (where the system is reduced to
a linear one). Backbone curves for the system with Ψ1 = 0 and Ψ2 �= 0 (the point labelled (c) in
figure 7a) are shown in figure 7c; these are similar to those shown in figure 4c, where a single-
mode backbone curve S1 is also present. Likewise, backbone curves for the system with Ψ2 = 0
and Ψ1 �= 0 (the point labelled (b) in figure 7a) are shown in figure 7b, which have similarity to
figure 4b.

Systems with nonlinear parameters that do not lie on Ψ1 = 0 or Ψ2 = 0 exhibit mixed-mode
backbone curves. As previously, the phase relationship between the two modal coordinates needs
to be determined using equation (2.6c). This expression is satisfied with real and positive solutions
by sin(θd) = 0, leading to the phase relationship θd = θ1 − θ2 = nπ , where even and odd n values
denote in-phase and anti-phase modal relationships, respectively. Further defining the phase
parameter p as

p = cos (θd) = cos (nπ) =
{

+1 for even n

−1 for odd n,
(3.18)

allows the expressions governing the modal amplitudes and frequencies, given in (2.6a,b), to be
written

4
(
ω2

n1 − Ω2
)

U1 + 3
[
Ψ4U3

1 + Ψ3U1U2
2 + p

(
Ψ2U3

2 + 3Ψ1U2
1U2

)]
= 0 (3.19a)
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Figure 8. The evolution of backbone curves in the nonlinear parameter space,α1 againstα2, for a systemwith LA, i.e.m1 = 1,
m2 = 0.05, k1 = 1 and k2 = kopt2 ≈ 0.0454. The α1 and α2 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as a green
dotted line and a purple dashed line, respectively. The panels around the main figure show backbone curves topologies for the
nonlinear regions in terms of response frequency and displacement amplitude of the first mass. Panels (a,b,c,e,g,h,i,k) show
these topologies in regions indicated by the solid-grey arrows. Panels (d,f,j,l) show the topologies corresponding toα1 andα2

axes, as indicated by the dash-dotted grey arrows. (Online version in colour.)

and
4
(
ω2

n2 − Ω2
)

U2 + 3
[
Ψ5U3

2 + Ψ3U2
1U2 + p

(
Ψ1U3

1 + 3Ψ2U1U2
2

)]
= 0. (3.19b)

Rearranging these two equations gives the frequency-amplitude relationships

Ω2 = ω2
n1 + 3

4

[
Ψ4U3

1 + Ψ3U2
2U1 + p

(
Ψ2U3

2 + 3Ψ1U2
1U2

)]
U−1

1 (3.20a)

and

0 =
(
−3pΨ2U−1

1

)
U4

2 + 3 (Ψ5 − Ψ3) U3
2 + [

9p (Ψ2 − Ψ1) U1
]

U2
2

+
[
4ω2

n2 − 4ω2
n1 + 3 (Ψ3 − Ψ4) U2

1

]
U2 + 3pΨ1U3

1, (3.20b)

which may be solved to find the mixed-mode backbone curves.
Figure 8 presents the mixed-mode backbone curves of systems with linear parameters m1 = 1,

m2 = 0.05, k1 = 1, k2 = kopt
2 ≈ 0.0454 in the nonlinear parameter space α1 against α2. Backbone

curves on Ψ1 = 0 and Ψ2 = 0, labelled in this figure, are the same as those in figures 7c,b,
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respectively. This space is divided by the parameter axes α1 = 0 and α2 = 0 into the following
four classes of system:

(i) a hardening system (the first quadrant)
Perturbing the nonlinear parameters clockwise from Ψ2 = 0 breaks the perfect bifurcation
on S2, shown in figure 7b. The breaking of this bifurcation generates one isolated
backbone curve, S+

2 , between two primary backbone curves, S−
2 and S+

1 ,4 seen in figure 8a.
Likewise, if nonlinear parameters are perturbed anticlockwise from Ψ2 = 0, the perfect
bifurcation on S2 breaks in a different direction, resulting in one isolated backbone curve,
S−

2 , below two primary backbone curves, depicted in figure 8b.
Further varying the nonlinear parameters in the anticlockwise direction towards Ψ1 =

0, the contribution of the second modal coordinate, U2, to the mixed-mode, in-phase
backbone curve, S+

1 , gradually decreases to zero. This results in a single-mode backbone
curve S1, seen from the evolution of backbone curves from figure 8b to 7c. Finally,
perturbing anticlockwise from Ψ1 = 0, the U2 component of S1 increases, leading to a
mixed-mode, anti-phase backbone curve S−

1 , as shown in figure 8c.
(ii) a hardening structure with a softening attachment (the second quadrant)

Further decreasing α2 until α2 < 0, causes S−
1 to bend leftward, as depicted in figure 8e.

Note that no isolated backbone curve is predicted for systems in the second quadrant.
(iii) a softening system (the third quadrant)

Crossing from the second quadrant into the third causes S+
2 to bend leftward, along with

S−
1 . Continuing anticlockwise, from above Ψ2 = 0 to below it, leads to a similar behaviour

to the hardening system (the first quadrant) as it crosses Ψ1 = 0. The contribution from
U1 to the mixed-mode, in-phase backbone curve S+

2 may gradually decrease, reaching
zero at Ψ2 = 0, leading to a single-mode backbone curve S2. The contribution then
increases, resulting in a mixed-mode, anti-phase backbone curve S−

2 . Such behaviour is
shown in figure 8g,h. Simultaneously, the isolated backbone curve, S+

1 , emerges from zero
frequency and draws closer to the primary backbone curve S−

1 .
Further varying the nonlinear parameters towards Ψ1 = 0, the isolated and primary

backbone curves, S+
1 and S−

1 , merge into a single-mode backbone curve, S1, with a perfect
bifurcation. Anticlockwise of Ψ1 = 0, the perfect bifurcation breaks and generates an
isolated backbone curve, S−

1 , below two primary backbone curves, S+
1 and S−

2 , shown
in figure 8i.

(iv) a softening structure with a hardening attachment (the fourth quadrant)
Crossing from the third to the fourth quadrant leads to the disappearance of the isolated
backbone curve, S−

1 , at zero frequency, as shown in figure 8i,j. Additionally, the mixed-
mode backbone curve, S−

2 , bends rightward, shown in figure 8j,k.

For further demonstration of the evolution of backbone curves in nonlinear parameter space,
see the video, Evolution of backbone curves.avi, provided as electronic supplementary material.

From figure 8, it can be seen that the hardening systems (the first quadrant) and softening
systems (the third quadrant) share the following features:

(i) a change of contribution of, and phase relationship between, two modal coordinates,
from being in-phase, to single-mode, and then to anti-phase, or vice versa, when crossing
Ψ1 = 0 and Ψ2 = 0;

(ii) the emergence and breaking of a perfect bifurcation on S2 for a hardening system when
crossing Ψ2 = 0, and on S1 for a softening system when crossing Ψ1 = 0.

The perfect bifurcations denote critical conditions, perturbing from which leads to the onset
of isolated backbone curves. These conditions are defined by relationships (3.17a,b) and thus

4Note that in other projections, such as Ω against X2, the relative amplitudes of these backbone curves may differ.
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Figure 9. Two additional topological boundaries for the existence of isolated backbone curves. (a) The first quadrant of figure 8,
along with two additional boundaries, shown as dash-dotted black lines, differentiating between regions with and without
isolated backbone curves. Panels (b), . . ., (f ) are backbone curves of systems represented by black dots in Panel (a) for a system
withα1 = 1 and variedα2. (Online version in colour.)

represent the boundaries for the existence of isolated backbone curves. The following section
explores additional boundaries that may exist.

4. Additional topological boundaries
As described in §3b, a perturbation from Ψ2 = 0 breaks the perfect bifurcation on S2, for a
hardening system, and results in an isolated backbone curve, shown in figures 7b and 8a,b. Further
deviation may cause the isolated backbone curve to move toward higher frequency and larger
amplitude, as depicted in figure 9b,c, which are corresponding to systems on points labelled (b)
and (c), respectively in figure 9(a); eventually, the isolated backbone curve may undergo swift
change from finite frequency and amplitude to infinite values. One example of this change is
depicted in figure 9b–d. The isolated backbone curve first increases in frequency and amplitude
at a limited rate, seen from figure 9b,c as α2 changes from 7.5 × 10−4 to 7.0 × 10−4. It then shifts to
infinite frequency and amplitude as α2 approaches a critical value of approximately 6.76 × 10−4,
shown in figure 9d. This corresponds to the vanishing (or emergence, if α2 is increased) of an
isolated backbone curve, and this critical value defines another topological difference in backbone
curves, i.e. systems with and without an isolated backbone curve.

To find the conditions defining such boundaries in nonlinear parameter space, one can trace
the isolated backbone curve to seek conditions for its existence. It is observed that the isolated
backbone curve vanishes when the amplitude of the minimum frequency solution becomes
infinite; hence, the conditions that lead to this case are investigated here.5 Since the minimum
frequency solution is related to a multiple root of amplitude for the frequency–amplitude

5There may be other conditions that allow isolated backbone curves to vanish/emerge; however, this particular case is
investigated here as an example of such behaviour, rather than as an exhaustive study.
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equations (3.20), one can refer to the zero discriminant of the amplitude equation (3.20b) to trace
the multiple root. The zero discriminant of the quartic equation (3.20b) is a sixth-order polynomial
equation with respect to U1, and it can be written as

DiscU2 = 0 : f6U6
1 + f5U5

1 + f4U4
1 + f3U3

1 + f2U2
1 + f1U1 + f0 = 0, (4.1)

where f6 is a function of nonlinear parameters, written as

f6 = g1α
6
1 + g2α

5
1α2 + g3α

4
1α2

2 + g4α
3
1α3

2 + g5α
2
1α4

2 + g6α1α
5
2 + g7α

6
2 , (4.2)

and where coefficients g1, . . . , g7 are determined by the underlying linear system, some of which
are given in appendix B. Note that f0, . . . , f5, g1, g2, g6 and g7 are not provided as they are not
required for the following derivations.

As the isolated backbone curve reaches the vanishing point, it has infinite amplitude; thus,
letting U1 → ∞, gives

DiscU2 ≈ f6 = 0. (4.3)

After some algebraic manipulation, one can find coefficients g1 and g7 have factors (p − 1)2(p +
1)2, while coefficients g2 and g6 have factors (p − 1)(p + 1). Recalling that p = ±1, defined in
expression (3.18), it follows that g1 = g7 = g2 = g6 = 0, and equation (4.3) can be further simplified
to give

f6 = α2
1α2

2

(
g3α

2
1 + g4α1α2 + g5α

2
2

)
= 0. (4.4)

Two non-zero solutions for α2 are

α2 =
−g4 ±

√
g2

4 − 4g5g3

2g5
α1. (4.5)

Likewise, if frequency–amplitude relationships (3.20) are rearranged to give a quartic amplitude
equation with respect to U1 rather than in U2, as currently, one can find same expression
as (4.5) by following the procedure demonstrated above. This means U1 and U2 will shift to
infinity simultaneously on the critical conditions described by expression (4.5). As Ω is explicitly
determined by equation (3.20a), it will also shift to infinity when U1 → ∞ and U2 → ∞.

Equation (4.5) represents conditions between α1 and α2 when the isolated backbone curve has
infinite frequency and amplitude. This allows the first quadrant in figure 8, i.e. the hardening
system, to be further divided into additional regions, as shown in figure 9a. The new regions
anticlockwise of Ψ1 = 0 describe:

(i) the shaded area anticlockwise of Ψ1 = 0: two primary backbone curves, S−
1 and S+

2 , with
one isolated backbone curve, S−

2 , below those two—shown in figure 9b,c;
(ii) the unshaded area anticlockwise of Ψ1 = 0: two primary backbone curves, S−

1 and S+
2 ,

without an isolated backbone curve—depicted in figure 9d.

The new regions clockwise of Ψ2 = 0 describe:

(i) the shaded area clockwise of Ψ2 = 0: two primary backbone curves, S+
1 and S−

2 , with one
isolated backbone curve, S+

2 , between those two—shown in figure 9e;
(ii) the unshaded area clockwise of Ψ2 = 0: two primary backbone curves, S+

1 and S−
2 , without

an isolated backbone curve—depicted in figure 9f.

In summary, expressions (3.17a,b), combined with conditions (3.15), are boundaries for the
existence of a perfect bifurcation for a hardening and a softening system, respectively, perturbing
from which the bifurcation breaks and an isolated backbone curve emerges. Expressions (4.5)
describe the other boundaries at which isolated backbone curves may vanish or emerge from
infinite frequency and amplitude. The shaded area in figure 9a highlights the region in which an
isolated backbone curve can exist.
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5. Conclusion
Isolated backbone curves can be related to isolated forced responses, which can have a
significant negative impact on the performance of nonlinear engineering systems. This paper
has investigated the conditions for the existence of isolated backbone curves of a two-mode
system with cubic nonlinearities and a 1 : 1 resonance. The concept of dynamic symmetry has been
defined as the case where a system exhibits two single-mode backbone curves with one perfect
bifurcation. By breaking the symmetry of a simple example system, we have found that dynamic
symmetry is still obtainable when the system is asymmetric. This highlights that an asymmetric
system may exhibit dynamic behaviour that is equivalent to that of a symmetric system.
A specific two-mode asymmetric system, composed of a primary structure and an NLTMD, was
then considered, and an analytical approach was used to demonstrate that dynamic symmetry
may only be achieved when the linear parameters obey specific relationships. After optimizing
the linear parameters for vibration suppression performance, we have demonstrated analytical
methods that allow the nonlinear parameter space to be divided into several regions, within
which backbone curves present similar topological features. The boundaries of these regions
define conditions for the existence of the isolated backbone curves. We have then demonstrated
how these regions can be further refined by considering whether the isolated backbone curves
can exist for finite amplitudes and frequencies.

The methodology used in this paper is based on a general two-mode model with cubic
nonlinearities and a 1 : 1 internal resonance. While specific example systems have been
considered, the approach used may be generalized to similar systems. This allows the existence of
isolated backbone curves to be determined more rigorously when designing nonlinear systems.
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Appendix A. Modal analysis for the two-mass oscillator in §2
The equation of motion of the system shown in figure 1 is written as

Mẍ + Kx + Nx = 0, (A 1)

where M and K are mass and linear stiffness matrices, respectively, Nx is a vector of nonlinear
stiffness terms, and x is a vector representing physical displacements. They are written

M =
[

m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]

and Nx =
(

α1x3
1 + α2 (x1 − x2)

3

α2 (x2 − x1)
3 + α3x3

2

)
, x =

(
x1
x2

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 2)

The system is translated into linear modal space by substituting x = Φq into equations (A 1),
where Φ is the linear modeshape matrix, which is written

Φ =
[
φ11 φ12
φ21 φ22

]
. (A 3)

Further multiplying both sides by ΦT, the equations of motion can be obtained as

ΦTMΦq̈ + ΦTKΦq + Nq = 0 (A 4)
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where Nq = ΦTNx(Φq) and ΦTMΦ = I. As can be seen, after the linear modal transform, one can
obtain the equations of motion in the same form as equations (2.2) with

Ψ1 = φ3
11φ12α1 + (φ11 − φ21)

3 (φ12 − φ22) α2 + φ3
21φ22α3,

Ψ2 = φ11φ
3
12α1 + (φ11 − φ21) (φ12 − φ22)

3 α2 + φ21φ
3
22α3,

Ψ3 = 3
[
φ2

11φ
2
12α1 + (φ11 − φ21)

2 (φ12 − φ22)
2 α2 + φ2

21φ
2
22α3

]
,

Ψ4 = φ4
11α1 + (φ11 − φ21)

4 α2 + φ4
21α3

and Ψ5 = φ4
12α1 + (φ12 − φ22)

4 α2 + φ4
22α3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 5)

To interpret the modeshape elements φij by physical parameters, the linear modal analysis is
then carried out by finding the eigenvalues and eigenvectors of M−1K, leading to

ω2
ni = [(k2 + k3)/m2 + (k1 + k2)/m1] ±

√
[(k2 + k3)/m2 − (k1 + k2)/m1]2 + 4(k2/m1)(k2/m2)

2
, (A 6)

and

φ2
11 = k2

2(
k1 + k2 − m1ω

2
n1
)2

m2 + m1k2
2

, φ2
12 = k2

2(
k1 + k2 − m1ω

2
n2
)2

m2 + m1k2
2

(A 7a)

and

φ2
21 =

(
k1 + k2 − m1ω

2
n1
)2

(
k1 + k2 − m1ω

2
n1
)2

m2 + m1k2
2

, φ2
22 =

(
k1 + k2 − m1ω

2
n2
)2

(
k1 + k2 − m1ω

2
n2
)2

m2 + m1k2
2

. (A 7b)

For the system shown in figure 5 with Ψ1 = 0 and Ψ2 = 0, it satisfies parameter conditions
described in equations (3.6) and (3.7). The modeshapes in expressions (A 7) can be further
simplified as

φ2
11 = 1

2m1

(
1 + μ +√

(1 + μ)/μμ
) , φ2

12 = 1

2m1

(
1 + μ −√

(1 + μ)/μμ
) (A 8a)

and

φ2
21 =

(√
(1 + μ)/μ + 1

)2

2m1

(
1 + μ +√

(1 + μ)/μμ
) , φ2

22 =
(√

(1 + μ)/μ − 1
)2

2m1

(
1 + μ −√

(1 + μ)/μμ
) . (A 8b)

where μ = m1/m2, which is the mass ratio.
For the specific system, shown schematically in figure 1, with symmetric linear parameters,

i.e. m1 = m2 and k1 = k3, the modeshape elements satisfy φ11 = φ12 = φ21 = −φ22, obtained from
expressions (A 7). Thus, Ψ1 and Ψ2, expressed in equations (A 5), can be reduced to

Ψ1 = Ψ2 = φ4
11 (α1 − α3) . (A 9)

As discussed in §2, obtaining dynamic symmetry requires two single-mode solutions,
i.e. satisfying Ψ1 = 0 and Ψ2 = 0. As seen from equations (A 9), Ψ1 = 0 and Ψ2 = 0 can only be
satisfied when α1 = α3, which means having symmetric nonlinear parameters. In summary, to
obtain dynamic symmetry for a system with linear symmetry requires nonlinear symmetry.
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Appendix B. List of coefficients
g3 = −19683

(
φ2

11 + φ2
12

)4
(φ11δ11 + φ12δ12)

2 (φ11δ12 − φ12δ11)
6 , (B1)

g5 = −19683
(
δ2

11 + δ2
12

)4
(φ11δ11 + φ12δ12)

2 (φ11δ12 − φ12δ11)
6 (B2)

and g4 = −19683P (φ11δ12 − φ12δ11)
6 , (B3)

where

P =
(

2φ6
11 − 8φ4

11φ
2
12 − 2

3
φ2

11φ
4
12 − 4

27
φ6

12

)
δ6

11 +
(

2φ6
12 − 8φ2

11φ
4
12 − 2

3
φ4

11φ
2
12 − 4

27
φ6

11

)
δ6

12

+
(

28φ5
11φ12 − 88

3
φ3

11φ
3
12 − 4

9
φ11φ

5
12

)
δ5

11δ12 +
(

28φ11φ
5
12 − 88

3
φ3

11φ
3
12 − 4

9
φ5

11φ12

)
δ11δ

5
12

+
(

−8φ6
11 + 90φ4

11φ
2
12 − 404

9
φ2

11φ
4
12 − 2

3
φ6

12

)
δ4

11δ
2
12

+
(

−8φ6
12 + 90φ2

11φ
4
12 − 404

9
φ4

11φ
2
12 − 2

3
φ6

11

)
δ2

11δ
4
12

+
(

−88
3

φ5
11φ12 + 3536

27
φ3

11φ
3
12 − 88

3
φ5

12φ11

)
δ3

11δ
3
12, (B4)

and where δ11 = φ11 − φ21 and δ12 = φ12 − φ22.

References
1. Cartmell M. 1990 Introduction to linear, parametric, and nonlinear vibrations. Berlin, Germany:

Chapman and Hall.
2. Jezequel L, Lamarque CH. 1991 Analysis of non-linear dynamical systems by the normal form

theory. J. Sound Vib. 149, 429–459. (doi:10.1016/0022-460X(91)90446-Q)
3. Thomsen JJ. 1994 Stability, instability and chaos: an introduction to the theory of nonlinear

differential equations. Cambridge Texts in Applied Mathematics. Cambridge, UK: Cambridge
University Press.

4. Wagg DJ, Neild SA. 2009 Nonlinear vibration with control. Berlin, Germany: Springer.
5. Kerschen G, Peeters M, Golinval JC, Vakakis AF. 2009 Nonlinear normal modes, part I:

a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194.
(doi:10.1016/j.ymssp.2008.04.002)

6. Pierre C, Jiang D, Shaw S. 2006 Nonlinear normal modes and their application in structural
dynamics. Math. Probl. Eng. 2006, 15. (doi:10.1155/MPE/2006/10847) Article ID 10847

7. Vakakis AF. 2001 Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust.
123, 324–332. (doi:10.1115/1.1368883)

8. Kerschen G, Kowtko JJ, Mcfarland DM, Bergman LA, Vakakis AF. 2007 Theoretical and
experimental study of multimodal targeted energy transfer in a system of coupled oscillators.
Nonlinear Dyn. 47, 285–309. (doi:10.1007/s11071-006-9073-5)

9. Antonio D, Zanette DH, López D. 2012 Frequency stabilization in nonlinear micromechanical
oscillators. Nat. Commun. 3, 806. (doi:10.1038/ncomms1813)

10. Febbo M, Machado SP. 2013 Nonlinear dynamic vibration absorbers with a saturation. J. Sound
Vib. 332, 1465–1483. (doi:10.1016/j.jsv.2012.11.025)

11. Carpineto N, Lacarbonara W, Vestroni F. 2014 Hysteretic tuned mass dampers for structural
vibration mitigation. J. Sound Vib. 333, 1302–1318. (doi:10.1016/j.jsv.2013.10.010)

12. Barton DAW, Burrow SG, Clare LR. 2010 Energy harvesting from vibrations with a nonlinear
oscillator. J. Vib. Acoust. 132, 021009. (doi:10.1115/1.4000809)

13. Green PL, Worden K, Atallah K, Sims ND. 2012 The benefits of Duffing-type nonlinearities and
electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J.
Sound Vib. 331, 4504–4517. (doi:10.1016/j.jsv.2012.04.035)

14. Gourdon E, Alexander NA, Taylor CA, Lamarque CH, Pernot S. 2007 Nonlinear energy
pumping under transient forcing with strongly nonlinear coupling: theoretical and
experimental results. J. Sound Vib. 300, 522–551. (doi:10.1016/j.jsv.2006.06.074)

http://dx.doi.org/doi:10.1016/0022-460X(91)90446-Q
http://dx.doi.org/doi:10.1016/j.ymssp.2008.04.002
http://dx.doi.org/doi:10.1155/MPE/2006/10847
http://dx.doi.org/doi:10.1115/1.1368883
http://dx.doi.org/doi:10.1007/s11071-006-9073-5
http://dx.doi.org/doi:10.1038/ncomms1813
http://dx.doi.org/doi:10.1016/j.jsv.2012.11.025
http://dx.doi.org/doi:10.1016/j.jsv.2013.10.010
http://dx.doi.org/doi:10.1115/1.4000809
http://dx.doi.org/doi:10.1016/j.jsv.2012.04.035
http://dx.doi.org/doi:10.1016/j.jsv.2006.06.074


20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190374

...........................................................

15. Vakakis AF, Gendelman OV, Bergman LA, McFarland DM, Kerschen G, Lee YS. 2009
Nonlinear targeted energy transfer in mechanical and structural systems. Dordrecht, The
Netherlands: Springer.

16. Habib G, Detroux T, Viguié R, Kerschen G. 2015 Nonlinear generalization of Den Hartog’s
equal-peak method. Mech. Syst. Signal Process. 52–53, 17–28. (doi:10.1016/j.ymssp.2014.08.009)

17. Gatti G. 2018 Fundamental insight on the performance of a nonlinear tuned mass damper.
Meccanica 53, 111–123. (doi:10.1007/s11012-017-0723-0)

18. Den Hartog JP. 1956 Mechanical vibrations, 4th edn. New York, NY: McGraw-Hill.
19. Malher A, Touzé C, Doaré O, Habib G, Kerschen G. 2017 Flutter control of a two-degrees-

of-freedom airfoil using a nonlinear tuned vibration absorber. J. Comput. Nonlinear Dyn. 12,
051016. (doi:10.1115/1.4036420)

20. Habib G, Kerschen G. 2015 Suppression of limit cycle oscillations using the nonlinear tuned
vibration absorber. Proc. R. Soc. A 471, 20140976. (doi:10.1098/rspa.2014.0976)

21. Alexander NA, Schilder F. 2009 Exploring the performance of a nonlinear tuned mass damper.
J. Sound Vib. 319, 445–462. (doi:10.1016/j.jsv.2008.05.018)

22. Gatti G, Brennan M. 2011 On the effects of system parameters on the response of a
harmonically excited system consisting of weakly coupled nonlinear and linear oscillators.
J. Sound Vib. 330, 4538–4550. (doi:10.1016/j.jsv.2011.04.006)

23. Detroux T, Habib G, Masset L, Kerschen G. 2015 Performance, robustness and sensitivity
analysis of the nonlinear tuned vibration absorber. Mech. Syst. Signal Process. 60–61, 799–809.
(doi:10.1016/j.ymssp.2015.01.035)

24. Abramson HN. 1955 Response curves for a system with softening restoring force. J. Appl.
Mech. 22, 434–435.

25. Duan C, Singh R. 2007 Isolated sub-harmonic resonance branch in the frequency response
of an oscillator with slight asymmetry in the clearance. J. Sound Vib. 314, 12–18.
(doi:10.1016/j.jsv.2007.12.040)

26. Misra S, Dankowicz H, Paul MR. 2010 Degenerate discontinuity-induced bifurcations in
tapping-mode atomic-force microscopy. Physica D 239, 33–43. (doi:10.1016/j.physd.2009.
10.001)

27. Nayfeh AH, Mook DT. 1995 Nonlinear oscillations, physics textbook. Weinheim, Germany: Wiley.
28. DiBerardino LA, Dankowicz H. 2013 Accounting for nonlinearities in open-loop protocols for

symmetry fault compensation. J. Comput. Nonlinear Dyn. 9, 021002. (doi:10.1115/1.4025193)
29. Hill TL, Neild SA, Cammarano A. 2016 An analytical approach for detecting isolated

periodic solution branches in weakly nonlinear structures. J. Sound Vib. 379, 150–165.
(doi:10.1016/j.jsv.2016.05.030)

30. Kuether RJ, Renson L, Detroux T, Grappasonni C, Kerschen G, Allen MS. 2015 Nonlinear
normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310.
(doi:10.1016/j.jsv.2015.04.035)

31. Grenat C, Baguet S, Lamarque CH, Dufour R. 2019 A multi-parametric recursive
continuation method for nonlinear dynamical systems. Mech. Syst. Signal Process. 127, 276–289.
(doi:10.1016/j.ymssp.2019.03.011)

32. Habib G, Cirillob G, Kerschen G. 2017 Uncovering detached resonance curves in
single-degree-of-freedom systems. Procedia Eng. 199, 649–656. (doi:10.1016/j.proeng.2017.
09.116)

33. Cirillo GI, Habib G, Kerschen G, Sepulchre R. 2017 Analysis and design of nonlinear
resonances via singularity theory. J. Sound Vib. 392, 295–306. (doi:10.1016/j.jsv.2016.
12.044)

34. Habib G, Cirillo GI, Kerschen G. 2018 Isolated resonances and nonlinear damping. Nonlinear
Dyn. 93, 979–994. (doi:10.1007/s11071-018-4240-z)

35. Noël JP, Detroux T, Masset L, Kerschen G, Virgin LN. 2015 Isolated response curves in a base-
excited, two-degree-of-freedom, nonlinear system. In Volume 6: 11th International Conference
on Multibody Systems, Nonlinear Dynamics, and Control; ASME 2015 Int. Design Engineering
Technical Conferences and Computers and Information in Engineering Conf., Boston, MA, 2–5
August. New York, NY: American Society of Mechanical Engineers.

36. Renson L, Barton DAW, Neild SA. 2019 Application of control-based continuation to a
nonlinear system with harmonically coupled modes. In Nonlinear dynamics (ed. G Kerschen),
vol. 1, pp. 315–316 Cham, Switzerland: Springer International Publishing.

37. Vakakis AF. 1997 Non-linear normal modes (NNMs) and their applications in vibration
theory: an overview. Mech. Syst. Signal Process. 11, 3–22. (doi:10.1006/mssp.1996.9999)

http://dx.doi.org/doi:10.1016/j.ymssp.2014.08.009
http://dx.doi.org/doi:10.1007/s11012-017-0723-0
http://dx.doi.org/doi:10.1115/1.4036420
http://dx.doi.org/doi:10.1098/rspa.2014.0976
http://dx.doi.org/doi:10.1016/j.jsv.2008.05.018
http://dx.doi.org/doi:10.1016/j.jsv.2011.04.006
http://dx.doi.org/doi:10.1016/j.ymssp.2015.01.035
http://dx.doi.org/doi:10.1016/j.jsv.2007.12.040
http://dx.doi.org/doi:10.1016/j.physd.2009.10.001
http://dx.doi.org/doi:10.1016/j.physd.2009.10.001
http://dx.doi.org/doi:10.1115/1.4025193
http://dx.doi.org/doi:10.1016/j.jsv.2016.05.030
http://dx.doi.org/doi:10.1016/j.jsv.2015.04.035
http://dx.doi.org/doi:10.1016/j.ymssp.2019.03.011
http://dx.doi.org/doi:10.1016/j.proeng.2017.09.116
http://dx.doi.org/doi:10.1016/j.proeng.2017.09.116
http://dx.doi.org/doi:10.1016/j.jsv.2016.12.044
http://dx.doi.org/doi:10.1016/j.jsv.2016.12.044
http://dx.doi.org/doi:10.1007/s11071-018-4240-z
http://dx.doi.org/doi:10.1006/mssp.1996.9999


21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190374

...........................................................

38. Hill TL, Cammarano A, Neild SA, Wagg DJ. 2015 Interpreting the forced responses of a two-
degree-of-freedom nonlinear oscillator using backbone curves. J. Sound Vib. 349, 276–288.
(doi:10.1016/j.jsv.2015.03.030)

39. Ehrhardt DA, Hill TL, Neild SA. 2019 Experimentally measuring an isolated branch of
Nonlinear normal modes. J. Sound Vib. 457, 213–226. (doi:10.1016/j.jsv.2019.06.006)

40. Rand RH. 2005 Lecture notes on nonlinear vibrations. Ithaca, NY: Department of Theoretical and
Applied Mechanics, Cornell University.

41. Cammarano A, Hill TL, Neild SA, Wagg DJ. 2014 Bifurcations of backbone curves
for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn. 77, 311–320.
(doi:10.1007/s11071-014-1295-3)

42. Muravyov AA, Rizzi SA. 2003 Determination of nonlinear stiffness with application to
random vibration of geometrically nonlinear structures. Comput. Struct. 81, 1513–1523.
(doi:10.1016/S0045-7949(03)00145-7)

43. Tartaruga I, Elliott A, Hill TL, Neild SA, Cammarano A. 2019 The effect of nonlinear
cross-coupling on reduced-order modelling. Int. J. Non-Linear Mech. 116, 7–17.
(doi:10.1016/j.ijnonlinmec.2019.05.006)

44. Neild SA, Wagg DJ. 2011 Applying the method of normal forms to second-order nonlinear
vibration problems. Proc. R. Soc. A 467, 1141–1163. (doi:10.1098/rspa.2010.0270)

45. Lacarbonara W. 2013 Nonlinear normal modes for damage detection. New York, NY: Springer.
46. Hill TL, Cammarano A, Neild SA, Wagg DJ. 2015 Out-of-unison resonance in weakly

nonlinear coupled oscillators. Proc. R. Soc. A 471, 20140659. (doi:10.1098/rspa.2014.0659)
47. Asami T, Nishihara O. 2003 Closed-form exact solution to H∞ optimization of dynamic

vibration absorbers (application to different transfer functions and damping systems). J. Vib.
Acoust. 125, 398–405. (doi:10.1115/1.1569514)

http://dx.doi.org/doi:10.1016/j.jsv.2015.03.030
http://dx.doi.org/doi:10.1016/j.jsv.2019.06.006
http://dx.doi.org/doi:10.1007/s11071-014-1295-3
http://dx.doi.org/doi:10.1016/S0045-7949(03)00145-7
http://dx.doi.org/doi:10.1016/j.ijnonlinmec.2019.05.006
http://dx.doi.org/doi:10.1098/rspa.2010.0270
http://dx.doi.org/doi:10.1098/rspa.2014.0659
http://dx.doi.org/doi:10.1115/1.1569514

	Introduction
	Breaking the symmetry of a nonlinear 2-d.f. oscillator
	The backbone curves of a symmetric two-mass oscillator
	Breaking either the nonlinear or the linear parameter symmetry
	Breaking both the linear and nonlinear parameter symmetry

	Backbone curves for an NLTMD-inspired two-mode system
	Parameter conditions required for dynamic symmetry
	Evolution of backbone curves in the nonlinear parameter space

	Additional topological boundaries
	Conclusion
	References

